theory Enrich
imports Main Flask Static Init_prop Valid_prop Tainted_prop Delete_prop Co2sobj_prop S2ss_prop S2ss_prop2
Temp
begin
(* enriched objects, closely related to static objects, so are only 3 kinds *)
datatype t_enrich_obj =
E_proc "t_process" "t_msgq" "t_msgq"
| E_file "t_file" "nat"
| E_file_link "t_file"
| E_msgq "t_msgq"
(* objects that need dynamic indexing, all nature-numbers *)
datatype t_index_obj =
I_proc "t_process"
| I_file "t_file"
| I_fd "t_process" "t_fd"
| I_inum "nat"
| I_msgq "t_msgq"
| I_msg "t_msgq" "t_msg"
context tainting_s begin
fun no_del_event:: "t_event list \<Rightarrow> bool"
where
"no_del_event [] = True"
| "no_del_event (Kill p p' # \<tau>) = False"
| "no_del_event (Exit p # s) = False"
| "no_del_event (CloseFd p fd # \<tau>) = False"
| "no_del_event (UnLink p f # \<tau>) = False"
| "no_del_event (Rmdir p f # \<tau>) = False"
(*
| "no_del_event (Rename p f f' # \<tau>) = False"
*)
| "no_del_event (RemoveMsgq p q # \<tau>) = False"
(*
| "no_del_event (RecvMsg p q m # \<tau>) = False"
*)
| "no_del_event (_ # \<tau>) = no_del_event \<tau>"
(*
fun all_inums :: "t_state \<Rightarrow> t_inode_num set"
where
"all_inums [] = current_inode_nums []"
| "all_inums (Open p f flags fd opt # s) = (
case opt of
None \<Rightarrow> all_inums s
| Some i \<Rightarrow> all_inums s \<union> {i} )"
| "all_inums (Mkdir p f i # s) = (all_inums s \<union> {i})"
| "all_inums (CreateSock p af st fd i # s) = (all_inums s \<union> {i})"
| "all_inums (Accept p fd addr lport fd' i # s) = (all_inums s \<union> {i})"
| "all_inums (_ # s) = all_inums s"
fun all_fds :: "t_state \<Rightarrow> t_process \<Rightarrow> t_fd set"
where
"all_fds [] = init_fds_of_proc"
| "all_fds (Open p f flags fd ipt # s) = (all_fds s) (p := all_fds s p \<union> {fd})"
| "all_fds (CreateSock p sf st fd i # s) = (all_fds s) (p := all_fds s p \<union> {fd})"
| "all_fds (Accept p fd' raddr port fd i # s) = (all_fds s) (p := all_fds s p \<union> {fd})"
| "all_fds (Clone p p' fds # s) = (all_fds s) (p' := fds)"
| "all_fds (_ # s) = all_fds s"
fun all_msgqs:: "t_state \<Rightarrow> t_msgq set"
where
"all_msgqs [] = {}"
| "all_msgqs (CreateMsgq p q # s) = all_msgqs s \<union> {q}"
| "all_msgqs (e # s) = all_msgqs s"
*)
fun all_msgs:: "t_state \<Rightarrow> t_msgq \<Rightarrow> t_msg set"
where
"all_msgs [] q = {}"
| "all_msgs (CreateMsgq p q # s) q' = (if q' = q then {} else all_msgs s q')"
| "all_msgs (SendMsg p q m # s) q' = (if q' = q then all_msgs s q \<union> {m} else all_msgs s q')"
| "all_msgs (_ # s) q' = all_msgs s q'"
fun all_files:: "t_state \<Rightarrow> t_file set"
where
"all_files [] = init_files "
| "all_files (Open p f flags fd opt # s) = (if opt = None then all_files s else (all_files s \<union> {f}))"
| "all_files (Mkdir p f inum # s) = all_files s \<union> {f}"
| "all_files (LinkHard p f f' # s) = all_files s \<union> {f'}"
| "all_files (e # s) = all_files s"
(*
fun notin_all:: "t_state \<Rightarrow> t_enrich_obj \<Rightarrow> bool"
where
"notin_all s (E_proc p) = (p \<notin> all_procs s)"
| "notin_all s (E_file f) = (f \<notin> all_files s \<and> (\<exists> pf. parent f = Some pf \<and> is_dir s pf))"
| "notin_all s (E_fd p fd) = (fd \<notin> all_fds s p)"
| "notin_all s (E_inum i) = (i \<notin> all_inums s)"
