S2ss_prop2.thy
author chunhan
Tue, 15 Oct 2013 14:11:53 +0800
changeset 58 20207806603e
child 59 89770d3c8a9b
permissions -rw-r--r--
s2ss_deleteshm s2ss_detach

(*<*)
theory S2ss_prop2
imports Main Flask Flask_type Static Static_type Init_prop Tainted_prop Valid_prop Alive_prop Co2sobj_prop S2ss_prop
begin
(*>*)

context tainting_s begin

definition unbackuped_sprocs :: "t_state \<Rightarrow> t_event \<Rightarrow> t_process set \<Rightarrow> t_sobject set"
where
  "unbackuped_sprocs s e procs \<equiv> 
    {sp | p sp. p \<in> procs \<and> co2sobj s (O_proc p) = Some sp \<and> 
                (\<forall> p' \<in> procs. co2sobj (e # s) (O_proc p') \<noteq> Some sp) \<and>
                (\<forall> p' \<in> (current_procs s - procs). co2sobj s (O_proc p') \<noteq> Some sp)}"

definition update_s2ss_procs :: "t_state \<Rightarrow> t_static_state \<Rightarrow> t_event \<Rightarrow> t_process set \<Rightarrow> t_static_state"
where
  "update_s2ss_procs s ss e procs \<equiv> 
     ss \<union> {sp | p sp. p \<in> procs \<and> co2sobj (e # s) (O_proc p) = Some sp}
        - unbackuped_sprocs s e procs"
 (* new sp after event may exists as same before the event in procs *)

lemma unbked_sps_D:
  "\<lbrakk>x \<in> unbackuped_sprocs s e procs; p \<in> procs\<rbrakk> \<Longrightarrow> co2sobj (e # s) (O_proc p) \<noteq> Some x"
by (auto simp add:unbackuped_sprocs_def)

lemma unbked_sps_D':
  "\<lbrakk>x \<in> unbackuped_sprocs s e procs; p \<notin> procs; p \<in> current_procs s; 
    co2sobj (e # s) (O_proc p) = co2sobj s (O_proc p)\<rbrakk>
   \<Longrightarrow> co2sobj (e # s) (O_proc p) \<noteq> Some x"
by (auto simp:unbackuped_sprocs_def)

lemma not_unbked_sps_D:
  "\<lbrakk>x \<notin> unbackuped_sprocs s e procs; p \<in> procs; co2sobj s (O_proc p) = Some x\<rbrakk> 
   \<Longrightarrow> (\<exists> p' \<in> procs. co2sobj (e # s) (O_proc p') = Some x) \<or>
       (\<exists> p' \<in> current_procs s - procs. co2sobj s (O_proc p') = Some x)"
by (auto simp:unbackuped_sprocs_def)

lemma unbked_sps_I:
  "\<lbrakk>co2sobj s obj = Some x; \<forall> p. obj \<noteq> O_proc p\<rbrakk> \<Longrightarrow> x \<notin> unbackuped_sprocs s' e procs"
apply (case_tac obj)
apply (auto simp add:unbackuped_sprocs_def co2sobj.simps split:option.splits)
done

lemma co2sobj_proc_deleteshm:
  "\<lbrakk>valid (DeleteShM p h # s); \<forall>flag. (pa, flag) \<notin> procs_of_shm s h; pa \<in> current_procs s\<rbrakk>
   \<Longrightarrow> co2sobj (DeleteShM p h # s) (O_proc pa) = co2sobj s (O_proc pa)"
thm co2sobj_deleteshm
apply (frule_tac obj = "O_proc pa" in co2sobj_deleteshm, simp)
apply (frule vd_cons, frule_tac p = pa in current_proc_has_sp, simp, erule exE)
apply (auto dest!:current_proc_has_sp' current_has_sec' current_shm_has_sh'
  split:t_object.splits option.splits if_splits dest:flag_of_proc_shm_prop1
  simp:co2sobj.simps tainted_eq_Tainted cp2sproc_deleteshm)
done

