no_shm_selinux/Enrich2.thy
author chunhan
Thu, 26 Dec 2013 10:56:50 +0800
changeset 83 e79e3a8a4ceb
parent 82 0a68c605ae79
child 84 cebdef333899
permissions -rw-r--r--
enrich

theory Enrich
imports Main Flask Static Init_prop Valid_prop Tainted_prop Delete_prop Co2sobj_prop S2ss_prop S2ss_prop2
 Temp Enrich Proc_fd_of_file_prop
begin

context tainting_s begin

lemma get_parentfs_ctxts_prop:
  "\<lbrakk>get_parentfs_ctxts s (a # f) = Some ctxts; sectxt_of_obj s (O_dir f) = Some ctxt; valid s\<rbrakk>
   \<Longrightarrow> ctxt \<in> set (ctxts)"
apply (induct f)
apply (auto split:option.splits)
done

lemma search_check_allp_intro:
  "\<lbrakk>search_check s sp pf; get_parentfs_ctxts s pf = Some ctxts; valid s; is_dir s pf\<rbrakk>
   \<Longrightarrow> search_check_allp sp (set ctxts)"
apply (case_tac pf)
apply (simp split:option.splits if_splits add:search_check_allp_def)
apply (rule ballI)
apply (auto simp:search_check_ctxt_def search_check_dir_def split:if_splits option.splits)
apply (auto simp:search_check_allp_def search_check_file_def)
apply (frule is_dir_not_file, simp)
done

lemma search_check_leveling_f:
  "\<lbrakk>search_check s sp pf; parent f = Some pf; is_file s f; valid s;
    sectxt_of_obj s (O_file f) = Some fctxt; search_check_file sp fctxt\<rbrakk>
   \<Longrightarrow> search_check s sp f"
apply (case_tac f, simp+)
apply (auto split:option.splits simp:search_check_ctxt_def)
apply (frule parentf_is_dir_prop2, simp)
apply (erule get_pfs_secs_prop, simp)
apply (erule_tac search_check_allp_intro, simp_all)
apply (simp add:parentf_is_dir_prop2)
done