| "notin_all s (E_msgq q) = (q \<notin> all_msgqs s)"
| "notin_all s (E_msg q m) = (m \<notin> all_msgs s q)"
*)
fun nums_of_recvmsg:: "t_state \<Rightarrow> t_process \<Rightarrow> nat"
where
"nums_of_recvmsg [] p' = 0"
| "nums_of_recvmsg (RecvMsg p q m # s) p' =
(if p' = p then Suc (nums_of_recvmsg s p) else nums_of_recvmsg s p')"
| "nums_of_recvmsg (e # s) p' = nums_of_recvmsg s p'"
lemma nums_of_recv_0:
"\<lbrakk>p \<notin> current_procs s; no_del_event s; valid s\<rbrakk> \<Longrightarrow> nums_of_recvmsg s p = 0"
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons, case_tac a)
apply (auto)
done
lemma new_msgq_1:
"\<lbrakk>new_msgq s \<le> q; q \<le> new_msgq s - Suc 0\<rbrakk> \<Longrightarrow> False"
apply (subgoal_tac "new_msgq s \<noteq> 0")
apply (simp, simp add:new_msgq_def next_nat_def)
done
fun notin_cur:: "t_state \<Rightarrow> t_enrich_obj \<Rightarrow> bool"
where
"notin_cur s (E_proc p qmin qmax) =
(p \<notin> current_procs s \<and> qmin = new_msgq s \<and> qmax = new_msgq s + (nums_of_recvmsg s p) - 1)"
| "notin_cur s (E_file f inum) =
(f \<notin> current_files s \<and> (\<exists> pf. parent f = Some pf \<and> is_dir s pf) \<and> inum \<notin> current_inode_nums s)"
| "notin_cur s (E_file_link f) =
(f \<notin> current_files s \<and> (\<exists> pf. parent f = Some pf \<and> is_dir s pf))"
| "notin_cur s (E_msgq q) = (q \<notin> current_msgqs s)"
(*
lemma not_all_procs_cons:
"p \<notin> all_procs (e # s) \<Longrightarrow> p \<notin> all_procs s"
by (case_tac e, auto)
lemma not_all_procs_prop:
"\<lbrakk>p' \<notin> all_procs s; p \<in> current_procs s; valid s\<rbrakk> \<Longrightarrow> p' \<noteq> p"
apply (induct s, rule notI, simp)
apply (frule vt_grant_os, frule vd_cons, frule not_all_procs_cons, simp, rule notI)
apply (case_tac a, auto)
done
lemma not_all_procs_prop2:
"p' \<notin> all_procs s \<Longrightarrow> p' \<notin> init_procs"
apply (induct s, simp)
by (case_tac a, auto)
lemma not_all_procs_prop3:
"p' \<notin> all_procs s \<Longrightarrow> p' \<notin> current_procs s"
apply (induct s, simp)
by (case_tac a, auto)
*)
(*
lemma not_all_msgqs_cons:
"p \<notin> all_msgqs (e # s) \<Longrightarrow> p \<notin> all_msgqs s"
apply (case_tac e, auto)
lemma not_all_msgqs_prop:
"\<lbrakk>p' \<notin> all_msgqs s; p \<in> current_msgqs s; valid s\<rbrakk> \<Longrightarrow> p' \<noteq> p"
apply (induct s, rule notI, simp)
apply (frule vt_grant_os, frule vd_cons, frule not_all_msgqs_cons, simp, rule notI)
apply (case_tac a, auto)
done
lemma not_all_msgqs_prop3:
"p' \<notin> all_msgqs s \<Longrightarrow> p' \<notin> current_msgqs s"
apply (induct s, simp)
by (case_tac a, auto)
*)
fun enrich_not_alive :: "t_state \<Rightarrow> t_enrich_obj \<Rightarrow> t_index_obj \<Rightarrow> bool"
where
"enrich_not_alive s obj (I_file f) =
(f \<notin> current_files s \<and> (\<forall> inum. obj \<noteq> E_file f inum) \<and> obj \<noteq> E_file_link f)"
| "enrich_not_alive s obj (I_proc p) = (p \<notin> current_procs s \<and> (\<forall> qmin qmax. obj \<noteq> E_proc p qmin qmax))"
| "enrich_not_alive s obj (I_fd p fd) =
((p \<in> current_procs s \<longrightarrow> fd \<notin> current_proc_fds s p) \<and> (\<forall> qmin qmax. obj \<noteq> E_proc p qmin qmax))"
| "enrich_not_alive s obj (I_msgq q) = (q \<notin> current_msgqs s \<and> obj \<noteq> E_msgq q \<and>