lemma s2ss_deleteshm:
  "valid (DeleteShM p h # s) \<Longrightarrow> s2ss (DeleteShM p h # s) = 
     (case ch2sshm s h of
        Some sh \<Rightarrow> del_s2ss_obj s 
                      (update_s2ss_procs s (s2ss s) (DeleteShM p h) {p'| p' flag. (p', flag) \<in> procs_of_shm s h})
                      (O_shm h) (S_shm sh)
      | _       \<Rightarrow> {})"
apply (frule vt_grant_os, frule vd_cons)
apply (case_tac "ch2sshm s h")
apply (drule current_shm_has_sh', simp, simp)
apply (simp add:del_s2ss_obj_def)
apply (tactic {*my_clarify_tac 1*})
 
unfolding update_s2ss_procs_def
apply (tactic {*my_seteq_tac 1*})
apply (erule_tac obj = obj in co2sobj_some_caseD)
apply (case_tac "\<exists> flag. (pa, flag) \<in> procs_of_shm s h")
apply (erule exE, rule DiffI, rule UnI2, simp)
apply (rule_tac x = pa in exI, simp, rule_tac x = flag in exI, simp)
apply (rule notI, drule_tac p = pa in unbked_sps_D, simp)
apply (rule_tac x = flag in exI, simp, simp)
apply (rule DiffI, rule UnI1, simp)
apply (rule_tac x = obj in exI, simp add:co2sobj_deleteshm split:option.splits)
apply (simp add:cp2sproc_deleteshm split:option.splits if_splits)
apply (simp add:co2sobj.simps tainted_eq_Tainted)
apply (drule current_has_sec', simp, simp)
apply (simp add:co2sobj.simps tainted_eq_Tainted)
apply (drule flag_of_proc_shm_prop1, simp, simp)
apply (drule flag_of_proc_shm_prop1, simp, simp)
apply (rule notI, drule_tac p = pa in unbked_sps_D', simp+)
apply (simp add:co2sobj_proc_deleteshm)
apply (simp add:co2sobj_proc_deleteshm)
apply (rule DiffI, rule UnI1, simp, rule_tac x = obj in exI, simp add:co2sobj_deleteshm is_file_simps)
apply (erule unbked_sps_I, simp)
apply (rule DiffI,rule UnI1, simp, rule_tac x = obj in exI, simp add:co2sobj_deleteshm)
apply (erule unbked_sps_I, simp)
apply (rule DiffI, rule UnI1, simp, rule_tac x = obj in exI, simp add:co2sobj_deleteshm is_dir_simps)
apply (erule unbked_sps_I, simp)
apply (rule DiffI, rule UnI1, simp, rule_tac x = obj in exI, simp add:co2sobj_deleteshm)
apply (erule unbked_sps_I, simp)

apply (erule DiffE, erule UnE)
apply (tactic {*my_setiff_tac 1*})
apply (erule_tac obj = obj in co2sobj_some_caseD)
apply (case_tac "\<exists> flag. (pa, flag) \<in> procs_of_shm s h", erule exE)
apply (drule_tac p = pa in not_unbked_sps_D, simp)
apply (rule_tac x = flag in exI, simp)
apply (simp, erule disjE, clarsimp)
apply (rule_tac x = "O_proc p'" in exI, simp add:procs_of_shm_prop2)
apply (erule bexE, simp, (erule conjE)+)
apply (frule_tac pa = p' in co2sobj_proc_deleteshm, simp+)
apply (rule_tac x = "O_proc p'" in exI, simp)
apply (frule_tac pa = pa in co2sobj_proc_deleteshm, simp+)
apply (rule_tac x = "O_proc pa" in exI, simp)
apply (rule_tac x = obj in exI, simp add:co2sobj_deleteshm is_file_simps)
apply (frule_tac co2sobj_sshm_imp, erule exE)
apply (case_tac "ha = h")
apply (rule_tac x = obj' in exI, simp add:co2sobj_deleteshm)
apply (simp add:co2sobj.simps)
apply (rule_tac x = obj in exI, simp add:co2sobj_deleteshm)
apply (rule_tac x = obj in exI, simp add:co2sobj_deleteshm is_dir_simps)
apply (rule_tac x = obj in exI, simp add:co2sobj_deleteshm)
apply (tactic {*my_setiff_tac 1*}, clarsimp)
apply (rule_tac x = "O_proc pa" in exI, simp add:procs_of_shm_prop2)

