info_flow_shm is wrongly defined: p -flow-> p'; p' -flow-> p'' ==> p -flow-> p'', this property cannot be infered by current definition. we should use inductive
theory Tainted_prop
imports Main Flask Flask_type Init_prop Current_files_prop Current_sockets_prop Delete_prop Proc_fd_of_file_prop Current_prop
begin
context tainting begin
fun Tainted :: "t_state \<Rightarrow> t_object set"
where
"Tainted [] = seeds"
| "Tainted (Clone p p' fds shms # s) =
(if (O_proc p) \<in> Tainted s then Tainted s \<union> {O_proc p'} else Tainted s)"
| "Tainted (Execve p f fds # s) =
(if (O_file f) \<in> Tainted s then Tainted s \<union> {O_proc p} else Tainted s)"
| "Tainted (Kill p p' # s) = Tainted s - {O_proc p'}"
| "Tainted (Ptrace p p' # s) =
(if (O_proc p) \<in> Tainted s
then Tainted s \<union> {O_proc p'' | p''. info_flow_shm s p' p''}
else if (O_proc p') \<in> Tainted s
then Tainted s \<union> {O_proc p'' | p''. info_flow_shm s p p''}
else Tainted s)"
| "Tainted (Exit p # s) = Tainted s - {O_proc p}"
| "Tainted (Open p f flags fd opt # s) =
(case opt of
Some inum \<Rightarrow> (if (O_proc p) \<in> Tainted s
then Tainted s \<union> {O_file f}
else Tainted s)
| _ \<Rightarrow> Tainted s)"
| "Tainted (ReadFile p fd # s) =
(case (file_of_proc_fd s p fd) of
Some f \<Rightarrow> if (O_file f) \<in> Tainted s
then Tainted s \<union> {O_proc p' | p'. info_flow_shm s p p'}
else Tainted s
| None \<Rightarrow> Tainted s)"
| "Tainted (WriteFile p fd # s) =
(case (file_of_proc_fd s p fd) of
Some f \<Rightarrow> if (O_proc p) \<in> Tainted s
then Tainted s \<union> {O_file f' | f'. has_same_inode s f f'}
else Tainted s
| None \<Rightarrow> Tainted s)"
| "Tainted (CloseFd p fd # s) =
(case (file_of_proc_fd s p fd) of
Some f \<Rightarrow> ( if ((proc_fd_of_file s f = {(p,fd)}) \<and> (f \<in> files_hung_by_del s))
then Tainted s - {O_file f} else Tainted s )
| _ \<Rightarrow> Tainted s)"
| "Tainted (UnLink p f # s) =
(if (proc_fd_of_file s f = {}) then Tainted s - {O_file f} else Tainted s)"
| "Tainted (LinkHard p f f' # s) =
(if (O_file f \<in> Tainted s) then Tainted s \<union> {O_file f'} else Tainted s)"
| "Tainted (Truncate p f len # s) =
(if (len > 0 \<and> O_proc p \<in> Tainted s)
then Tainted s \<union> {O_file f' | f'. has_same_inode s f f'}
else Tainted s)"
| "Tainted (SendMsg p q m # s) =
(if (O_proc p \<in> Tainted s) then Tainted s \<union> {O_msg q m} else Tainted s)"
| "Tainted (RecvMsg p q m # s) =
(if (O_msg q m \<in> Tainted s)
then (Tainted s \<union> {O_proc p' | p'. info_flow_shm s p p'}) - {O_msg q m}
else Tainted s)"
| "Tainted (RemoveMsgq p q # s) = Tainted s - {O_msg q m| m. O_msg q m \<in> Tainted s}"
| "Tainted (e # s) = Tainted s"
lemma valid_Tainted_obj:
"\<lbrakk>obj \<in> Tainted s; valid s\<rbrakk> \<Longrightarrow> (\<forall> f. obj \<noteq> O_dir f) \<and> (\<forall> q. obj \<noteq> O_msgq q) \<and> (\<forall> h. obj \<noteq> O_shm h) \<and> (\<forall> p fd. obj \<noteq> O_fd p fd) \<and> (\<forall> s. obj \<noteq> O_tcp_sock s) \<and> (\<forall> s. obj \<noteq> O_udp_sock s)"