(case obj of
E_proc p qmin qmax \<Rightarrow> \<not> (q \<ge> qmin \<and> q \<le> qmax)
| _ \<Rightarrow> True) )"
| "enrich_not_alive s obj (I_inum i) = (i \<notin> current_inode_nums s \<and> (\<forall> f. obj \<noteq> E_file f i))"
| "enrich_not_alive s obj (I_msg q m) =
((q \<in> current_msgqs s \<longrightarrow> m \<notin> set (msgs_of_queue s q)) \<and> obj \<noteq> E_msgq q \<and>
(case obj of
E_proc p qmin qmax \<Rightarrow> \<not> (q \<ge> qmin \<and> q \<le> qmax)
| _ \<Rightarrow> True) )"
lemma file_has_parent: "\<lbrakk>is_file s f; valid s\<rbrakk> \<Longrightarrow> \<exists> pf. is_dir s pf \<and> parent f = Some pf"
apply (case_tac f)
apply (simp, drule root_is_dir', simp+)
apply (simp add:parentf_is_dir_prop2)
done
lemma enrich_search_check:
assumes grant: "search_check s (up, rp, tp) f"
and cf2sf: "\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile s' f = cf2sfile s f"
and vd: "valid s" and f_in: "is_file s f" and f_in': "is_file s' f"
and sec: "sectxt_of_obj s' (O_file f) = sectxt_of_obj s (O_file f)"
shows "search_check s' (up, rp, tp) f"
proof (cases f)
case Nil
with f_in vd have "False"
by (auto dest:root_is_dir')
thus ?thesis by simp
next
case (Cons n pf)
from vd f_in obtain sf where sf: "cf2sfile s f = Some sf"
apply (drule_tac is_file_in_current, drule_tac current_file_has_sfile, simp)
apply (erule exE, simp)
done
then obtain psfs where psfs: "get_parentfs_ctxts s pf = Some psfs" using Cons
by (auto simp:cf2sfile_def split:option.splits if_splits)
from sf cf2sf f_in have sf': "cf2sfile s' f = Some sf" by (auto dest:is_file_in_current)
then obtain psfs' where psfs': "get_parentfs_ctxts s' pf = Some psfs'"using Cons
by (auto simp:cf2sfile_def split:option.splits if_splits)
with sf sf' psfs have psfs_eq: "set psfs' = set psfs" using Cons f_in f_in'
apply (simp add:cf2sfile_def split:option.splits)
apply (case_tac sf, simp)
done
show ?thesis using grant f_in f_in' psfs psfs' psfs_eq sec
apply (simp add:Cons split:option.splits)
by (case_tac a, simp)
qed
lemma enrich_search_check':
assumes grant: "search_check s (up, rp, tp) f"
and cf2sf: "\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile s' f = cf2sfile s f"
and vd: "valid s" and vd': "valid s'" and f_in: "is_dir s f" and f_in': "is_dir s' f"
and sec: "sectxt_of_obj s' (O_dir f) = sectxt_of_obj s (O_dir f)"
shows "search_check s' (up, rp, tp) f"
proof (cases f)
case Nil
have "sectxt_of_obj s' (O_dir []) = sectxt_of_obj s (O_dir [])"
using cf2sf
apply (erule_tac x = "[]" in allE)
by (auto simp:cf2sfile_def root_sec_remains vd vd')
thus ?thesis using grant Nil
by auto
next
case (Cons n pf)
from vd f_in obtain sf where sf: "cf2sfile s f = Some sf"
apply (drule_tac is_dir_in_current, drule_tac current_file_has_sfile, simp)
apply (erule exE, simp)
done
then obtain psfs where psfs: "get_parentfs_ctxts s pf = Some psfs" using Cons
by (auto simp:cf2sfile_def split:option.splits if_splits)
from sf cf2sf f_in have sf': "cf2sfile s' f = Some sf" by (auto dest:is_dir_in_current)
then obtain psfs' where psfs': "get_parentfs_ctxts s' pf = Some psfs'"using Cons
by (auto simp:cf2sfile_def split:option.splits if_splits)
with sf sf' psfs have psfs_eq: "set psfs' = set psfs" using Cons f_in f_in'