lemma enrich_proc_prop:
  "\<lbrakk>valid s; is_created_proc s p; p' \<notin> all_procs s\<rbrakk>
   \<Longrightarrow> valid (enrich_proc s p p') \<and> 
       (\<forall> obj. alive s obj \<longrightarrow> alive (enrich_proc s p p') obj) \<and> 
       (\<forall> obj. enrich_not_alive s obj \<longrightarrow> enrich_not_alive (enrich_proc s p p') obj) \<and>
       (files_hung_by_del (enrich_proc s p p') = files_hung_by_del s) \<and> 
       (\<forall> tp. tp \<in> current_procs s \<longrightarrow> cp2sproc (enrich_proc s p p') tp = cp2sproc s tp) \<and>
       (\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile (enrich_proc s p p') f = cf2sfile s f) \<and> 
       (\<forall> q. q \<in> current_msgqs s \<longrightarrow> cq2smsgq (enrich_proc s p p') q = cq2smsgq s q) \<and> 
       (\<forall> tp fd f. file_of_proc_fd s tp fd = Some f \<longrightarrow> file_of_proc_fd (enrich_proc s p p') tp fd = Some f) \<and>
       (\<forall> tp fd flags. flags_of_proc_fd s tp fd = Some flags \<longrightarrow> 
                      flags_of_proc_fd (enrich_proc s p p') tp fd = Some flags) \<and>
       (\<forall> q. msgs_of_queue (enrich_proc s p p') q = msgs_of_queue s q) \<and>
       (\<forall> tp fd. fd \<in> proc_file_fds s tp \<longrightarrow> cfd2sfd (enrich_proc s p p') tp fd = cfd2sfd s tp fd) \<and>
       (cp2sproc (enrich_proc s p p') p' = cp2sproc s p) \<and>
       (\<forall> fd. fd \<in> proc_file_fds s p \<longrightarrow> cfd2sfd (enrich_proc s p p') p' fd = cfd2sfd s p fd)"
proof (induct s)
  case Nil
  thus ?case by (auto simp:is_created_proc_def)
next
  case (Cons e s)
  hence vd_cons': "valid (e # s)" and created_cons: "is_created_proc (e # s) p"
    and all_procs_cons: "p' \<notin> all_procs (e # s)" and vd: "valid s" 
    and os: "os_grant s e" and grant: "grant s e"
    by (auto dest:vd_cons' vt_grant_os vt_grant)
  from all_procs_cons have all_procs: "p' \<notin> all_procs s" by (case_tac e, auto)
  from Cons have pre: "is_created_proc s p \<Longrightarrow> valid (enrich_proc s p p') \<and>
     (\<forall>obj. alive s obj \<longrightarrow> alive (enrich_proc s p p') obj) \<and>
     (\<forall>obj. enrich_not_alive s obj \<longrightarrow> enrich_not_alive (enrich_proc s p p') obj) \<and>
     files_hung_by_del (enrich_proc s p p') = files_hung_by_del s \<and>
     (\<forall>tp. tp \<in> current_procs s \<longrightarrow> cp2sproc (enrich_proc s p p') tp = cp2sproc s tp) \<and>
     (\<forall>f. f \<in> current_files s \<longrightarrow> cf2sfile (enrich_proc s p p') f = cf2sfile s f) \<and>
     (\<forall>q. q \<in> current_msgqs s \<longrightarrow> cq2smsgq (enrich_proc s p p') q = cq2smsgq s q) \<and>
     (\<forall>tp fd f. file_of_proc_fd s tp fd = Some f \<longrightarrow> file_of_proc_fd (enrich_proc s p p') tp fd = Some f) \<and>
     (\<forall>tp fd flags.
         flags_of_proc_fd s tp fd = Some flags \<longrightarrow> flags_of_proc_fd (enrich_proc s p p') tp fd = Some flags) \<and>
     (\<forall>q. msgs_of_queue (enrich_proc s p p') q = msgs_of_queue s q) \<and>
     (\<forall>tp fd. fd \<in> proc_file_fds s tp \<longrightarrow> cfd2sfd (enrich_proc s p p') tp fd = cfd2sfd s tp fd) \<and>     
     (cp2sproc (enrich_proc s p p') p' = cp2sproc s p) \<and>
     (\<forall> fd. fd \<in> proc_file_fds s p \<longrightarrow> cfd2sfd (enrich_proc s p p') p' fd = cfd2sfd s p fd)"
    using vd all_procs by auto
  have alive_pre: "is_created_proc s p \<Longrightarrow> (\<forall>obj. alive s obj \<longrightarrow> alive (enrich_proc s p p') obj)"
    using pre by simp
  hence curf_pre: "is_created_proc s p \<Longrightarrow> (\<forall>f. f \<in> current_files s \<longrightarrow> f \<in> current_files (enrich_proc s p p'))"
    using vd apply auto
    apply (drule is_file_or_dir, simp)
    apply (erule disjE)
    apply (erule_tac x = "O_file f" in allE, simp add:is_file_in_current)
    apply (erule_tac x = "O_dir f" in allE, simp add:is_dir_in_current)
    done
  have vd_enrich_cons: "valid (enrich_proc (e # s) p p')"
  proof-
    from pre have pre': "is_created_proc s p \<Longrightarrow> valid (enrich_proc s p p')" by simp
    have "is_created_proc s p \<Longrightarrow> valid (e # enrich_proc s p p')" 
      apply (frule pre')
      apply (erule_tac s = s in enrich_valid_intro_cons)
      apply (simp_all add:os grant vd pre)
      done  
    moreover have "\<And>f fds. \<lbrakk>valid (Execve p f fds # enrich_proc s p p'); is_created_proc s p; 
      valid (Execve p f fds # s); p' \<notin> all_procs s\<rbrakk>
      \<Longrightarrow> valid (Execve p' f (fds \<inter> proc_file_fds s p) # Execve p f fds # enrich_proc s p p')"
    proof-
      fix f fds
      assume a1: "valid (Execve p f fds # enrich_proc s p p')" and a2: "is_created_proc s p"
        and a3: "valid (Execve p f fds # s)" and a0: "p' \<notin> all_procs s"
      have cp2sp: "\<forall> tp. tp \<in> current_procs s \<longrightarrow> cp2sproc (enrich_proc s p p') tp = cp2sproc s tp"
        and cf2sf: "\<forall> tf. tf \<in> current_files s \<longrightarrow> cf2sfile (enrich_proc s p p') tf = cf2sfile s tf"
        and cfd2sfd: "\<forall> tp tfd. tfd \<in> proc_file_fds s tp \<longrightarrow> cfd2sfd (enrich_proc s p p') tp tfd = cfd2sfd s tp tfd"
        and ffd_remain: "\<forall>tp fd f. file_of_proc_fd s tp fd = Some f \<longrightarrow> 
                                   file_of_proc_fd (enrich_proc s p p') tp fd = Some f"
        and dup_sp: "cp2sproc (enrich_proc s p p') p' = cp2sproc s p"
        and dup_sfd: "\<forall> fd. fd \<in> proc_file_fds s p \<longrightarrow> cfd2sfd (enrich_proc s p p') p' fd = cfd2sfd s p fd"
        using pre a2 by auto
      show "valid (Execve p' f (fds \<inter> proc_file_fds s p) # Execve p f fds # enrich_proc s p p')"
      proof-
        from a0 a3 have a0': "p' \<noteq> p" by (auto dest!:vt_grant_os not_all_procs_prop3)
        from a3 have grant: "grant s (Execve p f fds)" and os: "os_grant s (Execve p f fds)"
          by (auto dest:vt_grant_os vt_grant simp del:os_grant.simps)
        have f_in: "is_file (enrich_proc s p p') f" 
        proof-
          from pre a2
          have a4: "\<forall> obj. alive s obj \<longrightarrow> alive (enrich_proc s p p') obj"
            by (auto)
          show ?thesis using a3 a4
            apply (erule_tac x = "O_file f" in allE)
            by (auto dest:vt_grant_os)
        qed
        moreover have a5: "proc_file_fds s p \<subseteq> proc_file_fds (Execve p f fds # enrich_proc s p p') p'" 
          using a3 a0'
          apply (frule_tac vt_grant_os)
          apply (auto simp:proc_file_fds_def)
          apply (rule_tac x = fa in exI)
          apply (erule enrich_proc_dup_ffd)
          apply (simp_all add:vd all_procs a2)
          done
        ultimately have "os_grant (Execve p f fds # enrich_proc s p p') (Execve p' f (fds \<inter> proc_file_fds s p))"
          apply (auto simp:is_file_simps enrich_proc_dup_in a2 vd all_procs a1 enrich_proc_dup_ffds)
          done