apply (induct s, simp, drule seeds_in_init, case_tac obj, simp+)
apply (frule vd_cons, frule vt_grant_os, case_tac a)
apply (auto split:if_splits option.splits)
done
lemma Tainted_in_current:
"\<lbrakk>obj \<in> Tainted s; valid s\<rbrakk> \<Longrightarrow> alive s obj"
apply (induct s, simp)
apply (drule seeds_in_init, case_tac obj, simp_all add:is_file_nil)
apply (frule vd_cons, frule valid_Tainted_obj, simp, frule vt_grant_os, case_tac a)
apply (auto simp:alive_simps split:if_splits option.splits t_object.splits
intro:has_same_inode_prop2 has_same_inode_prop1 dest:info_shm_flow_in_procs)
done
lemma Tainted_proc_in_current:
"\<lbrakk>O_proc p \<in> Tainted s; valid s\<rbrakk> \<Longrightarrow> p \<in> current_procs s"
by (drule Tainted_in_current, simp+)
lemma has_inode_tainted_aux:
"O_file f \<in> tainted s \<Longrightarrow> \<forall> f'. has_same_inode s f f' \<longrightarrow> O_file f' \<in> tainted s"
apply (erule tainted.induct)
apply (auto intro:tainted.intros simp:has_same_inode_def)
(*?? need simpset for tainted *)
sorry
lemma has_inode_Tainted_aux:
"\<lbrakk>O_file f \<in> Tainted s; has_same_inode s f f'\<rbrakk> \<Longrightarrow> O_file f' \<in> Tainted s"
apply (induct s, auto)
apply (auto intro:tainted.intros simp:has_same_inode_def)
(*?? need simpset for tainted *)
sorry
lemma info_flow_shm_Tainted:
"\<lbrakk>O_proc p \<in> Tainted s; info_flow_shm s p p'; valid s\<rbrakk> \<Longrightarrow> O_proc p' \<in> Tainted s"
proof (induct s arbitrary:p p')
case Nil
thus ?case by (simp add:flow_shm_in_seeds)
next
case (Cons e s)
hence p1: "O_proc p \<in> Tainted (e # s)" and p2: "info_flow_shm (e # s) p p'" and p3: "valid (e # s)"
and p4: "\<And> p p'. \<lbrakk>O_proc p \<in> Tainted s; info_flow_shm s p p'\<rbrakk> \<Longrightarrow> O_proc p' \<in> Tainted s"
and p5: "valid s" and p6: "os_grant s e"
by (auto dest:vd_cons intro:vd_cons vt_grant_os)
have p4':
"\<And> p p' h flag. \<lbrakk>O_proc p \<in> Tainted s; (p, SHM_RDWR) \<in> procs_of_shm s h; (p', flag) \<in> procs_of_shm s h\<rbrakk>
\<Longrightarrow> O_proc p' \<in> Tainted s"
by (rule p4, auto simp:info_flow_shm_def)
from p2 p3 have p7: "p \<in> current_procs (e # s)" and p8: "p' \<in> current_procs (e # s)"
by (auto dest:info_shm_flow_in_procs)
show ?case
proof (cases "p = p'")
case True with p1 show ?thesis by simp
next
case False
with p1 p2 p5 p6 p7 p8 p3 show ?thesis
apply (case_tac e)
prefer 7
apply (simp add:info_flow_shm_def split:if_splits option.splits)
apply (rule allI|rule impI|rule conjI)+
apply (erule disjE, drule_tac p = p and p' = p' in p4', simp+)
apply (erule disjE, rule disjI2, rule disjI2, rule_tac x = h in exI, simp, rule_tac x= toflag in exI, simp)
apply ((erule exE|erule conjE)+)
apply (auto simp:info_flow_shm_def dest:p4'
procs_of_shm_prop2 Tainted_in_current split:if_splits option.splits)[1]
apply (drule_tac p = p and p' = p' in p4')
