theory Enrich
imports Main Flask Static Init_prop Valid_prop Tainted_prop Delete_prop Co2sobj_prop S2ss_prop S2ss_prop2
Temp
begin
context tainting_s begin
(* enrich s target_proc duplicated_pro *)
fun enrich_proc :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> t_state"
where
"enrich_proc [] tp dp = []"
| "enrich_proc (Execve p f fds # s) tp dp = (
if (tp = p)
then Execve dp f (fds \<inter> proc_file_fds s p) # Execve p f fds # (enrich_proc s tp dp)
else Execve p f fds # (enrich_proc s tp dp))"
| "enrich_proc (Clone p p' fds # s) tp dp = (
if (tp = p')
then Clone p dp (fds \<inter> proc_file_fds s p) # Clone p p' fds # s
else Clone p p' fds # (enrich_proc s tp dp))"
| "enrich_proc (Open p f flags fd opt # s) tp dp = (
if (tp = p)
then Open dp f (remove_create_flag flags) fd opt # Open p f flags fd opt # (enrich_proc s tp dp)
else Open p f flags fd opt # (enrich_proc s tp dp))"
| "enrich_proc (CloseFd p fd # s) tp dp = (
if (tp = p)
then CloseFd dp fd # CloseFd p fd # (enrich_proc s tp dp)
else CloseFd p fd # (enrich_proc s tp dp))"
(*
| "enrich_proc (Attach p h flag # s) tp dp = (
if (tp = p)
then Attach dp h flag # Attach p h flag # (enrich_proc s tp dp)
else Attach p h flag # (enrich_proc s tp dp))"
| "enrich_proc (Detach p h # s) tp dp = (
if (tp = p)
then Detach dp h # Detach p h # (enrich_proc s tp dp)
else Detach p h # (enrich_proc s tp dp))"
*)
| "enrich_proc (Kill p p' # s) tp dp = (
if (tp = p) then Kill p p' # s
else Kill p p' # (enrich_proc s tp dp))"
| "enrich_proc (Exit p # s) tp dp = (
if (tp = p) then Exit p # s
else Exit p # (enrich_proc s tp dp))"
| "enrich_proc (e # s) tp dp = e # (enrich_proc s tp dp)"
definition is_created_proc:: "t_state \<Rightarrow> t_process \<Rightarrow> bool"
where
"is_created_proc s p \<equiv> p \<in> init_procs \<longrightarrow> died (O_proc p) s"
lemma enrich_search_check:
assumes grant: "search_check s (up, rp, tp) f"
and cf2sf: "\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile s' f = cf2sfile s f"
and vd: "valid s" and f_in: "is_file s f" and f_in': "is_file s' f"
and sec: "sectxt_of_obj s' (O_file f) = sectxt_of_obj s (O_file f)"
shows "search_check s' (up, rp, tp) f"
proof (cases f)
case Nil
with f_in vd have "False"
by (auto dest:root_is_dir')
thus ?thesis by simp
next
case (Cons n pf)
from vd f_in obtain sf where sf: "cf2sfile s f = Some sf"
apply (drule_tac is_file_in_current, drule_tac current_file_has_sfile, simp)
apply (erule exE, simp)
done
then obtain psfs where psfs: "get_parentfs_ctxts s pf = Some psfs" using Cons
by (auto simp:cf2sfile_def split:option.splits if_splits)
from sf cf2sf f_in have sf': "cf2sfile s' f = Some sf" by (auto dest:is_file_in_current)
then obtain psfs' where psfs': "get_parentfs_ctxts s' pf = Some psfs'"using Cons
by (auto simp:cf2sfile_def split:option.splits if_splits)
with sf sf' psfs have psfs_eq: "set psfs' = set psfs" using Cons f_in f_in'
apply (simp add:cf2sfile_def split:option.splits)
apply (case_tac sf, simp)
done
show ?thesis using grant f_in f_in' psfs psfs' psfs_eq sec
apply (simp add:Cons split:option.splits)
by (case_tac a, simp)
qed
lemma proc_filefd_has_sfd: "\<lbrakk>fd \<in> proc_file_fds s p; valid s\<rbrakk> \<Longrightarrow> \<exists> sfd. cfd2sfd s p fd = Some sfd"
apply (simp add:proc_file_fds_def)
apply (auto dest: current_filefd_has_sfd)
done
lemma enrich_inherit_fds_check:
assumes grant: "inherit_fds_check s (up, nr, nt) p fds" and vd: "valid s"
and cfd2sfd: "\<forall> p fd. fd \<in> proc_file_fds s p\<longrightarrow> cfd2sfd s' p fd = cfd2sfd s p fd"
and fd_in: "fds \<subseteq> proc_file_fds s p" and fd_in': "fds \<subseteq> proc_file_fds s' p"
shows "inherit_fds_check s' (up, nr, nt) p fds"
proof-
have "\<And> fd. fd \<in> fds \<Longrightarrow> sectxt_of_obj s' (O_fd p fd) = sectxt_of_obj s (O_fd p fd)"
proof-
fix fd
assume fd_in_fds: "fd \<in> fds"
hence fd_in_cfds: "fd \<in> proc_file_fds s p"