        moreover have "grant (Execve p f fds # enrich_proc s p p') (Execve p' f (fds \<inter> proc_file_fds s p))"
        proof-
          from grant obtain up rp tp uf rf tf 
            where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
            and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)" 
            by (simp split:option.splits, blast)
          with grant obtain pu nr nt where p3: "npctxt_execve (up, rp, tp) (uf, rf, tf) = Some (pu, nr, nt)"
            by (simp split:option.splits del:npctxt_execve.simps, blast)
          have p1': "sectxt_of_obj (Execve p f fds # enrich_proc s p p') (O_proc p') = Some (up, rp, tp)"
            using p1 dup_sp a1 a0'
            apply (simp add:sectxt_of_obj_simps)
            by (simp add:cp2sproc_def split:option.splits)
          from os have f_in': "is_file s f"  by simp 
          from vd os have "\<exists> sf. cf2sfile s f = Some sf"
            by (auto dest!:is_file_in_current current_file_has_sfile)
          hence p2': "sectxt_of_obj (Execve p f fds # enrich_proc s p p') (O_file f) = Some (uf, rf, tf)" 
            using f_in p2 cf2sf os a1
            apply (erule_tac x = f in allE)
            apply (auto dest:is_file_in_current simp:cf2sfile_def sectxt_of_obj_simps split:option.splits)
            apply (case_tac f, simp)
            apply (drule_tac s = s in root_is_dir', simp add:vd, simp+)
            done 
          from dup_sfd a5 have "\<forall>fd. fd \<in> proc_file_fds s p \<longrightarrow> 
            cfd2sfd (Execve p f fds # enrich_proc s p p') p' fd = cfd2sfd s p fd"
            apply (rule_tac allI)
            apply (erule_tac x = fd in allE, clarsimp)
            apply (drule set_mp, simp)
            apply (auto simp:cfd2sfd_execve proc_file_fds_def a1)
            done
          hence "inherit_fds_check (Execve p f fds # enrich_proc s p p') (up, nr, nt) p' (fds \<inter> proc_file_fds s p)"
            using grant os p1 p2 p3 vd
            apply (clarsimp)
            apply (rule_tac s = s and p = p and fds = fds in enrich_inherit_fds_check_dup)
            apply simp_all
            done
          moreover have "search_check (Execve p f fds # enrich_proc s p p') (up, rp, tp) f"
            using p1 p2 p2' vd cf2sf f_in f_in' grant p3 f_in a1
            apply (rule_tac s = s in enrich_search_check)
            apply (simp_all add:is_file_simps)
            apply (rule allI, rule impI, erule_tac x = fa in allE, simp)
            apply (drule_tac ff = fa in cf2sfile_other')
            by (auto simp:a2 curf_pre)
          ultimately show ?thesis 
            using p1' p2' p3
            apply (simp split:option.splits)
            using grant p1 p2
            apply simp
            done
        qed
        ultimately show ?thesis using a1
          by (erule_tac valid.intros(2), auto)
      qed
    qed
    moreover have "\<And>tp fds. \<lbrakk>valid (Clone tp p fds # s); p' \<noteq> p; p' \<notin> all_procs s\<rbrakk> \<Longrightarrow> 
      valid (Clone tp p' (fds \<inter> proc_file_fds s tp) # Clone tp p fds # s)"
      apply (frule vt_grant_os, frule vt_grant, drule not_all_procs_prop3)
      apply (rule valid.intros(2))
      apply (simp_all split:option.splits add:sectxt_of_obj_simps)
      apply (auto simp add:proc_file_fds_def)[1]
      apply (auto simp:inherit_fds_check_def sectxt_of_obj_simps sectxts_of_fds_def inherit_fds_check_ctxt_def)
      done
    moreover have "\<And>f flags fd opt. \<lbrakk>valid (Open p f flags fd opt # enrich_proc s p p'); 
      is_created_proc s p; valid (Open p f flags fd opt # s); p' \<notin> all_procs s\<rbrakk>
       \<Longrightarrow> valid (Open p' f (remove_create_flag flags) fd None # Open p f flags fd opt # enrich_proc s p p')"
    proof-
      fix f flags fd opt
      assume a1: "valid (Open p f flags fd opt # enrich_proc s p p')" and a2: "is_created_proc s p"
        and a3: "valid (Open p f flags fd opt # s)" and a4: "p' \<notin> all_procs s"
      have cp2sp: "\<forall> tp. tp \<in> current_procs s \<longrightarrow> cp2sproc (enrich_proc s p p') tp = cp2sproc s tp"
        and cf2sf: "\<forall> tf. tf \<in> current_files s \<longrightarrow> cf2sfile (enrich_proc s p p') tf = cf2sfile s tf"
        and cfd2sfd: "\<forall> tp tfd. tfd \<in> proc_file_fds s tp \<longrightarrow> cfd2sfd (enrich_proc s p p') tp tfd = cfd2sfd s tp tfd"
        and ffd_remain: "\<forall>tp fd f. file_of_proc_fd s tp fd = Some f \<longrightarrow> 
                                   file_of_proc_fd (enrich_proc s p p') tp fd = Some f"
        and dup_sp: "cp2sproc (enrich_proc s p p') p' = cp2sproc s p"
        and dup_sfd: "\<forall> fd. fd \<in> proc_file_fds s p \<longrightarrow> cfd2sfd (enrich_proc s p p') p' fd = cfd2sfd s p fd"
        using pre a2 by auto
      from a4 a3 have a0: "p' \<noteq> p" by (auto dest!:vt_grant_os not_all_procs_prop3 split:option.splits)
      have a5: "p' \<in> current_procs (enrich_proc s p p')" 
        using a2 a3 vd
        apply (erule_tac enrich_proc_dup_in)
        by (simp_all add:vd a4)
      have a6: "is_file (Open p f flags fd opt # enrich_proc s p p') f"
        using a1 a3
        by (auto simp:is_file_open dest:vt_grant_os)
      have a7: "fd \<notin> current_proc_fds (enrich_proc s p p') p'"
        using a2 a4 vd
        apply (simp add:enrich_proc_dup_ffds_eq_fds)
        apply (rule notI)
        apply (drule_tac p = p in file_fds_subset_pfds)
        apply (drule set_mp, simp)
        using a3
        apply (drule_tac vt_grant_os)
        apply (auto split:option.splits)
        done
      from a1 have a8: "valid (enrich_proc s p p')" by (erule_tac valid.cases, auto)
      from a3 have grant: "grant s (Open p f flags fd opt)" and os: "os_grant s (Open p f flags fd opt)"
        by (auto dest:vt_grant_os vt_grant)
      show "valid (Open p' f (remove_create_flag flags) fd None # Open p f flags fd opt # enrich_proc s p p')"
      proof (cases opt)
        case None
        have f_in: "is_file (enrich_proc s p p') f" 
        proof-
          from pre a2
          have a4: "\<forall> obj. alive s obj \<longrightarrow> alive (enrich_proc s p p') obj"
            by (auto)
          show ?thesis using a3 a4 None
            apply (erule_tac x = "O_file f" in allE)
            by (auto dest:vt_grant_os)
        qed
        from grant None obtain up rp tp uf rf tf 
          where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
          and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)" 
          apply (simp split:option.splits)
          by (case_tac a, case_tac aa, blast)
        have p1': "sectxt_of_obj (Open p f flags fd opt # enrich_proc s p p') (O_proc p') = Some (up, rp, tp)"
          using p1 dup_sp a1
          apply (simp add:sectxt_of_obj_simps)
          by (simp add:cp2sproc_def split:option.splits)
        from os None have f_in': "is_file s f" by simp 
        from vd os None have "\<exists> sf. cf2sfile s f = Some sf"
          by (auto dest!:is_file_in_current current_file_has_sfile)