apply (drule_tac is_dir_not_file)
apply (drule is_dir_not_file)
apply (simp add:cf2sfile_def split:option.splits)
apply (case_tac sf, simp)
done
show ?thesis using grant f_in f_in' psfs psfs' psfs_eq sec
apply (drule_tac is_dir_not_file)
apply (drule_tac is_dir_not_file)
apply (simp add:Cons split:option.splits)
by (case_tac a, simp)
qed
lemma proc_filefd_has_sfd: "\<lbrakk>fd \<in> proc_file_fds s p; valid s\<rbrakk> \<Longrightarrow> \<exists> sfd. cfd2sfd s p fd = Some sfd"
apply (simp add:proc_file_fds_def)
apply (auto dest: current_filefd_has_sfd)
done
lemma enrich_inherit_fds_check:
assumes grant: "inherit_fds_check s (up, nr, nt) p fds" and vd: "valid s"
and cfd2sfd: "\<forall> p fd. fd \<in> proc_file_fds s p\<longrightarrow> cfd2sfd s' p fd = cfd2sfd s p fd"
and fd_in: "fds \<subseteq> proc_file_fds s p" and fd_in': "fds \<subseteq> proc_file_fds s' p"
shows "inherit_fds_check s' (up, nr, nt) p fds"
proof-
have "\<And> fd. fd \<in> fds \<Longrightarrow> sectxt_of_obj s' (O_fd p fd) = sectxt_of_obj s (O_fd p fd)"
proof-
fix fd
assume fd_in_fds: "fd \<in> fds"
hence fd_in_cfds: "fd \<in> proc_file_fds s p"
and fd_in_cfds': "fd \<in> proc_file_fds s' p"
using fd_in fd_in' by auto
with cfd2sfd
have cfd_eq: "cfd2sfd s' p fd = cfd2sfd s p fd" by auto
from fd_in_cfds obtain f where ffd: "file_of_proc_fd s p fd = Some f"
by (auto simp:proc_file_fds_def)
moreover have "flags_of_proc_fd s p fd \<noteq> None"
using ffd vd by (auto dest:current_filefd_has_flags)
moreover have "sectxt_of_obj s (O_fd p fd) \<noteq> None"
using fd_in_cfds vd
apply (rule_tac notI)
by (auto dest!:current_has_sec' file_fds_subset_pfds[where p = p] intro:vd)
moreover have "cf2sfile s f \<noteq> None"
apply (rule notI)
apply (drule current_file_has_sfile')
using ffd
by (auto simp:vd is_file_in_current dest:file_of_pfd_is_file)
ultimately show "sectxt_of_obj s' (O_fd p fd) = sectxt_of_obj s (O_fd p fd)"
using cfd_eq
by (auto simp:cfd2sfd_def split:option.splits)
qed
hence "sectxts_of_fds s' p fds = sectxts_of_fds s p fds"
by (simp add:sectxts_of_fds_def)
thus ?thesis using grant
by (simp add:inherit_fds_check_def)
qed
lemma enrich_inherit_fds_check_dup:
assumes grant: "inherit_fds_check s (up, nr, nt) p fds" and vd: "valid s"
and cfd2sfd: "\<forall> fd. fd \<in> proc_file_fds s p \<longrightarrow> cfd2sfd s' p' fd = cfd2sfd s p fd"
and fd_in: "fds' \<subseteq> fds \<inter> proc_file_fds s p"
shows "inherit_fds_check s' (up, nr, nt) p' fds'"
proof-
have "sectxts_of_fds s' p' fds' \<subseteq> sectxts_of_fds s p fds"
proof-
have "\<And> fd sfd. \<lbrakk>fd \<in> fds'; sectxt_of_obj s' (O_fd p' fd) = Some sfd\<rbrakk>
\<Longrightarrow> \<exists> fd \<in> fds. sectxt_of_obj s (O_fd p fd) = Some sfd"
proof-
fix fd sfd
assume fd_in_fds': "fd \<in> fds'"
and sec: "sectxt_of_obj s' (O_fd p' fd) = Some sfd"
from fd_in_fds' fd_in
have fd_in_fds: "fd \<in> fds" and fd_in_cfds: "fd \<in> proc_file_fds s p"
by auto
from fd_in_cfds obtain f where ffd: "file_of_proc_fd s p fd = Some f"
by (auto simp:proc_file_fds_def)
moreover have "flags_of_proc_fd s p fd \<noteq> None"
using ffd vd by (auto dest:current_filefd_has_flags)
moreover have "cf2sfile s f \<noteq> None"
apply (rule notI)
apply (drule current_file_has_sfile')
using ffd