and fd_in_cfds': "fd \<in> proc_file_fds s' p"
using fd_in fd_in' by auto
with cfd2sfd
have cfd_eq: "cfd2sfd s' p fd = cfd2sfd s p fd" by auto
from fd_in_cfds obtain f where ffd: "file_of_proc_fd s p fd = Some f"
by (auto simp:proc_file_fds_def)
moreover have "flags_of_proc_fd s p fd \<noteq> None"
using ffd vd by (auto dest:current_filefd_has_flags)
moreover have "sectxt_of_obj s (O_fd p fd) \<noteq> None"
using fd_in_cfds vd
apply (rule_tac notI)
by (auto dest!:current_has_sec' file_fds_subset_pfds[where p = p] intro:vd)
moreover have "cf2sfile s f \<noteq> None"
apply (rule notI)
apply (drule current_file_has_sfile')
using ffd
by (auto simp:vd is_file_in_current dest:file_of_pfd_is_file)
ultimately show "sectxt_of_obj s' (O_fd p fd) = sectxt_of_obj s (O_fd p fd)"
using cfd_eq
by (auto simp:cfd2sfd_def split:option.splits)
qed
hence "sectxts_of_fds s' p fds = sectxts_of_fds s p fds"
by (simp add:sectxts_of_fds_def)
thus ?thesis using grant
by (simp add:inherit_fds_check_def)
qed
lemma not_all_procs_cons:
"p \<notin> all_procs (e # s) \<Longrightarrow> p \<notin> all_procs s"
by (case_tac e, auto)
lemma not_all_procs_prop:
"\<lbrakk>p' \<notin> all_procs s; p \<in> current_procs s; valid s\<rbrakk> \<Longrightarrow> p' \<noteq> p"
apply (induct s, rule notI, simp)
apply (frule vt_grant_os, frule vd_cons, frule not_all_procs_cons, simp, rule notI)
apply (case_tac a, auto)
done
fun enrich_not_alive :: "t_state \<Rightarrow> t_object \<Rightarrow> bool"
where
"enrich_not_alive s (O_file f) = (f \<notin> current_files s)"
| "enrich_not_alive s (O_dir f) = (f \<notin> current_files s)"
| "enrich_not_alive s (O_proc p) = (p \<notin> current_procs s)"
| "enrich_not_alive s (O_fd p fd) = (fd \<notin> current_proc_fds s p)"
| "enrich_not_alive s (O_msgq q) = (q \<notin> current_msgqs s)"
| "enrich_not_alive s (O_msg q m) = (m \<notin> set (msgs_of_queue s q) \<or> q \<notin> current_msgqs s)"
| "enrich_not_alive s _ = True"
lemma enrich_valid_intro_cons:
assumes vs': "valid s'"
and os: "os_grant s e" and grant: "grant s e" and vd: "valid s"
and alive: "\<forall> obj. alive s obj \<longrightarrow> alive s' obj"
and alive': "\<forall> obj. enrich_not_alive s obj \<longrightarrow> enrich_not_alive s' obj"
and cp2sp: "\<forall> p. p \<in> current_procs s \<longrightarrow> cp2sproc s' p = cp2sproc s p"
and cf2sf: "\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile s' f = cf2sfile s f"
and ffd_remain: "\<forall> p fd f. file_of_proc_fd s p fd = Some f \<longrightarrow> file_of_proc_fd s' p fd = Some f"
and cfd2sfd: "\<forall> p fd. fd \<in> proc_file_fds s p \<longrightarrow> cfd2sfd s' p fd = cfd2sfd s p fd"
shows "valid (e # s')"
proof (cases e)
case (Execve p f fds)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Execve)
have f_in: "is_file s' f" using os alive
apply (erule_tac x = "O_file f" in allE)
by (auto simp:Execve)
have fd_in: "fds \<subseteq> proc_file_fds s' p" using os alive ffd_remain
by (auto simp:Execve proc_file_fds_def)
have "os_grant s' e" using p_in f_in fd_in by (simp add:Execve)
moreover have "grant s' e"
proof-
from grant obtain up rp tp uf rf tf
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)"
by (simp add:Execve split:option.splits, blast)
with grant obtain pu nr nt where p3: "npctxt_execve (up, rp, tp) (uf, rf, tf) = Some (pu, nr, nt)"
by (simp add:Execve split:option.splits del:npctxt_execve.simps, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:Execve co2sobj.simps cp2sproc_def split:option.splits)
from os have f_in': "is_file s f" by (simp add:Execve)
from vd os have "\<exists> sf. cf2sfile s f = Some sf"
by (auto dest!:is_file_in_current current_file_has_sfile simp:Execve)
hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using f_in f_in' p2 cf2sf
apply (erule_tac x = f in allE)
apply (auto dest:is_file_in_current simp:cf2sfile_def split:option.splits)
apply (case_tac f, simp)
