find bug: a created proc can be tainted by a message, which cannot remain and maynot be duplicated
theory Enrichimports Main Flask Static Init_prop Valid_prop Tainted_prop Delete_prop Co2sobj_prop S2ss_prop S2ss_prop2 Tempbegin(* objects that need dynamic indexing, all nature-numbers *)datatype t_enrich_obj = E_proc "t_process"| E_file "t_file"| E_fd "t_process" "t_fd"| E_inum "nat"| E_msgq "t_msgq"| E_msg "t_msgq" "t_msg"context tainting_s beginfun no_del_event:: "t_event list \<Rightarrow> bool"where "no_del_event [] = True"| "no_del_event (Kill p p' # \<tau>) = False"| "no_del_event (Exit p # s) = False"| "no_del_event (CloseFd p fd # \<tau>) = False"| "no_del_event (UnLink p f # \<tau>) = False"| "no_del_event (Rmdir p f # \<tau>) = False"(*| "no_del_event (Rename p f f' # \<tau>) = False"*)| "no_del_event (RemoveMsgq p q # \<tau>) = False"(*| "no_del_event (RecvMsg p q m # \<tau>) = False"*)| "no_del_event (_ # \<tau>) = no_del_event \<tau>"fun all_inums :: "t_state \<Rightarrow> t_inode_num set"where "all_inums [] = current_inode_nums []"| "all_inums (Open p f flags fd opt # s) = ( case opt of None \<Rightarrow> all_inums s | Some i \<Rightarrow> all_inums s \<union> {i} )"| "all_inums (Mkdir p f i # s) = (all_inums s \<union> {i})"| "all_inums (CreateSock p af st fd i # s) = (all_inums s \<union> {i})"| "all_inums (Accept p fd addr lport fd' i # s) = (all_inums s \<union> {i})"| "all_inums (_ # s) = all_inums s"fun all_fds :: "t_state \<Rightarrow> t_process \<Rightarrow> t_fd set"where "all_fds [] = init_fds_of_proc"| "all_fds (Open p f flags fd ipt # s) = (all_fds s) (p := all_fds s p \<union> {fd})"| "all_fds (CreateSock p sf st fd i # s) = (all_fds s) (p := all_fds s p \<union> {fd})"| "all_fds (Accept p fd' raddr port fd i # s) = (all_fds s) (p := all_fds s p \<union> {fd})"| "all_fds (Clone p p' fds # s) = (all_fds s) (p' := fds)"| "all_fds (_ # s) = all_fds s"fun all_msgqs:: "t_state \<Rightarrow> t_msgq set"where "all_msgqs [] = init_msgqs"| "all_msgqs (CreateMsgq p q # s) = all_msgqs s \<union> {q}"| "all_msgqs (e # s) = all_msgqs s"fun all_msgs:: "t_state \<Rightarrow> t_msgq \<Rightarrow> t_msg set"where "all_msgs [] q = set (init_msgs_of_queue q)"| "all_msgs (CreateMsgq p q # s) q' = (if q' = q then {} else all_msgs s q')"| "all_msgs (SendMsg p q m # s) q' = (if q' = q then all_msgs s q \<union> {m} else all_msgs s q')"| "all_msgs (_ # s) q' = all_msgs s q'"fun all_files:: "t_state \<Rightarrow> t_file set"where "all_files [] = init_files "| "all_files (Open p f flags fd opt # s) = (if opt = None then all_files s else (all_files s \<union> {f}))"| "all_files (Mkdir p f inum # s) = all_files s \<union> {f}"| "all_files (LinkHard p f f' # s) = all_files s \<union> {f'}"| "all_files (e # s) = all_files s"fun notin_all:: "t_state \<Rightarrow> t_enrich_obj \<Rightarrow> bool"where "notin_all s (E_proc p) = (p \<notin> all_procs s)"| "notin_all s (E_file f) = (f \<notin> all_files s \<and> (\<exists> pf. parent f = Some pf \<and> is_dir s pf))"| "notin_all s (E_fd p fd) = (fd \<notin> all_fds s p)"| "notin_all s (E_inum i) = (i \<notin> all_inums s)"| "notin_all s (E_msgq q) = (q \<notin> all_msgqs s)"| "notin_all s (E_msg q m) = (m \<notin> all_msgs s q)"lemma not_all_procs_cons: "p \<notin> all_procs (e # s) \<Longrightarrow> p \<notin> all_procs s"by (case_tac e, auto)lemma not_all_procs_prop: "\<lbrakk>p' \<notin> all_procs s; p \<in> current_procs s; valid s\<rbrakk> \<Longrightarrow> p' \<noteq> p"apply (induct s, rule notI, simp)apply (frule vt_grant_os, frule vd_cons, frule not_all_procs_cons, simp, rule notI)apply (case_tac a, auto)donelemma not_all_procs_prop2: "p' \<notin> all_procs s \<Longrightarrow> p' \<notin> init_procs"apply (induct s, simp)by (case_tac a, auto)lemma not_all_procs_prop3: "p' \<notin> all_procs s \<Longrightarrow> p' \<notin> current_procs s"apply (induct s, simp)by (case_tac a, auto)lemma not_all_msgqs_cons: "p \<notin> all_msgqs (e # s) \<Longrightarrow> p \<notin> all_msgqs s"by (case_tac e, auto)lemma not_all_msgqs_prop: "\<lbrakk>p' \<notin> all_msgqs s; p \<in> current_msgqs s; valid s\<rbrakk> \<Longrightarrow> p' \<noteq> p"apply (induct s, rule notI, simp)apply (frule vt_grant_os, frule vd_cons, frule not_all_msgqs_cons, simp, rule notI)apply (case_tac a, auto)donelemma not_all_msgqs_prop2: "p' \<notin> all_msgqs s \<Longrightarrow> p' \<notin> init_msgqs"apply (induct s, simp)by (case_tac a, auto)lemma not_all_msgqs_prop3: "p' \<notin> all_msgqs s \<Longrightarrow> p' \<notin> current_msgqs s"apply (induct s, simp)by (case_tac a, auto)fun enrich_not_alive :: "t_state \<Rightarrow> t_enrich_obj \<Rightarrow> t_enrich_obj \<Rightarrow> bool"where "enrich_not_alive s obj (E_file f) = (f \<notin> current_files s \<and> obj \<noteq> E_file f)"| "enrich_not_alive s obj (E_proc p) = (p \<notin> current_procs s \<and> obj \<noteq> E_proc p)"| "enrich_not_alive s obj (E_fd p fd) = ((p \<in> current_procs s \<longrightarrow> fd \<notin> current_proc_fds s p) \<and> obj \<noteq> E_fd p fd \<and> obj \<noteq> E_proc p)"| "enrich_not_alive s obj (E_msgq q) = (q \<notin> current_msgqs s \<and> obj \<noteq> E_msgq q)"| "enrich_not_alive s obj (E_inum i) = (i \<notin> current_inode_nums s \<and> obj \<noteq> E_inum i)"| "enrich_not_alive s obj (E_msg q m) = ((q \<in> current_msgqs s \<longrightarrow> m \<notin> set (msgs_of_queue s q)) \<and> obj \<noteq> E_msg q m \<and> obj \<noteq> E_msgq q)"lemma file_has_parent: "\<lbrakk>is_file s f; valid s\<rbrakk> \<Longrightarrow> \<exists> pf. is_dir s pf \<and> parent f = Some pf"apply (case_tac f)apply (simp, drule root_is_dir', simp+)apply (simp add:parentf_is_dir_prop2)done(* enrich s target_proc duplicated_pro *)fun enrich_proc :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> t_state"where "enrich_proc [] tp dp = []"| "enrich_proc (Execve p f fds # s) tp dp = ( if (tp = p) then Execve dp f (fds \<inter> proc_file_fds s p) # Execve p f fds # (enrich_proc s tp dp) else Execve p f fds # (enrich_proc s tp dp))"| "enrich_proc (Clone p p' fds # s) tp dp = ( if (tp = p') then Clone p dp (fds \<inter> proc_file_fds s p) # Clone p p' fds # s else Clone p p' fds # (enrich_proc s tp dp))"| "enrich_proc (Open p f flags fd opt # s) tp dp = ( if (tp = p) then Open dp f (remove_create_flag flags) fd None # Open p f flags fd opt # (enrich_proc s tp dp) else Open p f flags fd opt # (enrich_proc s tp dp))"| "enrich_proc (ReadFile p fd # s) tp dp = ( if (tp = p) then ReadFile dp fd # ReadFile p fd # (enrich_proc s tp dp) else ReadFile p fd # (enrich_proc s tp dp))"(*| "enrich_proc (CloseFd p fd # s) tp dp = ( if (tp = p \<and> fd \<in> proc_file_fds s p) then CloseFd dp fd # CloseFd p fd # (enrich_proc s tp dp) else CloseFd p fd # (enrich_proc s tp dp))"*)(*| "enrich_proc (Attach p h flag # s) tp dp = ( if (tp = p) then Attach dp h flag # Attach p h flag # (enrich_proc s tp dp) else Attach p h flag # (enrich_proc s tp dp))"| "enrich_proc (Detach p h # s) tp dp = ( if (tp = p) then Detach dp h # Detach p h # (enrich_proc s tp dp) else Detach p h # (enrich_proc s tp dp))"*)(*| "enrich_proc (Kill p p' # s) tp dp = ( if (tp = p') then Kill p p' # s else Kill p p' # (enrich_proc s tp dp))"| "enrich_proc (Exit p # s) tp dp = ( if (tp = p) then Exit p # s else Exit p # (enrich_proc s tp dp))"*)| "enrich_proc (e # s) tp dp = e # (enrich_proc s tp dp)"definition is_created_proc:: "t_state \<Rightarrow> t_process \<Rightarrow> bool"where "is_created_proc s p \<equiv> p \<in> current_procs s \<and> (p \<in> init_procs \<longrightarrow> died (O_proc p) s)"definition is_created_proc':: "t_state \<Rightarrow> t_process \<Rightarrow> bool"where "is_created_proc' s p \<equiv> p \<in> current_procs s \<and> p \<notin> init_procs"lemma no_del_died: "\<lbrakk>no_del_event s; died obj s\<rbrakk> \<Longrightarrow> (\<exists> p fd. obj = O_fd p fd \<or> obj = O_tcp_sock (p, fd) \<or> obj = O_udp_sock (p, fd)) \<or> (\<exists> q m. obj = O_msg q m) "apply (induct s)apply simpapply (case_tac a)apply (auto split:option.splits)donelemma no_del_created_eq: "no_del_event s \<Longrightarrow> is_created_proc s p = is_created_proc' s p"apply (induct s)apply (simp add:is_created_proc_def is_created_proc'_def)apply (case_tac a)apply (auto simp add:is_created_proc_def is_created_proc'_def dest:no_del_died)donelemma enrich_search_check: assumes grant: "search_check s (up, rp, tp) f" and cf2sf: "\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile s' f = cf2sfile s f" and vd: "valid s" and f_in: "is_file s f" and f_in': "is_file s' f" and sec: "sectxt_of_obj s' (O_file f) = sectxt_of_obj s (O_file f)" shows "search_check s' (up, rp, tp) f"proof (cases f) case Nil with f_in vd have "False" by (auto dest:root_is_dir') thus ?thesis by simpnext case (Cons n pf) from vd f_in obtain sf where sf: "cf2sfile s f = Some sf" apply (drule_tac is_file_in_current, drule_tac current_file_has_sfile, simp) apply (erule exE, simp) done then obtain psfs where psfs: "get_parentfs_ctxts s pf = Some psfs" using Cons by (auto simp:cf2sfile_def split:option.splits if_splits) from sf cf2sf f_in have sf': "cf2sfile s' f = Some sf" by (auto dest:is_file_in_current) then obtain psfs' where psfs': "get_parentfs_ctxts s' pf = Some psfs'"using Cons by (auto simp:cf2sfile_def split:option.splits if_splits) with sf sf' psfs have psfs_eq: "set psfs' = set psfs" using Cons f_in f_in' apply (simp add:cf2sfile_def split:option.splits) apply (case_tac sf, simp) done show ?thesis using grant f_in f_in' psfs psfs' psfs_eq sec apply (simp add:Cons split:option.splits) by (case_tac a, simp)qedlemma enrich_search_check': assumes grant: "search_check s (up, rp, tp) f" and cf2sf: "\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile s' f = cf2sfile s f" and vd: "valid s" and vd': "valid s'" and f_in: "is_dir s f" and f_in': "is_dir s' f" and sec: "sectxt_of_obj s' (O_dir f) = sectxt_of_obj s (O_dir f)" shows "search_check s' (up, rp, tp) f"proof (cases f) case Nil have "sectxt_of_obj s' (O_dir []) = sectxt_of_obj s (O_dir [])" using cf2sf apply (erule_tac x = "[]" in allE) by (auto simp:cf2sfile_def root_sec_remains vd vd') thus ?thesis using grant Nil by autonext case (Cons n pf) from vd f_in obtain sf where sf: "cf2sfile s f = Some sf" apply (drule_tac is_dir_in_current, drule_tac current_file_has_sfile, simp) apply (erule exE, simp) done then obtain psfs where psfs: "get_parentfs_ctxts s pf = Some psfs" using Cons by (auto simp:cf2sfile_def split:option.splits if_splits) from sf cf2sf f_in have sf': "cf2sfile s' f = Some sf" by (auto dest:is_dir_in_current) then obtain psfs' where psfs': "get_parentfs_ctxts s' pf = Some psfs'"using Cons by (auto simp:cf2sfile_def split:option.splits if_splits) with sf sf' psfs have psfs_eq: "set psfs' = set psfs" using Cons f_in f_in' apply (drule_tac is_dir_not_file) apply (drule is_dir_not_file) apply (simp add:cf2sfile_def split:option.splits) apply (case_tac sf, simp) done show ?thesis using grant f_in f_in' psfs psfs' psfs_eq sec apply (drule_tac is_dir_not_file) apply (drule_tac is_dir_not_file) apply (simp add:Cons split:option.splits) by (case_tac a, simp)qedlemma proc_filefd_has_sfd: "\<lbrakk>fd \<in> proc_file_fds s p; valid s\<rbrakk> \<Longrightarrow> \<exists> sfd. cfd2sfd s p fd = Some sfd"apply (simp add:proc_file_fds_def)apply (auto dest: current_filefd_has_sfd)donelemma enrich_inherit_fds_check: assumes grant: "inherit_fds_check s (up, nr, nt) p fds" and vd: "valid s" and cfd2sfd: "\<forall> p fd. fd \<in> proc_file_fds s p\<longrightarrow> cfd2sfd s' p fd = cfd2sfd s p fd" and fd_in: "fds \<subseteq> proc_file_fds s p" and fd_in': "fds \<subseteq> proc_file_fds s' p" shows "inherit_fds_check s' (up, nr, nt) p fds"proof- have "\<And> fd. fd \<in> fds \<Longrightarrow> sectxt_of_obj s' (O_fd p fd) = sectxt_of_obj s (O_fd p fd)" proof- fix fd assume fd_in_fds: "fd \<in> fds" hence fd_in_cfds: "fd \<in> proc_file_fds s p" and fd_in_cfds': "fd \<in> proc_file_fds s' p" using fd_in fd_in' by auto with cfd2sfd have cfd_eq: "cfd2sfd s' p fd = cfd2sfd s p fd" by auto from fd_in_cfds obtain f where ffd: "file_of_proc_fd s p fd = Some f" by (auto simp:proc_file_fds_def) moreover have "flags_of_proc_fd s p fd \<noteq> None" using ffd vd by (auto dest:current_filefd_has_flags) moreover have "sectxt_of_obj s (O_fd p fd) \<noteq> None" using fd_in_cfds vd apply (rule_tac notI) by (auto dest!:current_has_sec' file_fds_subset_pfds[where p = p] intro:vd) moreover have "cf2sfile s f \<noteq> None" apply (rule notI) apply (drule current_file_has_sfile') using ffd by (auto simp:vd is_file_in_current dest:file_of_pfd_is_file) ultimately show "sectxt_of_obj s' (O_fd p fd) = sectxt_of_obj s (O_fd p fd)" using cfd_eq by (auto simp:cfd2sfd_def split:option.splits) qed hence "sectxts_of_fds s' p fds = sectxts_of_fds s p fds" by (simp