diff -r 25e55731ed01 -r 566b0d1c3669 Tainted_prop.thy --- a/Tainted_prop.thy Sun Jun 09 14:28:58 2013 +0800 +++ b/Tainted_prop.thy Sun Jun 16 08:05:37 2013 +0800 @@ -75,25 +75,76 @@ intro:has_same_inode_prop2 has_same_inode_prop1 dest:info_shm_flow_in_procs) done +lemma Tainted_proc_in_current: + "\O_proc p \ Tainted s; valid s\ \ p \ current_procs s" +by (drule Tainted_in_current, simp+) + +lemma has_inode_tainted_aux: + "O_file f \ tainted s \ \ f'. has_same_inode s f f' \ O_file f' \ tainted s" +apply (erule tainted.induct) +apply (auto intro:tainted.intros simp:has_same_inode_def) +(*?? need simpset for tainted *) + + +sorry lemma has_inode_Tainted_aux: - "\O_file f \ tainted s; has_same_inode s f f'\ \ O_file f' \ tainted s" -apply (erule tainted.induct) + "\O_file f \ Tainted s; has_same_inode s f f'\ \ O_file f' \ Tainted s" +apply (induct s, auto) apply (auto intro:tainted.intros simp:has_same_inode_def) (*?? need simpset for tainted *) sorry lemma info_flow_shm_Tainted: "\O_proc p \ Tainted s; info_flow_shm s p p'; valid s\ \ O_proc p' \ Tainted s" -proof (induct s) +proof (induct s arbitrary:p p') case Nil - thus ?case - apply simp -apply (induct s) + thus ?case by (simp add:flow_shm_in_seeds) +next + case (Cons e s) + hence p1: "O_proc p \ Tainted (e # s)" and p2: "info_flow_shm (e # s) p p'" and p3: "valid (e # s)" + and p4: "\ p p'. \O_proc p \ Tainted s; info_flow_shm s p p'\ \ O_proc p' \ Tainted s" + and p5: "valid s" and p6: "os_grant s e" + by (auto dest:vd_cons intro:vd_cons vt_grant_os) + have p4': + "\ p p' h flag. \O_proc p \ Tainted s; (p, SHM_RDWR) \ procs_of_shm s h; (p', flag) \ procs_of_shm s h\ + \ O_proc p' \ Tainted s" + by (rule p4, auto simp:info_flow_shm_def) + from p2 p3 have p7: "p \ current_procs (e # s)" and p8: "p' \ current_procs (e # s)" + by (auto dest:info_shm_flow_in_procs) + show ?case + proof (cases "p = p'") + case True with p1 show ?thesis by simp + next + case False + with p1 p2 p5 p6 p7 p8 p3 show ?thesis + apply (case_tac e) + prefer 7 + apply (simp add:info_flow_shm_def split:if_splits option.splits) + apply (rule allI|rule impI|rule conjI)+ + apply (erule disjE, drule_tac p = p and p' = p' in p4', simp+) + apply (erule disjE, rule disjI2, rule disjI2, rule_tac x = h in exI, simp, rule_tac x= toflag in exI, simp) + apply ((erule exE|erule conjE)+) + + + apply (auto simp:info_flow_shm_def dest:p4' + procs_of_shm_prop2 Tainted_in_current split:if_splits option.splits)[1] + apply (drule_tac p = p and p' = p' in p4') + apply (erule_tac x = ha in allE, simp) + apply (drule_tac p = "nat1" and p' = p' in p4') + apply (auto dest:p4'[where p = nat1 and p' = p']) + +apply (induct s) (* apply simp defer apply (frule vd_cons, frule vt_grant_os, case_tac a) apply (auto simp:info_flow_shm_def elim!:disjE) -sorry +sorry *) + sorry +next + case (Cons e s) + show ?case + sorry +qed lemma tainted_imp_Tainted: "obj \ tainted s \ obj \ Tainted s"