theory Dynamic_static
imports Main Flask Static Init_prop Valid_prop Tainted_prop Delete_prop Co2sobj_prop S2ss_prop S2ss_prop2
Temp
begin
context tainting_s begin
definition enrich:: "t_state \<Rightarrow> t_object set \<Rightarrow> t_state \<Rightarrow> bool"
where
"enrich s objs s' \<equiv> \<forall> obj \<in> objs. \<exists> obj'. obj' \<notin> objs \<and> alive s' obj \<and> co2sobj s' obj' = co2sobj s' obj"
definition reserve:: "t_state \<Rightarrow> t_object set \<Rightarrow> t_state \<Rightarrow> bool"
where
"reserve s objs s' \<equiv> \<forall> obj. alive s obj \<longrightarrow> alive s' obj \<and> co2sobj s' obj = co2sobj s obj"
definition enrichable :: "t_state \<Rightarrow> t_object set \<Rightarrow> bool"
where
"enrichable s objs \<equiv> \<exists> s'. valid s' \<and> s2ss s' = s2ss s \<and> enrich s objs s' \<and> reserve s objs s'"
definition is_created :: "t_state \<Rightarrow> t_object \<Rightarrow> bool"
where
"is_created s obj \<equiv> init_alive obj \<longrightarrow> deleted obj s"
definition is_inited :: "t_state \<Rightarrow> t_object \<Rightarrow> bool"
where
"is_inited s obj \<equiv> init_alive obj \<and> \<not> deleted obj s"
lemma is_inited_eq_not_created:
"is_inited s obj = (\<not> is_created s obj)"
by (auto simp:is_created_def is_inited_def)
lemma d2s_main_execve:
"valid (Execve p f fds # s) \<Longrightarrow> s2ss (Execve p f fds # s) \<in> static"
apply (frule vd_cons, frule vt_grant_os, clarsimp simp:s2ss_execve)
sorry
lemma d2s_main:
"valid s \<Longrightarrow> s2ss s \<propto> static"
apply (induct s, simp add:s2ss_nil_prop init_ss_in_def)
apply (rule_tac x = "init_static_state" in bexI, simp, simp add:s_init)
apply (frule vd_cons, frule vt_grant_os, simp)
apply (case_tac a)
apply (clarsimp simp add:s2ss_execve)
apply (rule conjI, rule impI)
sorry
lemma many_sq_imp_sms:
"\<lbrakk>S_msgq (Create, sec, sms) \<in> ss; ss \<in> static\<rbrakk> \<Longrightarrow> \<forall> sm \<in> (set sms). is_many_smsg sm"
sorry
(* recorded in our static world *)
fun recorded :: "t_object \<Rightarrow> bool"
where
"recorded (O_proc p) = True"
| "recorded (O_file f) = True"
| "recorded (O_dir f) = True"
| "recorded (O_node n) = False" (* cause socket is temperary not considered *)
| "recorded (O_shm h) = True"
| "recorded (O_msgq q) = True"
| "recorded _ = False"
lemma enrichability:
"\<lbrakk>valid s; \<forall> obj \<in> objs. alive s obj \<and> is_created s obj \<and> recorded obj\<rbrakk>
\<Longrightarrow> enrichable s objs"
proof (induct s arbitrary:objs)
case Nil
hence "objs = {}"
apply (auto simp:is_created_def)
apply (erule_tac x = x in ballE)
apply (auto simp:init_alive_prop)
done
thus ?case using Nil unfolding enrichable_def enrich_def reserve_def
by (rule_tac x = "[]" in exI, auto)
next
case (Cons e s)
hence p1: "\<And> objs. \<forall> obj \<in> objs. alive s obj \<and> is_created s obj \<and> recorded obj \<Longrightarrow> enrichable s objs"
and p2: "valid (e # s)" and p3: "\<forall>obj\<in>objs. alive (e # s) obj \<and> is_created (e # s) obj \<and> recorded obj"
and os: "os_grant s e" and se: "grant s e" and vd: "valid s"
by (auto dest:vt_grant_os vd_cons vt_grant)
show ?case sorry (*
proof (cases e)
case (Execve p f fds)
hence p4: "e = Execve p f fds" by simp
from p3 have p5: "is_inited s (O_proc p) \<Longrightarrow> (O_proc p) \<notin> objs"
by (auto simp:is_created_def is_inited_def p4 elim!:ballE[where x = "O_proc p"])
show "enrichable (e # s) objs"
proof (case "is_inited s (O_proc p)")
apply (simp add:enrichable_def p4)
apply auto
apply (auto simp:enrichable_def)
apply (induct s)
done
*)
qed
lemma s2d_main:
"ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss"
apply (erule static.induct)
apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros)
apply (erule exE|erule conjE)+
apply (simp add:update_ss_def)
sorry
end
end