        hence p2': "sectxt_of_obj (Open p f flags fd opt # enrich_proc s p p') (O_file f) = Some (uf, rf, tf)" 
          using p2 cf2sf os a1 None f_in' vd f_in
          apply (erule_tac x = f in allE)
          apply (auto dest:is_file_in_current simp:cf2sfile_def sectxt_of_obj_simps split:option.splits)
          apply (case_tac f, simp)
          apply (drule_tac s = s in root_is_dir', simp add:vd, simp+)
          done 
        have "search_check (Open p f flags fd opt # enrich_proc s p p') (up, rp, tp) f"
          using p1 p2 p2' vd cf2sf f_in f_in' grant f_in a1 None
          apply (rule_tac s = s in enrich_search_check)
          apply (simp_all add:is_file_simps)
          apply (rule allI, rule impI, erule_tac x = fa in allE, simp)
          apply (simp add:cf2sfile_open_none)
          done
        thus ?thesis using a0 a5 a6 a7 None a1
          apply (rule_tac valid.intros(2))
          apply (simp_all add:a1)
          apply (case_tac flags, simp add:is_creat_excl_flag_def)
          using p1' p2'
          apply simp
          using grant p1 p2
          apply (simp add:oflags_check_remove_create)
          done
      next
        case (Some inum)
        with os obtain pf where parent: "parent f = Some pf" by auto
        with grant Some obtain pu rp pt pfu pfr pft where
          p1: "sectxt_of_obj s (O_proc p) = Some (pu, rp, pt)" 
          and p2: "sectxt_of_obj s (O_dir pf) = Some (pfu, pfr, pft)"
          apply (simp split:option.splits)
          apply (case_tac a, case_tac aa, blast)
          done
        from p1 have p1': "sectxt_of_obj (enrich_proc s p p') (O_proc p) = Some (pu, rp, pt)"
          using cp2sp os
          apply (erule_tac x = p in allE)
          apply (auto split:option.splits simp:cp2sproc_def)
          done
        from os parent Some
        have pf_in: "is_dir s pf" by auto
        hence "\<exists> sf. cf2sfile s pf = Some sf" using vd
          by (auto dest!:is_dir_in_current current_file_has_sfile)
        from a1 parent Some have pf_in': "is_dir (enrich_proc s p p') pf" 
          apply (frule_tac vt_grant_os)
          by (clarsimp)
        have p2': "sectxt_of_obj (enrich_proc s p p') (O_dir pf) = Some (pfu, pfr, pft)"
        proof-
          have "cf2sfile (enrich_proc s p p') pf = cf2sfile s pf"
            using cf2sf pf_in
            apply (drule_tac is_dir_in_current)
            apply (erule_tac x = pf in allE)
            by simp
          with pf_in pf_in' p2 vd Some a8
          show ?thesis            
            apply (frule_tac is_dir_not_file)
            apply (frule_tac s = "enrich_proc s p p'" in is_dir_not_file)
            apply (simp add:cf2sfile_def)
            apply (case_tac pf, simp) 
            apply (simp add:sroot_def root_sec_remains)            
            by (auto split:option.splits dest!:current_has_sec' get_pfs_secs_prop' dest:parentf_is_dir_prop1)        
        qed
        from p1 have dup: "sectxt_of_obj (Open p f flags fd (Some inum) # enrich_proc s p p') (O_proc p') 
          = Some (pu, rp, pt)"
          using a1 Some
          apply (simp add:sec_open)
          using dup_sp
          apply (auto split:option.splits if_splits simp:cp2sproc_def)
          done        
        have nsf: "sectxt_of_obj (Open p f flags fd (Some inum) # enrich_proc s p p') (O_file f) 
          = Some (pu, R_object, type_transition pt pft C_file True)"
          using a1 Some p1 p2 parent p2' p1'
          by (simp add:sec_open)
        have "search_check (Open p f flags fd (Some inum) # enrich_proc s p p') (pu, rp, pt) f"
        proof-
          have "search_check (Open p f flags fd (Some inum) # enrich_proc s p p') (pu, rp, pt) pf"
            using grant Some parent p1 p2 vd a1 pf_in pf_in' p2'
            apply simp 
            apply (rule_tac s = s in enrich_search_check') 
            apply (simp_all add:is_dir_simps sectxt_of_obj_simps)
            apply (rule allI, rule impI)
            apply (case_tac "fa = f")
            using os Some
            apply simp
            apply (drule_tac f' = fa in cf2sfile_open)
            apply (simp add:current_files_simps)
            using curf_pre a2
            apply simp
            apply simp
            using cf2sf
            apply simp
            done
          moreover have "is_file (Open p f flags fd (Some inum) # enrich_proc s p p') f"
            using a1 Some
            by (simp add:is_file_open)
          ultimately 
          show ?thesis
            using parent a1 Some nsf
            apply (erule_tac search_check_leveling_f)
            apply (simp_all)
            apply (simp add:search_check_file_def)
            apply (simp add:permission_check.simps)
            sorry
        qed
        thus ?thesis using a0 a5 a6 a7 a1 Some
          apply (rule_tac valid.intros(2))
          apply (simp add:a1)
          apply simp
          apply (case_tac flags, simp add:is_creat_excl_flag_def)
          using grant p1 p2 parent dup nsf
          apply (simp add:oflags_check_remove_create)
          done
      qed
    qed
    moreover have "\<And>fd. \<lbrakk>valid (CloseFd p fd # enrich_proc s p p'); is_created_proc s p; 
      valid (CloseFd p fd # s); p' \<notin> all_procs s; fd \<in> proc_file_fds s p\<rbrakk>
      \<Longrightarrow> valid (CloseFd p' fd # CloseFd p fd # enrich_proc s p p')"
    proof-
      fix fd
      assume a1: "valid (CloseFd p fd # enrich_proc s p p')" and a2: "is_created_proc s p" 
        and a3: "p' \<notin> all_procs s" and a4: "valid (CloseFd p fd # s)"
        and a5: "fd \<in> proc_file_fds s p"
      from a4 a3 have a0: "p' \<noteq> p" by (auto dest!:vt_grant_os not_all_procs_prop3)
      have "p' \<in> current_procs (enrich_proc s p p')" 
        using a2 a3 vd
        by (auto intro:enrich_proc_dup_in)
      moreover have "fd \<in> current_proc_fds (enrich_proc s p p') p'"      
        using a5 a2 a3 vd pre'
        apply (simp)
        apply (drule_tac s = "enrich_proc s p p'" and p = p' in file_fds_subset_pfds)
        apply (erule set_mp)
        apply (simp add:enrich_proc_dup_ffds)
        done
      ultimately show "valid (CloseFd p' fd # CloseFd p fd # enrich_proc s p p')"
        apply (rule_tac valid.intros(2))
        apply (simp_all add:a1 a0 a2 pre')
        done
    qed
    moreover have "\<And> fd. \<lbrakk>valid (ReadFile p fd # enrich_proc s p p');
            is_created_proc s p; valid (ReadFile p fd # s); p' \<notin> all_procs s\<rbrakk>
           \<Longrightarrow> valid (ReadFile p' fd # ReadFile p fd # enrich_proc s p p')"
    proof-
      fix fd
      assume a1: "valid (ReadFile p fd # enrich_proc s p p')" and a2: "is_created_proc s p"
        and a3: "valid (ReadFile p fd # s)" and a4: "p' \<notin> all_procs s"
      from a3 have os: "os_grant s (ReadFile p fd)" and grant: "grant s (ReadFile p fd)"
        by (auto dest:vt_grant_os vt_grant)
      have cp2sp: "\<forall> tp. tp \<in> current_procs s \<longrightarrow> cp2sproc (enrich_proc s p p') tp = cp2sproc s tp"