add:sectxts_of_fds_def) thus ?thesis using grant by (simp add:inherit_fds_check_def)qedlemma enrich_inherit_fds_check_dup: assumes grant: "inherit_fds_check s (up, nr, nt) p fds" and vd: "valid s" and cfd2sfd: "\<forall> fd. fd \<in> proc_file_fds s p \<longrightarrow> cfd2sfd s' p' fd = cfd2sfd s p fd" and fd_in: "fds' \<subseteq> fds \<inter> proc_file_fds s p" shows "inherit_fds_check s' (up, nr, nt) p' fds'"proof- have "sectxts_of_fds s' p' fds' \<subseteq> sectxts_of_fds s p fds" proof- have "\<And> fd sfd. \<lbrakk>fd \<in> fds'; sectxt_of_obj s' (O_fd p' fd) = Some sfd\<rbrakk> \<Longrightarrow> \<exists> fd \<in> fds. sectxt_of_obj s (O_fd p fd) = Some sfd" proof- fix fd sfd assume fd_in_fds': "fd \<in> fds'" and sec: "sectxt_of_obj s' (O_fd p' fd) = Some sfd" from fd_in_fds' fd_in have fd_in_fds: "fd \<in> fds" and fd_in_cfds: "fd \<in> proc_file_fds s p" by auto from fd_in_cfds obtain f where ffd: "file_of_proc_fd s p fd = Some f" by (auto simp:proc_file_fds_def) moreover have "flags_of_proc_fd s p fd \<noteq> None" using ffd vd by (auto dest:current_filefd_has_flags) moreover have "cf2sfile s f \<noteq> None" apply (rule notI) apply (drule current_file_has_sfile') using ffd by (auto simp:vd is_file_in_current dest:file_of_pfd_is_file) moreover have "sectxt_of_obj s (O_fd p fd) \<noteq> None" using fd_in_cfds vd apply (rule_tac notI) by (auto dest!:current_has_sec' file_fds_subset_pfds[where p = p] intro:vd) ultimately have "sectxt_of_obj s (O_fd p fd) = Some sfd" using fd_in_cfds cfd2sfd sec apply (erule_tac x = fd in allE) apply (auto simp:cfd2sfd_def split:option.splits) done thus "\<exists> fd \<in> fds. sectxt_of_obj s (O_fd p fd) = Some sfd" using fd_in_fds by (rule_tac x = fd in bexI, auto) qed thus ?thesis by (auto simp:sectxts_of_fds_def) qed thus ?thesis using grant by (auto simp:inherit_fds_check_def inherit_fds_check_ctxt_def)qedlemma enrich_valid_intro_cons: assumes vs': "valid s'" and vd': "valid (e # s)" and alive: "\<forall> obj. alive s obj \<longrightarrow> alive s' obj" and alive': "\<forall> obj. enrich_not_alive s obj' obj \<longrightarrow> enrich_not_alive s' obj' obj" and hungs: "files_hung_by_del s' = files_hung_by_del s" and cp2sp: "\<forall> p. p \<in> current_procs s \<longrightarrow> cp2sproc s' p = cp2sproc s p" and cf2sf: "\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile s' f = cf2sfile s f" and cq2sq: "\<forall> q. q \<in> current_msgqs s \<longrightarrow> cq2smsgq s' q = cq2smsgq s q" and ffd_remain: "\<forall> p fd f. file_of_proc_fd s p fd = Some f \<longrightarrow> file_of_proc_fd s' p fd = Some f" and fflags_remain: "\<forall> p fd flags. flags_of_proc_fd s p fd = Some flags \<longrightarrow> flags_of_proc_fd s' p fd = Some flags" and sms_remain: "\<forall> q. msgs_of_queue s' q = msgs_of_queue s q" (* and empty_remain: "\<forall> f. dir_is_empty s f \<longrightarrow> dir_is_empty s' f" *) and cfd2sfd: "\<forall> p fd. fd \<in> proc_file_fds s p \<longrightarrow> cfd2sfd s' p fd = cfd2sfd s p fd" and nodel: "no_del_event (e # s)" and notin_all: "notin_all (e # s) obj'" shows "valid (e # s')"proof- from vd' have os: "os_grant s e" and grant: "grant s e" and vd: "valid s" by (auto dest:vt_grant_os vt_grant vd_cons) show ?thesis proof (cases e) case (Execve p f fds) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:Execve) have f_in: "is_file s' f" using os alive apply (erule_tac x = "O_file f" in allE) by (auto simp:Execve) have fd_in: "fds \<subseteq> proc_file_fds s' p" using os alive ffd_remain by (auto simp:Execve proc_file_fds_def) have "os_grant s' e" using p_in f_in fd_in by (simp add:Execve) moreover have "grant s' e" proof- from grant obtain up rp tp uf rf tf where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)" by (simp add:Execve split:option.splits, blast) with grant obtain pu nr nt where p3: "npctxt_execve (up, rp, tp) (uf, rf, tf) = Some (pu, nr, nt)" by (simp add:Execve split:option.splits del:npctxt_execve.simps, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:Execve co2sobj.simps cp2sproc_def split:option.splits) from os have f_in': "is_file s f" by (simp add:Execve) from vd os have "\<exists> sf. cf2sfile s f = Some sf" by (auto dest!:is_file_in_current current_file_has_sfile simp:Execve) hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using f_in f_in' p2 cf2sf apply (erule_tac x = f in allE) apply (auto dest:is_file_in_current simp:cf2sfile_def split:option.splits) apply (case_tac f, simp) apply (drule_tac s = s in root_is_dir', simp add:vd, simp+) done have "inherit_fds_check s' (pu, nr, nt) p fds" proof- have "fds \<subseteq> proc_file_fds s' p" using os ffd_remain Execve by (auto simp:proc_file_fds_def) thus ?thesis using Execve grant vd cfd2sfd p1 p2 p3 os apply (rule_tac s = s in enrich_inherit_fds_check) by (simp_all split:option.splits) qed moreover have "search_check s' (pu, rp, tp) f" using p1 p2 p2' vd cf2sf f_in' grant Execve p3 f_in apply (rule_tac s = s in enrich_search_check) by (simp_all split:option.splits) ultimately show ?thesis using p1' p2' p3 apply (simp add:Execve split:option.splits) using grant Execve p1 p2 by (simp add:Execve grant p1 p2) qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (Clone p p' fds) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:Clone) have p'_not_in: "p' \<notin> current_procs s'" using alive' notin_all os Clone apply (erule_tac x = "E_proc p'" in allE) apply (auto dest:not_all_procs_prop3) done have fd_in: "fds \<subseteq> proc_file_fds s' p" using os alive ffd_remain by (auto simp:Clone proc_file_fds_def) have "os_grant s' e" using p_in p'_not_in fd_in by (simp add:Clone) moreover have "grant s' e" proof- from grant obtain up rp tp where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" apply (simp add:Clone split:option.splits) by (case_tac a, auto) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:Clone co2sobj.simps cp2sproc_def split:option.splits) have p2: "inherit_fds_check s' (up, rp, tp) p fds" proof- have "fds \<subseteq> proc_file_fds s' p" using os ffd_remain Clone by (auto simp:proc_file_fds_def) thus ?thesis using Clone grant vd cfd2sfd p1 os apply (rule_tac s = s in enrich_inherit_fds_check) by (simp_all split:option.splits) qed show ?thesis using p1 p2 p1' grant by (simp add:Clone) qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (Kill p p') have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:Kill) have p'_in: "p' \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p'" in allE) by (auto simp:Kill) have "os_grant s' e" using p_in p'_in by (simp add:Kill) moreover have "grant s' e" proof- from grant obtain up rp tp up' rp' tp' where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p'1: "sectxt_of_obj s (O_proc p') = Some (up', rp', tp')" apply (simp add:Kill split:option.splits) by (case_tac a, case_tac aa, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:Kill co2sobj.simps cp2sproc_def split:option.splits) from p'1 have p'1': "sectxt_of_obj s' (O_proc p') = Some (up', rp', tp')" using os cp2sp apply (erule_tac x = p' in allE) by (auto simp:Kill co2sobj.simps cp2sproc_def split:option.splits) show ?thesis using p1 p'1 p1' p'1' grant by (simp add:Kill) qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (Ptrace p p') have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:Ptrace) have p'_in: "p' \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p'" in allE) by (auto simp:Ptrace) have "os_grant s' e" using p_in p'_in by (simp add:Ptrace) moreover have "grant s' e" proof- from grant obtain up rp tp up' rp' tp' where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p'1: "sectxt_of_obj s (O_proc p') = Some (up', rp', tp')" apply (simp add:Ptrace split:option.splits) by (case_tac a, case_tac aa, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:Ptrace co2sobj.simps cp2sproc_def split:option.splits) from p'1 have p'1': "sectxt_of_obj s' (O_proc p') = Some (up', rp', tp')" using os cp2sp apply (erule_tac x = p' in allE) by (auto simp:Ptrace co2sobj.simps cp2sproc_def split:option.splits) show ?thesis using p1 p'1 p1' p'1' grant by (simp add:Ptrace) qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (Exit p) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:Exit) have "os_grant s' e" using p_in by (simp add:Exit) moreover have "grant s' e" by (simp add:Exit) ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (Open p f flags fd opt) show ?thesis proof (cases opt) case None have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:Open None) have f_in: "is_file s' f" using os alive apply (erule_tac x = "O_file f" in allE) by (auto simp:Open None) have fd_not_in: "fd \<notin> current_proc_fds s' p" using os alive' p_in notin_all Open None apply (erule_tac x = "E_fd p fd" in allE) apply (case_tac obj') apply (auto dest:not_all_procs_prop3) done have "os_grant s' e" using p_in f_in fd_not_in os by (simp add:Open None) moreover have "grant s' e" proof- from grant obtain up rp tp uf rf tf where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)" apply (simp add:Open None split:option.splits) by (case_tac a, case_tac aa, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:Open None co2sobj.simps cp2sproc_def split:option.splits) from os have f_in': "is_file s f" by (simp add:Open None) from vd os have "\<exists> sf. cf2sfile s f = Some sf" by (auto dest!:is_file_in_current current_file_has_sfile simp:Open None) hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using f_in f_in' p2 cf2sf apply (erule_tac x = f in allE) apply (auto dest:is_file_in_current simp:cf2sfile_def split:option.splits) apply (case_tac f, simp) apply (drule_tac s = s in root_is_dir', simp add:vd, simp+) done have "search_check s' (up, rp, tp) f" using p1 p2 p2' vd cf2sf f_in' grant Open None f_in apply (rule_tac s = s in enrich_search_check) by (simp_all split:option.splits) thus ?thesis using p1' p2' apply (simp add:Open None split:option.splits) using grant Open None p1 p2 by simp qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (Some inum) from os obtain pf where pf_in_s: "is_dir s pf" and parent: "parent f = Some pf" by (auto simp:Open Some) have pf_in: "is_dir s' pf" using pf_in_s alive apply (erule_tac x = "O_dir pf" in allE) by simp have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:Open Some) have f_not_in: "f \<notin> current_files s'" using os alive' Open Some notin_all apply (erule_tac x = "E_file f" in allE) apply (case_tac obj') by auto have fd_not_in: "fd \<notin> current_proc_fds s' p" using os alive' p_in Open Some notin_all apply (erule_tac x = "E_fd p fd" in allE) apply (case_tac obj', auto dest:not_all_procs_prop3) done have inum_not_in: "inum \<notin> current_inode_nums s'" using os alive' Open Some notin_all apply (erule_tac x = "E_inum inum" in allE) by (case_tac obj', auto) have "os_grant s' e" using p_in pf_in parent f_not_in fd_not_in inum_not_in os by (simp add:Open Some hungs) moreover have "grant s' e" proof- from grant parent obtain up rp tp uf rf tf where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_dir pf) = Some (uf, rf, tf)" apply (simp add:Open Some split:option.splits) by (case_tac a, case_tac aa, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:Open Some co2sobj.simps cp2sproc_def split:option.splits) from vd os pf_in_s have "\<exists> sf. cf2sfile s pf = Some sf" by (auto dest!:is_dir_in_current current_file_has_sfile simp:Open Some) hence p2': "sectxt_of_obj s' (O_dir pf) = Some (uf, rf, tf)" using p2 cf2sf pf_in pf_in_s apply (erule_tac x = pf in allE) apply (erule exE, frule_tac s = s in is_dir_in_current, simp) apply (drule is_dir_not_file, drule is_dir_not_file) apply (auto simp:cf2sfile_def split:option.splits) apply (case_tac pf, simp_all) by (simp add:sroot_def root_sec_remains vd vs') have "search_check s' (up, rp, tp) pf" using p1 p2 p2' vd cf2sf pf_in grant Open Some pf_in_s parent vs' apply (rule_tac s = s in enrich_search_check') by (simp_all split:option.splits) thus ?thesis using p1' p2' parent apply (simp add:Open Some split:option.splits) using grant Open Some p1 p2 by simp qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) qed next case (ReadFile p fd) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:ReadFile) have fd_in: "fd \<in> current_proc_fds s' p" using os alive apply (erule_tac x = "O_fd p fd" in allE) by (auto simp:ReadFile) obtain f where ffd: "file_of_proc_fd s p fd = Some f" using os ReadFile by auto hence f_in_s: "is_file s f" using vd by (auto intro:file_of_pfd_is_file) obtain flags where fflag: "flags_of_proc_fd s p fd = Some flags" using os ReadFile by auto have ffd_in: "file_of_proc_fd s' p fd = Some f" using ffd_remain ffd by auto hence f_in: "is_file s' f" using vs' by (auto intro:file_of_pfd_is_file) have flags_in: "flags_of_proc_fd s' p fd = Some flags" using fflags_remain fflag by auto have "os_grant