apply (drule_tac s = s in root_is_dir', simp add:vd, simp+)
done
have "inherit_fds_check s' (pu, nr, nt) p fds"
proof-
have "fds \<subseteq> proc_file_fds s' p" using os ffd_remain Execve
by (auto simp:proc_file_fds_def)
thus ?thesis using Execve grant vd cfd2sfd p1 p2 p3 os
apply (rule_tac s = s in enrich_inherit_fds_check)
by (simp_all split:option.splits)
qed
moreover have "search_check s' (pu, rp, tp) f"
using p1 p2 p2' vd cf2sf f_in' grant Execve p3 f_in
apply (rule_tac s = s in enrich_search_check)
by (simp_all split:option.splits)
ultimately show ?thesis using p1' p2' p3
apply (simp add:Execve split:option.splits)
using grant Execve p1 p2
by (simp add:Execve grant p1 p2)
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (Clone p p' fds)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Clone)
have p'_not_in: "p' \<notin> current_procs s'" using os alive'
apply (erule_tac x = "O_proc p'" in allE)
by (auto simp:Clone)
have fd_in: "fds \<subseteq> proc_file_fds s' p" using os alive ffd_remain
by (auto simp:Clone proc_file_fds_def)
have "os_grant s' e" using p_in p'_not_in fd_in by (simp add:Clone)
moreover have "grant s' e"
proof-
from grant obtain up rp tp
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
apply (simp add:Clone split:option.splits)
by (case_tac a, auto)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:Clone co2sobj.simps cp2sproc_def split:option.splits)
have p2: "inherit_fds_check s' (up, rp, tp) p fds"
proof-
have "fds \<subseteq> proc_file_fds s' p" using os ffd_remain Clone
by (auto simp:proc_file_fds_def)
thus ?thesis using Clone grant vd cfd2sfd p1 os
apply (rule_tac s = s in enrich_inherit_fds_check)
by (simp_all split:option.splits)
qed
show ?thesis using p1 p2 p1' grant
by (simp add:Clone)
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
lemma enrich_proc_prop:
"\<lbrakk>valid s; is_created_proc s p; p' \<notin> all_procs s\<rbrakk>
\<Longrightarrow> valid (enrich_proc s p p') \<and>
(p \<in> current_procs s \<longrightarrow> co2sobj (enrich_proc s p p') (O_proc p') = co2sobj (enrich_proc s p p') (O_proc p)) \<and>
(\<forall> obj. alive s obj \<longrightarrow> alive (enrich_proc s p p') obj) \<and>
(\<forall> p'. p' \<in> current_procs s \<longrightarrow> cp2sproc (enrich_proc s p p') p' = cp2sproc s p) \<and>
(\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile (enrich_proc s p p') f = cf2sfile s f) \<and>
(Tainted (enrich_proc s p p') = (Tainted s \<union> (if (O_proc p \<in> Tainted s) then {O_proc p'} else {})))"
proof (induct s)
case Nil
thus ?case by (auto simp:is_created_proc_def)
next
case (Cons e s)
hence p1: "\<lbrakk>valid s; is_created_proc s p; p' \<notin> all_procs s\<rbrakk>
\<Longrightarrow> valid (enrich_proc s p p') \<and>
(p \<in> current_procs s \<longrightarrow> co2sobj (enrich_proc s p p') (O_proc p') = co2sobj (enrich_proc s p p') (O_proc p)) \<and>
(alive s obj \<longrightarrow> alive (enrich_proc s p p') obj \<and> co2sobj (enrich_proc s p p') obj = co2sobj s obj)"
and p2: "valid (e # s)" and p3: "is_created_proc (e # s) p" and p4: "p' \<notin> all_procs (e # s)"
by auto
from p2 have vd: "valid s" and os: "os_grant s e" and grant: "grant s e"
by (auto dest:vd_cons vt_grant vt_grant_os)
from p4 have p4': "p' \<notin> all_procs s" by (case_tac e, auto)
from p1 p4' have a1: "is_created_proc s p \<Longrightarrow> valid (enrich_proc s p p')" by (auto simp:vd)
have c1: "valid (enrich_proc (e # s) p p')"
apply (case_tac e)
using a1 os p3
apply (auto simp:is_created_proc_def)
sorry
moreover have c2: "p' \<in> current_procs (enrich_proc (e # s) p p')"
sorry
moreover have c3: "co2sobj (enrich_proc (e # s) p p') (O_proc p') = co2sobj (enrich_proc (e # s) p p') (O_proc p)"
sorry
moreover have c4: "alive (e # s) obj \<longrightarrow>
alive (enrich_proc (e # s) p p') obj \<and> co2sobj (enrich_proc (e # s) p p') obj = co2sobj (e # s) obj"
sorry
ultimately show ?case by auto
qed