apply (tactic {*my_clarify_tac 1*})
unfolding update_s2ss_procs_def
apply (tactic {*my_seteq_tac 1*})
apply (erule_tac obj = obj in co2sobj_some_caseD)
apply (case_tac "\<exists> flag. (pa, flag) \<in> procs_of_shm s h")
apply (erule exE, rule DiffI, rule DiffI, rule UnI2, simp)
apply (rule_tac x = pa in exI, simp, rule_tac x = flag in exI, simp)
apply (rule notI, drule_tac p = pa in unbked_sps_D, simp)
apply (rule_tac x = flag in exI, simp, simp)
apply (rule notI, simp add:co2sobj.simps split:option.splits)
apply (rule DiffI, rule DiffI, rule UnI1, simp)
apply (rule_tac x = obj in exI, simp add:co2sobj_deleteshm split:option.splits)
apply (simp add:cp2sproc_deleteshm split:option.splits if_splits)
apply (simp add:co2sobj.simps tainted_eq_Tainted)
apply (drule current_has_sec', simp, simp)
apply (simp add:co2sobj.simps tainted_eq_Tainted)
apply (drule flag_of_proc_shm_prop1, simp, simp)
apply (drule flag_of_proc_shm_prop1, simp, simp)
apply (rule notI, drule_tac p = pa in unbked_sps_D', simp+)
apply (simp add:co2sobj_proc_deleteshm)
apply (simp add:co2sobj_proc_deleteshm)
apply (rule notI, simp add:co2sobj.simps split:option.splits)
apply (rule DiffI, rule DiffI, rule UnI1, simp, rule_tac x = obj in exI, simp add:co2sobj_deleteshm is_file_simps)
apply (erule unbked_sps_I, simp, rule notI, simp add:co2sobj.simps)
apply (case_tac "ha = h", simp)
apply (rule DiffI, rule DiffI, rule UnI1, simp, rule_tac x = obj in exI, simp add:co2sobj_deleteshm)
apply (erule unbked_sps_I, simp)
apply (rule notI, simp add:co2sobj_deleteshm, erule_tac x = "O_shm ha" in allE, simp)
apply (rule DiffI, rule DiffI, rule UnI1, simp, rule_tac x = obj in exI, simp add:co2sobj_deleteshm is_dir_simps)
apply (erule unbked_sps_I, simp, rule notI, simp add:co2sobj.simps split:option.splits)
apply (rule DiffI, rule DiffI, rule UnI1, simp, rule_tac x = obj in exI, simp add:co2sobj_deleteshm)
apply (erule unbked_sps_I, simp, rule notI, simp add:co2sobj.simps split:option.splits)

apply (erule DiffE, erule DiffE, erule UnE)
apply (tactic {*my_setiff_tac 1*})
apply (erule_tac obj = obj in co2sobj_some_caseD)
apply (case_tac "\<exists> flag. (pa, flag) \<in> procs_of_shm s h", erule exE)
apply (drule_tac p = pa in not_unbked_sps_D, simp)
apply (rule_tac x = flag in exI, simp)
apply (simp, erule disjE, clarsimp)
apply (rule_tac x = "O_proc p'" in exI, simp add:procs_of_shm_prop2)
apply (erule bexE, simp, (erule conjE)+)
apply (frule_tac pa = p' in co2sobj_proc_deleteshm, simp+)
apply (rule_tac x = "O_proc p'" in exI, simp)
apply (frule_tac pa = pa in co2sobj_proc_deleteshm, simp+)
apply (rule_tac x = "O_proc pa" in exI, simp)
apply (rule_tac x = obj in exI, simp add:co2sobj_deleteshm is_file_simps)
apply (case_tac "ha = h", simp add:co2sobj.simps)
apply (rule_tac x = obj in exI, simp add:co2sobj_deleteshm)
apply (rule_tac x = obj in exI, simp add:co2sobj_deleteshm is_dir_simps)
apply (rule_tac x = obj in exI, simp add:co2sobj_deleteshm)
apply (tactic {*my_setiff_tac 1*}, clarsimp)
apply (rule_tac x = "O_proc pa" in exI, simp add:procs_of_shm_prop2)
done

lemma s2ss_detach:
  "valid (Detach p h # s) \<Longrightarrow> s2ss (Detach p h # s) = (
     case (cp2sproc s p, cp2sproc (Detach p h # s) p) of 
       (Some sp, Some sp') \<Rightarrow> update_s2ss_obj s (s2ss s) (O_proc p) 
           (S_proc sp (O_proc p \<in> Tainted s)) (S_proc sp' (O_proc p \<in> Tainted s))
     | _ \<Rightarrow> {} )"
apply (frule vd_cons, frule vt_grant_os)
apply (case_tac "cp2sproc s p")
apply (drule current_proc_has_sp', simp+)
apply (case_tac "cp2sproc (Detach p h # s) p")
apply (drule current_proc_has_sp', simp+)
apply (erule exE|erule conjE)+
apply (simp add:update_s2ss_obj_def)
apply (tactic {*my_clarify_tac 1*})