        and cf2sf: "\<forall> tf. tf \<in> current_files s \<longrightarrow> cf2sfile (enrich_proc s p p') tf = cf2sfile s tf"
        and cfd2sfd: "\<forall> tp tfd. tfd \<in> proc_file_fds s tp \<longrightarrow> cfd2sfd (enrich_proc s p p') tp tfd = cfd2sfd s tp tfd"
        and ffd_remain: "\<forall>tp fd f. file_of_proc_fd s tp fd = Some f \<longrightarrow> 
                                   file_of_proc_fd (enrich_proc s p p') tp fd = Some f"
        and dup_sp: "cp2sproc (enrich_proc s p p') p' = cp2sproc s p"
        and dup_sfd: "\<forall> fd. fd \<in> proc_file_fds s p \<longrightarrow> cfd2sfd (enrich_proc s p p') p' fd = cfd2sfd s p fd"
        using pre a2 by auto
      have vd_enrich: "valid (enrich_proc s p p')" using a1 by (auto dest:valid.cases)
      show "valid (ReadFile p' fd # ReadFile p fd # enrich_proc s p p')"
      proof-
        have "os_grant (ReadFile p fd # enrich_proc s p p') (ReadFile p' fd)"
          using a1 a2 a4 vd os
          apply (clarsimp simp:current_files_simps enrich_proc_dup_in enrich_proc_dup_ffds_eq_fds)
          apply (simp add:proc_file_fds_def)
          apply (rule conjI)
          apply (rule_tac x = f in exI, simp add:enrich_proc_dup_ffd)
          using curf_pre
          apply (simp)
          apply (drule enrich_proc_dup_fflags)
          apply simp_all
          apply (erule disjE)
          apply auto
          apply (simp add:is_read_flag_def)
          done
        moreover have "grant (ReadFile p fd # enrich_proc s p p') (ReadFile p' fd)"
        proof-
          from grant obtain f sp sfd sf where p1: "file_of_proc_fd s p fd = Some f"
            and p2: "sectxt_of_obj s (O_proc p) = Some sp" 
            and p3: "sectxt_of_obj s (O_fd p fd) = Some sfd"
            and p4: "sectxt_of_obj s (O_file f) = Some sf"
            by (auto split:option.splits) 
          from os obtain flag where p0: "flags_of_proc_fd s p fd = Some flag"
            by auto
          from os have f_in_s: "f \<in> current_files s" using p1 by simp
          from p1 vd have isfile_s: "is_file s f" by (erule_tac file_of_pfd_is_file, simp)
          with alive_pre a2 have isfile_s': "is_file (enrich_proc s p p') f"
            apply simp
            apply (erule_tac x = "O_file f" in allE, simp)
            done          
          from p0 obtain flag' where p0': "flags_of_proc_fd (enrich_proc s p p') p' fd = Some flag'"
            and p0'': "(flag' = flag) \<or> (flag' = remove_create_flag flag)"
            using a2 a4 vd
            apply (drule_tac enrich_proc_dup_fflags)
            apply auto
            apply (case_tac flag, auto)
            apply (case_tac flag, auto)
            done            
          from p1 have p1': "file_of_proc_fd (enrich_proc s p p') p' fd = Some f"
            using a2 a4 vd
            by (simp add:enrich_proc_dup_ffd)
          from p2 have p2': "sectxt_of_obj (enrich_proc s p p') (O_proc p') = Some sp"
            using dup_sp
            by (auto simp:cp2sproc_def split:option.splits)
          from p3 p1 p1' p0 p0' os have p3': "sectxt_of_obj (enrich_proc s p p') (O_fd p' fd) = Some sfd"
            using dup_sfd
            apply (erule_tac x = fd in allE)
            apply (auto simp:proc_file_fds_def cfd2sfd_def split:option.splits)
            apply (drule current_file_has_sfile')
            apply (simp add:vd, simp)
            apply (drule current_file_has_sfile')
            apply (simp add:vd, simp)
            done
          from p4 have p4': "sectxt_of_obj (enrich_proc s p p') (O_file f) = Some sf" 
            using f_in_s cf2sf isfile_s isfile_s' a1 vd_enrich vd
            apply (erule_tac x = f in allE)
            apply (simp)
            apply (auto simp:cf2sfile_def split:option.splits 
              dest!:current_has_sec' get_pfs_secs_prop' dest:parentf_is_dir is_file_in_current)
            apply (case_tac f, simp, drule root_is_dir', simp, simp, simp)
            done
          show ?thesis using p1' p2' p3' p4' a1
            apply (simp add:sectxt_of_obj_simps)
            using grant p1 p2 p3 p4 
            apply simp
            done
        qed
        ultimately show ?thesis
          using a1
          by (erule_tac valid.intros(2), simp+)
      qed
    qed
    ultimately show ?thesis 
      using created_cons vd_cons' all_procs_cons
      apply (case_tac e)
      apply (auto simp:is_created_proc_simps split:if_splits)
      done
  qed
  moreover have "\<forall>obj. alive (e # s) obj \<longrightarrow> alive (enrich_proc (e # s) p p') obj"
  proof clarify
    fix obj
    assume a0: "alive (e # s) obj"
    have a1: "is_created_proc s p \<Longrightarrow> \<forall> obj. alive s obj \<longrightarrow> alive (enrich_proc s p p') obj"
      using pre by auto
    show "alive (enrich_proc (e # s) p p') obj" (*
    proof (cases e)
      case (Execve tp f fds)
      with created_cons a1
      have b1: "\<forall> obj. alive s obj \<longrightarrow> alive (enrich_proc s p p') obj" 
        by (auto simp:is_created_proc_simps)
      show ?thesis
        using created_cons all_procs_cons vd_enrich_cons Execve b1 os a0
        apply (simp add:alive_execve split:if_splits)
        apply (frule_tac vd_cons) defer
        apply (frule_tac vd_cons)
        using vd_cons' Execve vd os
        apply (auto simp:is_file_simps is_dir_simps is_created_proc_simps alive.simps
          split:t_object.splits if_splits 
          dest:set_mp file_fds_subset_pfds)
        apply (erule_tac x = "O_proc nat" in allE, simp)
        apply (erule_tac x = "O_file list" in allE, simp)
        apply (drule set_mp, simp)
        apply (drule_tac s = s and p = tp in file_fds_subset_pfds)
        apply (erule_tac x = "O_fd tp nat2" in allE, simp)
        apply (auto)[1]
        apply (erule_tac x = "O_fd nat1 nat2" in allE, auto dest:set_mp file_fds_subset_pfds)[1]
        apply (erule_tac x = "O_dir list" in allE, simp)
    sorry
  show ?thesis *) sorry
  moreover have "\<forall>obj. enrich_not_alive (e # s) obj \<longrightarrow> enrich_not_alive (enrich_proc (e # s) p p') obj"
    thm enrich_not_alive.simps
    sorry
  moreover have "files_hung_by_del (enrich_proc (e # s) p p') = files_hung_by_del (e # s)"
  proof-
    have "is_created_proc s p \<Longrightarrow> files_hung_by_del (enrich_proc s p p') = files_hung_by_del s"
      and ffd_remain: "is_created_proc s p \<Longrightarrow> 
      \<forall>tp fd f. file_of_proc_fd s tp fd = Some f \<longrightarrow> 
                                   file_of_proc_fd (enrich_proc s p p') tp fd = Some f"
      using pre by auto
    with created_cons all_procs_cons os vd_cons' vd
    show ?thesis
      apply (frule_tac not_all_procs_prop3)
      apply (case_tac e)
      apply (auto simp:files_hung_by_del.simps is_created_proc_simps)
      apply (auto simp:enrich_proc_dup_ffd_eq proc_file_fds_def procfd_of_file_eq_fpfd''
        dest:procfd_of_file_imp_fpfd procfd_of_file_imp_fpfd' procfd_of_file_non_empty
      )
      apply (auto simp:enrich_proc_dup_ffd_eq proc_file_fds_def split:if_splits)[1]
      