s' e" using p_in fd_in ffd_in flags_in fflag os f_in by (auto simp add:ReadFile is_file_in_current) moreover have "grant s' e" proof- from grant ffd obtain up rp tp uf rf tf ufd rfd tfd where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)" and p3: "sectxt_of_obj s (O_fd p fd) = Some (ufd, rfd, tfd)" apply (simp add:ReadFile split:option.splits) by (case_tac a, case_tac aa, case_tac ab, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:ReadFile co2sobj.simps cp2sproc_def split:option.splits) from vd f_in_s have "\<exists> sf. cf2sfile s f = Some sf" by (auto dest!:is_file_in_current current_file_has_sfile) hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using f_in f_in_s p2 cf2sf apply (erule_tac x = f in allE) apply (auto dest:is_file_in_current simp:cf2sfile_def split:option.splits) apply (case_tac f, simp) apply (drule_tac s = s in root_is_dir', simp add:vd, simp+) done have p3': "sectxt_of_obj s' (O_fd p fd) = Some (ufd, rfd, tfd)" using cfd2sfd ffd_in ffd p3 f_in f_in_s vd apply (erule_tac x = p in allE) apply (erule_tac x = fd in allE) apply (simp add:proc_file_fds_def) apply (auto simp:cfd2sfd_def fflag flags_in p3 split:option.splits dest!:current_file_has_sfile' simp:is_file_in_current) done show ?thesis using p1' p2' p3' ffd_in ffd apply (simp add:ReadFile split:option.splits) using grant p1 p2 p3 ReadFile by simp qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (WriteFile p fd) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:WriteFile) have fd_in: "fd \<in> current_proc_fds s' p" using os alive apply (erule_tac x = "O_fd p fd" in allE) by (auto simp:WriteFile) obtain f where ffd: "file_of_proc_fd s p fd = Some f" using os WriteFile by auto hence f_in_s: "is_file s f" using vd by (auto intro:file_of_pfd_is_file) obtain flags where fflag: "flags_of_proc_fd s p fd = Some flags" using os WriteFile by auto have ffd_in: "file_of_proc_fd s' p fd = Some f" using ffd_remain ffd by auto hence f_in: "is_file s' f" using vs' by (auto intro:file_of_pfd_is_file) have flags_in: "flags_of_proc_fd s' p fd = Some flags" using fflags_remain fflag by auto have "os_grant s' e" using p_in fd_in ffd_in flags_in fflag os f_in by (auto simp add:WriteFile is_file_in_current) moreover have "grant s' e" proof- from grant ffd obtain up rp tp uf rf tf ufd rfd tfd where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)" and p3: "sectxt_of_obj s (O_fd p fd) = Some (ufd, rfd, tfd)" apply (simp add:WriteFile split:option.splits) by (case_tac a, case_tac aa, case_tac ab, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:WriteFile co2sobj.simps cp2sproc_def split:option.splits) from vd f_in_s have "\<exists> sf. cf2sfile s f = Some sf" by (auto dest!:is_file_in_current current_file_has_sfile) hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using f_in f_in_s p2 cf2sf apply (erule_tac x = f in allE) apply (auto dest:is_file_in_current simp:cf2sfile_def split:option.splits) apply (case_tac f, simp) apply (drule_tac s = s in root_is_dir', simp add:vd, simp+) done have p3': "sectxt_of_obj s' (O_fd p fd) = Some (ufd, rfd, tfd)" using cfd2sfd ffd_in ffd p3 f_in f_in_s vd apply (erule_tac x = p in allE) apply (erule_tac x = fd in allE) apply (simp add:proc_file_fds_def) apply (auto simp:cfd2sfd_def fflag flags_in p3 split:option.splits dest!:current_file_has_sfile' simp:is_file_in_current) done show ?thesis using p1' p2' p3' ffd_in ffd apply (simp add:WriteFile split:option.splits) using grant p1 p2 p3 WriteFile by simp qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (CloseFd p fd) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:CloseFd) have fd_in: "fd \<in> current_proc_fds s' p" using os alive apply (erule_tac x = "O_fd p fd" in allE) by (auto simp:CloseFd) have "os_grant s' e" using p_in fd_in by (auto simp add:CloseFd) moreover have "grant s' e" by(simp add:CloseFd) ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (UnLink p f) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:UnLink) have f_in: "is_file s' f" using os alive apply (erule_tac x = "O_file f" in allE) by (auto simp:UnLink) from os vd obtain pf where pf_in_s: "is_dir s pf" and parent: "parent f = Some pf" by (auto simp:UnLink dest!:file_has_parent) from pf_in_s alive have pf_in: "is_dir s' pf" apply (erule_tac x = "O_dir pf" in allE) by (auto simp:UnLink) have "os_grant s' e" using p_in f_in os by (simp add:UnLink hungs) moreover have "grant s' e" proof- from grant parent obtain up rp tp uf rf tf upf rpf tpf where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)" and p3: "sectxt_of_obj s (O_dir pf) = Some (upf, rpf, tpf)" apply (simp add:UnLink split:option.splits) by (case_tac a, case_tac aa, case_tac ab, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:UnLink co2sobj.simps cp2sproc_def split:option.splits) from vd os pf_in_s have "\<exists> sf. cf2sfile s f = Some sf" by (auto dest!:is_file_in_current current_file_has_sfile simp:UnLink) hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using p2 cf2sf f_in os parent apply (erule_tac x = f in allE) apply (erule exE, clarsimp simp:UnLink) apply (frule_tac s = s in is_file_in_current, simp) by (auto simp:cf2sfile_def split:option.splits) from vd os pf_in_s have "\<exists> sf. cf2sfile s pf = Some sf" by (auto dest!:is_dir_in_current current_file_has_sfile simp:UnLink) hence p3': "sectxt_of_obj s' (O_dir pf) = Some (upf, rpf, tpf)" using p3 cf2sf pf_in pf_in_s apply (erule_tac x = pf in allE) apply (erule exE, frule_tac s = s in is_dir_in_current, simp) apply (drule is_dir_not_file, drule is_dir_not_file) apply (auto simp:cf2sfile_def split:option.splits) apply (case_tac pf, simp_all) by (simp add:sroot_def root_sec_remains vd vs') have "search_check s' (up, rp, tp) f" using p1 p2 p2' vd cf2sf f_in grant UnLink os parent vs' apply (rule_tac s = s in enrich_search_check) by (simp_all split:option.splits) thus ?thesis using p1' p2' p3' parent apply (simp add:UnLink split:option.splits) using grant UnLink p1 p2 p3 by simp qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (Rmdir p f) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:Rmdir) have f_in: "is_dir s' f" using os alive apply (erule_tac x = "O_dir f" in allE) by (auto simp:Rmdir dir_is_empty_def) have not_root: "f \<noteq> []" using os by (auto simp:Rmdir) from os vd obtain pf where pf_in_s: "is_dir s pf" and parent: "parent f = Some pf" apply (auto simp:Rmdir dir_is_empty_def) apply (case_tac f, simp+) apply (drule parentf_is_dir_prop1, auto) done from pf_in_s alive have pf_in: "is_dir s' pf" apply (erule_tac x = "O_dir pf" in allE) by (auto simp:Rmdir) have empty_in: "dir_is_empty s' f" using os Rmdir notin_all apply (clarsimp simp add:dir_is_empty_def f_in) using alive' apply (erule_tac x = "E_file f'" in allE) apply simp apply (erule disjE) apply (erule_tac x = f' in allE, simp) apply (case_tac obj', simp_all) apply (clarsimp) apply (drule_tac f' = f in parent_ancen) apply (simp, rule notI, simp add:noJ_Anc) apply (case_tac "f = pf") using vd' Rmdir apply (simp_all add:is_dir_rmdir) apply (erule_tac x = pf in allE) apply (drule_tac f = pf in is_dir_in_current) apply (simp add:noJ_Anc) done have "os_grant s' e" using p_in f_in os empty_in by (simp add:Rmdir hungs) moreover have "grant s' e" proof- from grant parent obtain up rp tp uf rf tf upf rpf tpf where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_dir f) = Some (uf, rf, tf)" and p3: "sectxt_of_obj s (O_dir pf) = Some (upf, rpf, tpf)" apply (simp add:Rmdir split:option.splits) by (case_tac a, case_tac aa, case_tac ab, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:Rmdir co2sobj.simps cp2sproc_def split:option.splits) from vd os pf_in_s have "\<exists> sf. cf2sfile s f = Some sf" by (auto dest!:is_dir_in_current current_file_has_sfile simp:dir_is_empty_def Rmdir) hence p2': "sectxt_of_obj s' (O_dir f) = Some (uf, rf, tf)" using p2 cf2sf f_in os parent apply (erule_tac x = f in allE) apply (erule exE, clarsimp simp:Rmdir dir_is_empty_def) apply (frule_tac s = s in is_dir_in_current, simp) apply (drule is_dir_not_file, drule is_dir_not_file) by (auto simp:cf2sfile_def split:option.splits) from vd os pf_in_s have "\<exists> sf. cf2sfile s pf = Some sf" by (auto dest!:is_dir_in_current current_file_has_sfile simp:Rmdir) hence p3': "sectxt_of_obj s' (O_dir pf) = Some (upf, rpf, tpf)" using p3 cf2sf pf_in pf_in_s apply (erule_tac x = pf in allE) apply (erule exE, frule_tac s = s in is_dir_in_current, simp) apply (drule is_dir_not_file, drule is_dir_not_file) apply (auto simp:cf2sfile_def split:option.splits) apply (case_tac pf, simp_all) by (simp add:sroot_def root_sec_remains vd vs') have "search_check s' (up, rp, tp) f" using p1 p2 p2' vd cf2sf f_in grant Rmdir os parent vs' apply (rule_tac s = s in enrich_search_check') by (simp_all add:dir_is_empty_def split:option.splits) thus ?thesis using p1' p2' p3' parent apply (simp add:Rmdir split:option.splits) using grant Rmdir p1 p2 p3 by simp qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (Mkdir p f inum) from os obtain pf where pf_in_s: "is_dir s pf" and parent: "parent f = Some pf" by (auto simp:Mkdir) have pf_in: "is_dir s' pf" using pf_in_s alive apply (erule_tac x = "O_dir pf" in allE) by simp have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:Mkdir) have f_not_in: "f \<notin> current_files s'" using os alive' Mkdir notin_all apply (erule_tac x = "E_file f" in allE) by (auto) have inum_not_in: "inum \<notin> current_inode_nums s'" using os alive' Mkdir notin_all apply (erule_tac x = "E_inum inum" in allE) by (auto) have "os_grant s' e" using p_in pf_in parent f_not_in os inum_not_in by (simp add:Mkdir hungs) moreover have "grant s' e" proof- from grant parent obtain up rp tp uf rf tf where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_dir pf) = Some (uf, rf, tf)" apply (simp add:Mkdir split:option.splits) by (case_tac a, case_tac aa, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:Mkdir co2sobj.simps cp2sproc_def split:option.splits) from vd os pf_in_s have "\<exists> sf. cf2sfile s pf = Some sf" by (auto dest!:is_dir_in_current current_file_has_sfile simp:Mkdir) hence p2': "sectxt_of_obj s' (O_dir pf) = Some (uf, rf, tf)" using p2 cf2sf pf_in pf_in_s apply (erule_tac x = pf in allE) apply (erule exE, frule_tac s = s in is_dir_in_current, simp) apply (drule is_dir_not_file, drule is_dir_not_file) apply (auto simp:cf2sfile_def split:option.splits) apply (case_tac pf, simp_all) by (simp add:sroot_def root_sec_remains vd vs') have "search_check s' (up, rp, tp) pf" using p1 p2 p2' vd cf2sf pf_in grant Mkdir pf_in_s parent vs' apply (rule_tac s = s in enrich_search_check') apply (simp_all split:option.splits) done thus ?thesis using p1' p2' parent apply (simp add:Mkdir split:option.splits) using grant Mkdir p1 p2 apply simp done qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (LinkHard p f f') from os obtain pf where pf_in_s: "is_dir s pf" and parent: "parent f' = Some pf" by (auto simp:LinkHard) have pf_in: "is_dir s' pf" using pf_in_s alive apply (erule_tac x = "O_dir pf" in allE) by simp have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:LinkHard) have f'_not_in: "f' \<notin> current_files s'" using os alive' LinkHard notin_all apply (erule_tac x = "E_file f'" in allE) by (auto simp:LinkHard) have f_in: "is_file s' f" using os alive apply (erule_tac x = "O_file f" in allE) by (auto simp:LinkHard) have "os_grant s' e" using p_in pf_in parent os f_in f'_not_in by (simp add:LinkHard hungs) moreover have "grant s' e" proof- from grant parent obtain up rp tp uf rf tf upf rpf tpf where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)" and p3: "sectxt_of_obj s (O_dir pf) = Some (upf, rpf, tpf)" apply (simp add:LinkHard split:option.splits) by (case_tac a, case_tac aa, case_tac ab, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:LinkHard co2sobj.simps cp2sproc_def split:option.splits) from vd os pf_in_s have "\<exists> sf. cf2sfile s f = Some sf" by (auto dest!:is_file_in_current current_file_has_sfile simp:LinkHard) hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using p2 cf2sf f_in os parent apply (erule_tac x = f in allE) apply (erule exE, clarsimp simp:LinkHard) apply (frule_tac s = s in is_file_in_current, simp) apply (auto simp:cf2sfile_def split:option.splits) apply (case_tac f, simp) by (drule_tac s = s in root_is_dir', simp add:vd, simp+) from vd os pf_in_s have "\<exists> sf. cf2sfile s pf = Some sf" by (auto dest!:is_dir_in_current current_file_has_sfile simp:LinkHard) hence p3': "sectxt_of_obj s' (O_dir pf) = Some (upf, rpf, tpf)" using p3 cf2sf pf_in pf_in_s apply (erule_tac x = pf in allE) apply (erule exE, frule_tac s = s in is_dir_in_current, simp) apply (drule is_dir_not_file, drule is_dir_not_file) apply (auto simp:cf2sfile_def split:option.splits) apply (case_tac pf, simp_all) by (simp add:sroot_def root_sec_remains vd vs') have "search_check s' (up, rp, tp) f" using p1 p2 p2' vd cf2sf f_in grant LinkHard os parent vs' apply (rule_tac s = s in enrich_search_check) by (simp_all split:option.splits) moreover have "search_check s' (up, rp, tp) pf" using p1 p3 p3' vd cf2sf pf_in grant LinkHard os parent vs' apply (rule_tac s = s in enrich_search_check') apply (simp_all split:option.splits) done ultimately show ?thesis using p1' p2' p3' parent apply (simp add:LinkHard split:option.splits) using grant LinkHard p1 p2 p3 apply simp done qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (Truncate p f len) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:Truncate) have f_in: "is_file s' f" using os alive apply (erule_tac x = "O_file f" in allE) by (auto simp:Truncate) have "os_grant s' e" using p_in f_in by (simp add:Truncate) moreover have "grant s' e" proof- from grant obtain up rp tp uf rf tf where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)" apply (simp add:Truncate split:option.splits) by (case_tac a, case_tac aa, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:Truncate co2sobj.simps cp2sproc_def split:option.splits) from os have f_in': "is_file s f" by (simp add:Truncate) from vd os have "\<exists> sf. cf2sfile s f = Some sf" by (auto dest!:is_file_in_current current_file_has_sfile simp:Truncate) hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using f_in f_in' p2 cf2sf apply (erule_tac x = f in allE) apply (auto dest:is_file_in_current simp:cf2sfile_def split:option.splits) apply (case_tac f, simp) apply (drule_tac s = s in root_is_dir', simp add:vd, simp+) done have "search_check s' (up, rp, tp) f" using p1 p2 p2' vd cf2sf f_in' grant Truncate f_in apply (rule_tac s = s in enrich_search_check) by (simp_all split:option.splits) thus ?thesis using p1' p2' apply (simp add:Truncate split:option.splits) using grant Truncate p1 p2 by (simp add:Truncate grant p1 p2) qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (CreateMsgq p q) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:CreateMsgq) have q_not_in: "q \<notin> current_msgqs s'" using os alive' CreateMsgq notin_all apply (erule_tac x = "E_msgq q" in allE) by auto have "os_grant s' e" using p_in q_not_in by (simp add:CreateMsgq) moreover have "grant s' e" proof- from grant obtain up rp tp where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" apply (simp add:CreateMsgq split:option.splits) by (case_tac a, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:CreateMsgq co2sobj.simps cp2sproc_def split:option.splits) show ?thesis using p1' apply (simp add:CreateMsgq split:option.splits) using grant CreateMsgq p1 by simp qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (RemoveMsgq p q) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:RemoveMsgq) have q_in: "q \<in> current_msgqs s'" using os alive apply (erule_tac x = "O_msgq q" in allE) by (simp add:RemoveMsgq) have "os_grant s' e" using p_in q_in by (simp add:RemoveMsgq) moreover have "grant s' e" proof- from grant obtain up rp tp uq rq tq where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_msgq q) = Some (uq, rq, tq)" apply (simp add:RemoveMsgq split:option.splits) by (case_tac a, case_tac aa, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:RemoveMsgq co2sobj.simps cp2sproc_def split:option.splits) from p2 have p2': "sectxt_of_obj s' (O_msgq q) = Some (uq, rq, tq)" using os cq2sq vd apply (erule_tac x = q in allE) by (auto simp:RemoveMsgq co2sobj.simps cq2smsgq_def dest!:current_has_sms' split:option.splits) show ?thesis using p1' p2' grant p1 p2 by (simp add:RemoveMsgq) qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (SendMsg p q m) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:SendMsg) have q_in: "q \<in> current_msgqs s'" using os alive apply (erule_tac x = "O_msgq q" in allE) by (simp add:SendMsg) have m_not_in: "m \<notin> set (msgs_of_queue s' q)" using os alive' notin_all SendMsg q_in apply (erule_tac x = "E_msg q m" in allE) apply (case_tac obj', auto dest:not_all_msgqs_prop3) done have "os_grant s' e" using p_in q_in m_not_in by (simp add:SendMsg) moreover have "grant s' e" proof- from grant obtain up rp tp uq rq tq where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_msgq q) = Some (uq, rq, tq)" apply (simp add:SendMsg split:option.splits) by (case_tac a, case_tac aa, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:SendMsg co2sobj.simps cp2sproc_def split:option.splits) from p2 have p2': "sectxt_of_obj s' (O_msgq q) = Some (uq, rq, tq)" using os cq2sq vd apply (erule_tac x = q in allE) by (auto simp:SendMsg co2sobj.simps cq2smsgq_def dest!:current_has_sms' split:option.splits) show ?thesis using p1' p2' grant p1 p2 by (simp add:SendMsg) qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (RecvMsg p q m) have p_in: "p \<in> current_procs s'" using os alive apply (erule_tac x = "O_proc p" in allE) by (auto simp:RecvMsg) have q_in: "q \<in> current_msgqs s'" using os alive apply (erule_tac x = "O_msgq q" in allE) by (simp add:RecvMsg) have m_in: "m = hd (msgs_of_queue s' q)" and sms_not_empty: "msgs_of_queue s' q \<noteq> []" using os sms_remain by (auto simp:RecvMsg) have "os_grant s' e" using p_in q_in m_in sms_not_empty os by (simp add:RecvMsg) moreover have "grant s' e" proof- from grant obtain up rp tp uq rq tq um rm tm where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)" and p2: "sectxt_of_obj s (O_msgq q) = Some (uq, rq, tq)" and p3: "sectxt_of_obj s (O_msg q m) = Some (um, rm, tm)" apply (simp add:RecvMsg split:option.splits) by (case_tac a, case_tac aa, case_tac ab, blast) from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)" using os cp2sp apply (erule_tac x = p in allE) by (auto simp:RecvMsg co2sobj.simps cp2sproc_def split:option.splits) from p2 have p2': "sectxt_of_obj s' (O_msgq q) = Some (uq, rq, tq)" using os cq2sq vd apply (erule_tac x = q in allE) by (auto simp:RecvMsg co2sobj.simps cq2smsgq_def dest!:current_has_sms' split:option.splits) from p3 have p3': "sectxt_of_obj s' (O_msg q m) = Some (um, rm, tm)" using sms_remain cq2sq vd os p2 p2' p3 apply (erule_tac x = q in allE) apply (erule_tac x = q in allE) apply (clarsimp simp:RecvMsg) apply (simp add:cq2smsgq_def split:option.splits if_splits) apply (drule current_has_sms', simp, simp) apply (case_tac "msgs_of_queue s q", simp) apply (simp add:cqm2sms.simps split:option.splits) apply (auto