apply (tactic {*my_seteq_tac 1*})
apply (case_tac "obj = O_proc p")
apply (rule disjI1, simp add:co2sobj.simps tainted_eq_Tainted)
apply (rule disjI2, simp, rule_tac x = obj in exI)
apply (frule_tac obj = obj in co2sobj_detach, simp add:alive_simps)
apply (simp add:is_file_simps is_dir_simps split:t_object.splits)
apply (simp add:co2sobj.simps, simp add:co2sobj.simps)
apply (tactic {*my_setiff_tac 1*})
apply (rule_tac x = "O_proc p" in exI, simp add:co2sobj.simps tainted_eq_Tainted)
apply (tactic {*my_setiff_tac 1*})
apply (case_tac "obj = O_proc p")
apply (rule_tac x = obj' in exI)
apply (frule_tac obj = obj' in co2sobj_detach, simp)
apply (auto simp add:co2sobj.simps tainted_eq_Tainted is_file_simps is_dir_simps split:t_object.splits)[1]
apply (rule_tac x = obj in exI)
apply (simp add:co2sobj_detach)
apply (auto simp add:co2sobj.simps tainted_eq_Tainted is_file_simps is_dir_simps split:t_object.splits)[1]

apply (tactic {*my_clarify_tac 1*})
apply (tactic {*my_seteq_tac 1*})
apply (case_tac "obj = O_proc p")
apply (rule disjI1, simp add:co2sobj.simps tainted_eq_Tainted)
apply (rule disjI2, rule DiffI, simp, rule_tac x = obj in exI)
apply (frule_tac obj = obj in co2sobj_detach, simp add:alive_simps)
apply (simp add:is_file_simps is_dir_simps split:t_object.splits)
apply (simp add:co2sobj.simps, simp add:co2sobj.simps)
apply (rule notI, simp, erule_tac x = obj in allE, erule impE, simp add:alive_simps, simp)
apply (frule_tac obj = obj in co2sobj_detach)
apply (simp add:alive_simps)
apply (simp split:t_object.splits)
apply (tactic {*my_setiff_tac 1*})
apply (rule_tac x = "O_proc p" in exI, simp add:co2sobj.simps tainted_eq_Tainted)
apply (tactic {*my_setiff_tac 1*}, simp)
apply (case_tac "obj = O_proc p")
apply (simp add:co2sobj.simps tainted_eq_Tainted)
apply (rule_tac x = obj in exI)
apply (simp add:co2sobj_detach)
apply (auto simp add:co2sobj.simps tainted_eq_Tainted is_file_simps is_dir_simps split:t_object.splits)[1]
done



lemma s2ss_attach1:
  "\<lbrakk>valid (Attach p h SHM_RDWR # s); O_proc p \<in> Tainted s\<rbrakk>\<Longrightarrow> s2ss (Attach p h SHM_RDWR # s) = (

     "

lemma s2ss_attach1:
  "\<lbrakk>valid (Attach p h flag # s); O_proc p \<notin> Tainted s; (p', SHM_RDWR) \<in> procs_of_shm s; O_proc p' \<in> Tainted s\<rbrakk>
   \<Longrightarrow> s2ss (Attach p h SHM_RDONLY # s) = "

lemma s2ss_attach1:
  "valid (Attach p h flag # s) \<Longrightarrow> s2ss (Attach p h flag # s) = "

lemma s2ss_Detach:
  "valid (Detach p h # s) \<Longrightarrow> s2ss (Detach p h # s) = "



lemmas s2ss_simps = s2ss_execve s2ss_clone s2ss_ptrace s2ss_kill s2ss_exit s2ss_open
  s2ss_readfile s2ss_writefile s2ss_closefd s2ss_unlink s2ss_rmdir s2ss_linkhard
  s2ss_truncate s2ss_createmsgq s2ss_sendmsg s2ss_removemsgq s2ss_recvmsg
  s2ss_createshm


end

end