      apply (auto simp:enrich_proc_dup_ffd_eq proc_file_fds_def files_hung_by_del.simps
        split:option.splits)[1]
      apply (auto split:option.splits)[1]
      thm is_created_proc_simps
    sorry
  moreover have "\<forall>tp. tp \<in> current_procs (e # s) \<longrightarrow> cp2sproc (enrich_proc (e # s) p p') tp = cp2sproc (e # s) tp"
    sorry
  moreover have "\<forall>f. f \<in> current_files (e # s) \<longrightarrow> cf2sfile (enrich_proc (e # s) p p') f = cf2sfile (e # s) f"
    sorry
  moreover have "\<forall>q. q \<in> current_msgqs (e # s) \<longrightarrow> cq2smsgq (enrich_proc (e # s) p p') q = cq2smsgq (e # s) q"
    sorry
  moreover have "\<forall>tp fd f. file_of_proc_fd (e # s) tp fd = Some f \<longrightarrow> 
    file_of_proc_fd (enrich_proc (e # s) p p') tp fd = Some f"
    sorry
  moreover have "\<forall>tp fd flags. flags_of_proc_fd (e # s) tp fd = Some flags \<longrightarrow>
        flags_of_proc_fd (enrich_proc (e # s) p p') tp fd = Some flags"
    sorry
  moreover have "\<forall>q. msgs_of_queue (enrich_proc (e # s) p p') q = msgs_of_queue (e # s) q"
    sorry 
  moreover have "\<forall>tp fd. fd \<in> proc_file_fds (e # s) tp \<longrightarrow> 
    cfd2sfd (enrich_proc (e # s) p p') tp fd = cfd2sfd (e # s) tp fd"
    sorry 
  moreover have "cp2sproc (enrich_proc (e # s) p p') p' = cp2sproc (e # s) p"
  proof-
    from pre have b0: "is_created_proc s p \<Longrightarrow> cp2sproc (enrich_proc s p p') p' = cp2sproc s p" by simp
    have b1: "\<And> tp f fds. \<lbrakk>valid (enrich_proc (Execve tp f fds # s) p p'); valid (Execve tp f fds # s);
      is_created_proc (Execve tp f fds # s) p; p' \<notin> all_procs (Execve tp f fds # s)\<rbrakk>
      \<Longrightarrow> cp2sproc (enrich_proc (Execve tp f fds # s) p p') p' = cp2sproc (Execve tp f fds # s) p"
    proof-
      fix tp f fds
      assume a1: "valid (enrich_proc (Execve tp f fds # s) p p')"
      and a2: "valid (Execve tp f fds # s)" and a3: "is_created_proc (Execve tp f fds # s) p"
      and a4: "p' \<notin> all_procs (Execve tp f fds # s)"
      show "cp2sproc (enrich_proc (Execve tp f fds # s) p p') p' = cp2sproc (Execve tp f fds # s) p"
      proof (cases "tp = p")
        case True
        show ?thesis using True a1 a2 a3 a4 b0
          thm not_all_procs_prop3
          apply (frule_tac not_all_procs_prop2)
          apply (frule not_all_procs_prop3)
          apply (auto simp add:cp2sproc_execve is_created_proc_def split:option.splits dest!:current_has_sec' 
            dest:vt_grant_os)
          apply (auto simp:sectxt_of_obj_simps split:option.splits dest:valid.cases)
          