simp add:cm2smsg_def split:option.splits if_splits)[1] apply (case_tac "msgs_of_queue s q", simp) apply (simp add:cqm2sms.simps split:option.splits) apply (auto simp add:cm2smsg_def split:option.splits if_splits)[1] done show ?thesis using p1' p2' p3' grant p1 p2 p3 by (simp add:RecvMsg) qed ultimately show ?thesis using vs' by (erule_tac valid.intros(2), simp+) next case (CreateSock p af st fd inum) show ?thesis using grant by (simp add:CreateSock) next case (Bind p fd addr) show ?thesis using grant by (simp add:Bind) next case (Connect p fd addr) show ?thesis using grant by (simp add:Connect) next case (Listen p fd) show ?thesis using grant by (simp add:Listen) next case (Accept p fd addr port fd' inum) show ?thesis using grant by (simp add:Accept) next case (SendSock p fd) show ?thesis using grant by (simp add:SendSock) next case (RecvSock p fd) show ?thesis using grant by (simp add:RecvSock) next case (Shutdown p fd how) show ?thesis using grant by (simp add:Shutdown) qed qedlemma created_proc_clone: "valid (Clone p p' fds # s) \<Longrightarrow> is_created_proc (Clone p p' fds # s) tp = (if (tp = p') then True else is_created_proc s tp)"apply (drule vt_grant_os)apply (auto simp:is_created_proc_def dest:not_all_procs_prop2)using not_died_init_procby autolemma created_proc_exit: "is_created_proc (Exit p # s) tp = (if (tp = p) then False else is_created_proc s tp)"by (simp add:is_created_proc_def)lemma created_proc_kill: "is_created_proc (Kill p p' # s) tp = (if (tp = p') then False else is_created_proc s tp)"by (simp add:is_created_proc_def)lemma created_proc_other: "\<lbrakk>\<And> p p' fds. e \<noteq> Clone p p' fds; \<And> p. e \<noteq> Exit p; \<And> p p'. e \<noteq> Kill p p'\<rbrakk> \<Longrightarrow> is_created_proc (e # s) tp = is_created_proc s tp"by (case_tac e, auto simp:is_created_proc_def)lemmas is_created_proc_simps = created_proc_clone created_proc_exit created_proc_kill created_proc_other(* (p \<in> current_procs s \<longrightarrow> co2sobj (enrich_proc s p p') (O_proc p') = co2sobj (enrich_proc s p p') (O_proc p)) \<and> (\<forall> obj. alive s obj \<longrightarrow> alive (enrich_proc s p p') obj) \<and> (\<forall> p'. p' \<in> current_procs s \<longrightarrow> cp2sproc (enrich_proc s p p') p' = cp2sproc s p) \<and> (\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile (enrich_proc s p p') f = cf2sfile s f) \<and> (Tainted (enrich_proc s p p') = (Tainted s \<union> (if (O_proc p \<in> Tainted s) then {O_proc p'} else {})))"*)lemma enrich_proc_dup_in: "\<lbrakk>is_created_proc s p; p' \<notin> all_procs s; valid s\<rbrakk> \<Longrightarrow> p' \<in> current_procs (enrich_proc s p p')"apply (induct s, simp add:is_created_proc_def)apply (frule vt_grant_os, frule vd_cons)apply (case_tac a, auto simp:is_created_proc_def dest:not_all_procs_prop3)donelemma enrich_proc_dup_ffd: "\<lbrakk>file_of_proc_fd s p fd = Some f; is_created_proc s p; p' \<notin> all_procs s; valid s\<rbrakk> \<Longrightarrow> file_of_proc_fd (enrich_proc s p p') p' fd = Some f"apply (induct s, simp add:is_created_proc_def)apply (frule vt_grant_os, frule vd_cons)apply (case_tac a, auto simp:is_created_proc_def proc_file_fds_def dest:not_all_procs_prop3 split:if_splits option.splits)done lemma enrich_proc_dup_ffd': "\<lbrakk>file_of_proc_fd (enrich_proc s p p') p' fd = Some f; is_created_proc s p; p' \<notin> all_procs s; no_del_event s; valid s\<rbrakk> \<Longrightarrow> file_of_proc_fd s p fd = Some f"apply (induct s, simp add:is_created_proc_def)apply (frule vt_grant_os, frule vd_cons)apply (case_tac a, auto simp:is_created_proc_def proc_file_fds_def dest:not_all_procs_prop3 split:if_splits option.splits)done lemma enrich_proc_dup_ffd_eq: "\<lbrakk>is_created_proc s p; p' \<notin> all_procs s; no_del_event s; valid s\<rbrakk> \<Longrightarrow> file_of_proc_fd (enrich_proc s p p') p' fd = file_of_proc_fd s p fd"apply (case_tac "file_of_proc_fd s p fd")apply (case_tac[!] "file_of_proc_fd (enrich_proc s p p') p' fd")apply (auto dest:enrich_proc_dup_ffd enrich_proc_dup_ffd')donelemma current_fflag_in_fds: "\<lbrakk>flags_of_proc_fd s p fd = Some flag; valid s\<rbrakk> \<Longrightarrow> fd \<in> current_proc_fds s p"apply (induct s arbitrary:p)apply (simp add:flags_of_proc_fd.simps file_of_proc_fd.simps init_oflags_prop2) apply (frule vd_cons, frule vt_grant_os, case_tac a)apply (auto split:if_splits option.splits dest:proc_fd_in_fds)donelemma current_fflag_has_ffd: "\<lbrakk>flags_of_proc_fd s p fd = Some flag; valid s\<rbrakk> \<Longrightarrow> \<exists> f. file_of_proc_fd s p fd = Some f"apply (induct s arbitrary:p)apply (simp add: file_of_proc_fd.simps init_fileflag_valid) apply (frule vd_cons, frule vt_grant_os, case_tac a)apply (auto split:if_splits option.splits dest:proc_fd_in_fds)donelemma enrich_proc_dup_fflags: "\<lbrakk>flags_of_proc_fd s p fd = Some flag; is_created_proc s p; p' \<notin> all_procs s; valid s\<rbrakk> \<Longrightarrow> flags_of_proc_fd (enrich_proc s p p') p' fd = Some (remove_create_flag flag) \<or> flags_of_proc_fd (enrich_proc s p p') p' fd = Some flag"apply (induct s arbitrary:p, simp add:is_created_proc_def)apply (frule vt_grant_os, frule vd_cons)apply (case_tac a, auto simp:is_created_proc_def proc_file_fds_def is_creat_flag_def dest:not_all_procs_prop3 split:if_splits option.splits)donelemma enrich_proc_dup_ffds: "\<lbrakk>is_created_proc s p; p' \<notin> all_procs s; no_del_event s; valid s\<rbrakk> \<Longrightarrow> proc_file_fds (enrich_proc s p p') p' = proc_file_fds s p"apply (auto simp:proc_file_fds_def)apply (rule_tac x = f in exI) apply (erule enrich_proc_dup_ffd', simp+)apply (rule_tac x = f in exI)apply (erule enrich_proc_dup_ffd, simp+)donelemma enrich_proc_dup_ffds_eq_fds: "\<lbrakk>is_created_proc s p; p' \<notin> all_procs s; no_del_event s; valid s\<rbrakk> \<Longrightarrow> current_proc_fds (enrich_proc s p p') p' = proc_file_fds s p"apply (induct s arbitrary:p)apply (simp add: is_created_proc_def)apply (frule not_all_procs_prop3)apply (frule vd_cons, frule vt_grant_os, case_tac a)apply (auto split:if_splits option.splits dest:proc_fd_in_fds set_mp not_all_procs_prop3 simp:proc_file_fds_def is_created_proc_def)donelemma oflags_check_remove_create: "oflags_check flags sp sf \<Longrightarrow> oflags_check (remove_create_flag flags) sp sf"apply (case_tac flags)apply (auto simp:oflags_check_def perms_of_flags_def perm_of_oflag_def split:bool.splits)doneendend