author | Christian Urban <christian dot urban at kcl dot ac dot uk> |
Tue, 20 Nov 2012 06:45:37 +0000 | |
changeset 78 | cd4fde79587e |
parent 74 | fb14a8e1b00d |
child 91 | e6b34594d1e5 |
permissions | -rw-r--r-- |
63 | 1 |
\documentclass{article} |
2 |
\usepackage{charter} |
|
3 |
\usepackage{hyperref} |
|
4 |
\usepackage{amssymb} |
|
5 |
||
6 |
\begin{document} |
|
7 |
||
8 |
\section*{Homework 6} |
|
9 |
||
10 |
\begin{enumerate} |
|
11 |
\item Access-control logic includes formulas of the form |
|
12 |
\begin{center} |
|
13 |
$P\;\textit{says}\;F$ |
|
14 |
\end{center} |
|
15 |
||
16 |
where $P$ is a principal and $F$ a formula. Give two inference rules |
|
17 |
of access-control logic involving $\textit{says}$. |
|
18 |
||
74
fb14a8e1b00d
added hw 7
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
63
diff
changeset
|
19 |
\item (Removed) Was already used in HW 5 |
63 | 20 |
|
21 |
\item |
|
22 |
Assume an access control logic with security levels, say top secret ({\it TS}), |
|
23 |
secret ({\it S}) and public ({\it P}), with |
|
24 |
\begin{center} |
|
25 |
$slev(\textit{P}) < slev(\textit{S}) < slev(\textit{TS})$ |
|
26 |
\end{center} |
|
27 |
||
28 |
(a) Modify the formula |
|
29 |
\begin{center} |
|
30 |
\begin{tabular}{l} |
|
31 |
$P\;\textit{controls}\;\textit{Permitted}(O, \textit{write})$\\ |
|
32 |
\end{tabular} |
|
33 |
\end{center} |
|
34 |
using security levels so that it satisfies the {\it write rule} from the {\it |
|
35 |
Bell-LaPadula} access policy. Do the same again, but satisfy the {\it write rule} |
|
36 |
from the {\it Biba} access policy. |
|
37 |
||
38 |
(b)Modify the formula |
|
39 |
\begin{center} |
|
40 |
\begin{tabular}{l} |
|
41 |
$P\;\textit{controls}\;\textit{Permitted}(O, \textit{read})$\\ |
|
42 |
\end{tabular} |
|
43 |
\end{center} |
|
44 |
using security levels so that it satisfies the {\it read rule} from the {\it |
|
45 |
Bell-LaPadula} access policy. Do the same again, but satisfy the {\it read rule} |
|
46 |
from the {\it Biba} access policy. |
|
47 |
||
48 |
\item Assume two security levels $\textit{S}$ and $\textit{TS}$, which are ordered so that $slev(\textit{S}) < slev(\textit{TS})$. |
|
49 |
Assume further the substitution rules |
|
50 |
\begin{center} |
|
51 |
\begin{tabular}{c} |
|
52 |
$\Gamma \vdash slev(P) = l_1$ \hspace{4mm} $\Gamma \vdash slev(Q) = l_2$ |
|
53 |
\hspace{4mm} $\Gamma \vdash l_1 < l_2$\\\hline |
|
54 |
$\Gamma \vdash slev(P) < slev(Q)$ |
|
55 |
\end{tabular} |
|
56 |
\end{center} |
|
57 |
||
58 |
\begin{center} |
|
59 |
\begin{tabular}{c} |
|
60 |
$\Gamma \vdash slev(P) = l$ \hspace{4mm} $\Gamma \vdash slev(Q) = l$\\\hline |
|
61 |
$\Gamma \vdash slev(P) = slev(Q)$ |
|
62 |
\end{tabular} |
|
63 |
\end{center} |
|
64 |
||
65 |
Let $\Gamma$ be the set containing the following six formulas |
|
66 |
\begin{center} |
|
67 |
\begin{tabular}{l} |
|
68 |
\\ |
|
69 |
$slev(\textit{S}) < slev(\textit{TS})$\smallskip\\ |
|
70 |
$slev(\textit{Agent}) = \textit{TS}$\smallskip\\ |
|
71 |
$slev(\textit{File}_1) = \textit{S}$\smallskip\\ |
|
72 |
$slev(\textit{File}_2) = \textit{TS}$\smallskip\\ |
|
73 |
$\forall O.\;slev(O) < slev(\textit{Agent}) \Rightarrow |
|
74 |
(\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\smallskip\\ |
|
75 |
$\forall O.\;slev(O) = slev(\textit{Agent}) \Rightarrow |
|
76 |
(\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\\ |
|
77 |
\\ |
|
78 |
\end{tabular} |
|
79 |
\end{center} |
|
80 |
Using the inference rules of access-control logic and the substitution rules shown above, |
|
81 |
give proofs for the two judgements |
|
82 |
\begin{center} |
|
83 |
\begin{tabular}{l} |
|
84 |
$\Gamma \vdash |
|
85 |
(\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_1, |
|
86 |
\textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_1, \textit{read})$\smallskip\\ |
|
87 |
$\Gamma \vdash |
|
88 |
(\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_2, |
|
89 |
\textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_2, \textit{read})$\\ |
|
90 |
\end{tabular} |
|
91 |
\end{center} |
|
92 |
||
93 |
\end{enumerate} |
|
94 |
\end{document} |
|
95 |
||
96 |
%%% Local Variables: |
|
97 |
%%% mode: latex |
|
98 |
%%% TeX-master: t |
|
99 |
%%% End: |