apply (erule_tac x = ha in allE, simp)
apply (drule_tac p = "nat1" and p' = p' in p4')
apply (auto dest:p4'[where p = nat1 and p' = p'])
apply (induct s) (*
apply simp defer
apply (frule vd_cons, frule vt_grant_os, case_tac a)
apply (auto simp:info_flow_shm_def elim!:disjE)
sorry *)
sorry
next
case (Cons e s)
show ?case
sorry
qed
lemma tainted_imp_Tainted:
"obj \<in> tainted s \<Longrightarrow> obj \<in> Tainted s"
apply (induct rule:tainted.induct)
apply (auto intro:info_flow_shm_Tainted dest:vd_cons)
apply (case_tac e, auto split:option.splits if_splits simp:alive_simps)
done
lemma Tainted_imp_tainted:
"\<lbrakk>obj \<in> Tainted s; valid s\<rbrakk> \<Longrightarrow> obj \<in> tainted s"
proof (induct s arbitrary:obj)
case Nil
thus ?case by (auto intro:t_init)
next
case (Cons e s)
hence p1: "\<And> obj. obj \<in> Tainted s \<Longrightarrow> obj \<in> tainted s"
and p2: "obj \<in> Tainted (e # s)" and p3: "valid (e # s)"
and p4: "valid s" and p5: "os_grant s e"
by (auto dest:vd_cons intro:vd_cons vt_grant_os)
from p1 have p6: ""
apply (frule vd_cons, frule vt_grant_os, frule valid_Tainted_obj, simp)
apply (case_tac a)
apply (auto intro!:t_init t_clone t_execve t_cfile t_read t_write t_link t_trunc t_sendmsg t_recvmsg
intro:t_remain
split:if_splits option.splits dest:Tainted_in_current)
pr 25
lemma tainted_imp_Tainted:
"obj \<in> tainted s \<Longrightarrow> obj \<in> Tainted s"
lemma tainted_in_current:
"obj \<in> tainted s \<Longrightarrow> alive s obj"
apply (erule tainted.induct, auto dest:vt_grant_os vd_cons simp:is_file_simps)
apply (drule seeds_in_init, simp add:tobj_in_alive)
apply (erule has_same_inode_prop2, simp, simp add:vd_cons)
apply (frule vt_grant_os, simp)
apply (erule has_same_inode_prop1, simp, simp add:vd_cons)
done
lemma tainted_is_valid:
"obj \<in> tainted s \<Longrightarrow> valid s"
by (erule tainted.induct, auto intro:valid.intros)
lemma t_remain_app:
"\<lbrakk>obj \<in> tainted s; \<not> deleted obj (s' @ s); valid (s' @ s)\<rbrakk>
\<Longrightarrow> obj \<in> tainted (s' @ s)"
apply (induct s', simp)
apply (simp (no_asm) only:cons_app_simp_aux, rule t_remain)
apply (simp_all add:not_deleted_cons_D vd_cons)
apply (drule tainted_in_current, simp add:not_deleted_imp_alive_cons)
done
lemma valid_tainted_obj:
"obj \<in> tainted s \<Longrightarrow> (\<forall> f. obj \<noteq> O_dir f) \<and> (\<forall> q. obj \<noteq> O_msgq q) \<and> (\<forall> h. obj \<noteq> O_shm h) \<and> (\<forall> p fd. obj \<noteq> O_fd p fd) \<and> (\<forall> s. obj \<noteq> O_tcp_sock s) \<and> (\<forall> s. obj \<noteq> O_udp_sock s)"
apply (erule tainted.induct)
apply (drule seeds_in_init)
by auto
lemma dir_not_tainted: "O_dir f \<in> tainted s \<Longrightarrow> False"
by (auto dest:valid_tainted_obj)
lemma msgq_not_tainted: "O_msgq q \<in> tainted s \<Longrightarrow> False"
by (auto dest:valid_tainted_obj)
lemma shm_not_tainted: "O_shm h \<in> tainted s \<Longrightarrow> False"
by (auto dest:valid_tainted_obj)
end
end