          sorry
      next
        case False
        show ?thesis sorry
      qed
    qed
    have b2: "\<And> tp fd. cp2sproc (enrich_proc (ReadFile tp fd # s) p p') p' = cp2sproc (ReadFile tp fd # s) p"
      sorry
    have b3: "\<And> tp. cp2sproc (enrich_proc (Exit tp # s) p p') p' = cp2sproc (Exit tp # s) p"
      sorry
    have b4: "\<And> tp tp'. cp2sproc (enrich_proc (Kill tp tp' # s) p p') p' = cp2sproc (Kill tp tp' # s) p"
      sorry
    have b5: "\<And> tp tp' fds. cp2sproc (enrich_proc (Clone tp tp' fds # s) p p') p' = 
      cp2sproc (Clone tp tp' fds # s) p"
      sorry
    have b6: "\<And> tp f flags fd opt. cp2sproc (enrich_proc (Open tp f flags fd opt # s) p p') p' =
      cp2sproc (Open tp f flags fd opt # s) p"
      sorry
    have b7: "\<And> tp fd. cp2sproc (enrich_proc (CloseFd tp fd # s) p p') p' = cp2sproc (CloseFd tp fd # s) p"
      sorry
    show ?thesis using vd_enrich_cons
      apply (case_tac e)
      apply (simp_all only:b1 b2 b3 b4 b5 b6 b7)
      using created_cons vd_enrich_cons vd_cons' b0
      apply (auto simp:cp2sproc_other is_created_proc_def)
      done
  qed
  moreover have "\<forall> fd. fd \<in> proc_file_fds (e # s) p \<longrightarrow> 
    cfd2sfd (enrich_proc (e # s) p p') p' fd = cfd2sfd (e # s) p fd"
    sorry
  ultimately show ?case
    by simp
qed
  

lemma enrich_proc_valid:
  "\<lbrakk>valid s; is_created_proc s p; p' \<notin> all_procs s\<rbrakk> \<Longrightarrow> valid (enrich_proc s p p')"
by (auto dest:enrich_proc_prop)

lemma enrich_proc_valid:
  "\<lbrakk>valid s; is_created_proc s p; p' \<notin> all_procs s\<rbrakk> \<Longrightarrow> " 

 

lemma enrich_proc_tainted: 
  "\<lbrakk>is_created_proc s p; p' \<notin> all_procs s; valid s\<rbrakk>
   \<Longrightarrow> tainted (enrich_proc s p p') = (if (O_proc p \<in> tainted s) 
         then tainted s \<union> {O_proc p'} else tainted s)"
apply (induct s)
apply (simp add:is_created_proc_def)
apply (frule vt_grant_os, frule vd_cons, simp)
apply (frule enrich_proc_dup_in, simp+)
apply (frule not_all_procs_prop3)
apply (case_tac a)
prefer 3
apply (simp split:if_splits)
apply (rule impI|rule conjI)+
apply (simp add:is_created_proc_def)
apply (auto simp:is_created_proc_def split:if_splits dest:tainted_in_current)[1]
apply (simp add:is_created_proc_def)

prefer 4
apply (simp split:if_splits)
apply (rule impI|rule conjI)+
apply (simp add:is_created_proc_def)
apply (auto simp:is_created_proc_def split:if_splits dest:tainted_in_current)[1]
apply (simp add:is_created_proc_def)

prefer 4
apply (auto simp:is_created_proc_def split:if_splits option.splits dest:tainted_in_current)[1]

prefer 4
apply (auto simp:is_created_proc_def split:if_splits option.splits dest:tainted_in_current enrich_proc_dup_ffd enrich_proc_dup_ffd')[1]



lemma enrich_proc_dup_tainted:
  "\<lbrakk>is_created_proc s p; p' \<notin> all_procs s; valid s\<rbrakk>
   \<Longrightarrow> (O_proc p' \<in> tainted (enrich_proc s p p')) = (O_proc p \<in> tainted s)"
apply (induct s)
apply (simp add:is_created_proc_def)
apply (frule vt_grant_os, frule vd_cons)
apply (case_tac a)
apply (auto simp:is_created_proc_def)[1]


lemma enrich_proc_tainted:
  ""


end

end