by (auto simp:vd is_file_in_current dest:file_of_pfd_is_file)
moreover have "sectxt_of_obj s (O_fd p fd) \<noteq> None"
using fd_in_cfds vd
apply (rule_tac notI)
by (auto dest!:current_has_sec' file_fds_subset_pfds[where p = p] intro:vd)
ultimately
have "sectxt_of_obj s (O_fd p fd) = Some sfd"
using fd_in_cfds cfd2sfd sec
apply (erule_tac x = fd in allE)
apply (auto simp:cfd2sfd_def split:option.splits)
done
thus "\<exists> fd \<in> fds. sectxt_of_obj s (O_fd p fd) = Some sfd"
using fd_in_fds
by (rule_tac x = fd in bexI, auto)
qed
thus ?thesis by (auto simp:sectxts_of_fds_def)
qed
thus ?thesis using grant
by (auto simp:inherit_fds_check_def inherit_fds_check_ctxt_def)
qed
lemma enrich_valid_intro_cons:
assumes vs': "valid s'" and vd': "valid (e # s)"
and alive: "\<forall> obj. alive s obj \<longrightarrow> alive s' obj"
and alive': "\<forall> obj. enrich_not_alive s obj' obj \<longrightarrow> enrich_not_alive s' obj' obj"
and hungs: "files_hung_by_del s' = files_hung_by_del s"
and cp2sp: "\<forall> p. p \<in> current_procs s \<longrightarrow> cp2sproc s' p = cp2sproc s p"
and cf2sf: "\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile s' f = cf2sfile s f"
and cq2sq: "\<forall> q. q \<in> current_msgqs s \<longrightarrow> cq2smsgq s' q = cq2smsgq s q"
and ffd_remain: "\<forall> p fd f. file_of_proc_fd s p fd = Some f \<longrightarrow> file_of_proc_fd s' p fd = Some f"
and fflags_remain: "\<forall> p fd flags. flags_of_proc_fd s p fd = Some flags \<longrightarrow> flags_of_proc_fd s' p fd = Some flags"
and sms_remain: "\<forall> q. q \<in> current_msgqs s \<longrightarrow> msgs_of_queue s' q = msgs_of_queue s q"
(* and empty_remain: "\<forall> f. dir_is_empty s f \<longrightarrow> dir_is_empty s' f" *)
and cfd2sfd: "\<forall> p fd. fd \<in> proc_file_fds s p \<longrightarrow> cfd2sfd s' p fd = cfd2sfd s p fd"
and nodel: "no_del_event (e # s)"
and notin_cur: "notin_cur (e # s) obj'"
shows "valid (e # s')"
proof-
from vd' have os: "os_grant s e" and grant: "grant s e" and vd: "valid s"
by (auto dest:vt_grant_os vt_grant vd_cons)
show ?thesis
proof (cases e)
case (Execve p f fds)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Execve)
have f_in: "is_file s' f" using os alive
apply (erule_tac x = "O_file f" in allE)
by (auto simp:Execve)
have fd_in: "fds \<subseteq> proc_file_fds s' p" using os alive ffd_remain
by (auto simp:Execve proc_file_fds_def)
have "os_grant s' e" using p_in f_in fd_in by (simp add:Execve)
moreover have "grant s' e"
proof-
from grant obtain up rp tp uf rf tf
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)"
by (simp add:Execve split:option.splits, blast)
with grant obtain pu nr nt where p3: "npctxt_execve (up, rp, tp) (uf, rf, tf) = Some (pu, nr, nt)"
by (simp add:Execve split:option.splits del:npctxt_execve.simps, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:Execve co2sobj.simps cp2sproc_def split:option.splits)
from os have f_in': "is_file s f" by (simp add:Execve)
from vd os have "\<exists> sf. cf2sfile s f = Some sf"
by (auto dest!:is_file_in_current current_file_has_sfile simp:Execve)
hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using f_in f_in' p2 cf2sf
apply (erule_tac x = f in allE)
apply (auto dest:is_file_in_current simp:cf2sfile_def split:option.splits)
apply (case_tac f, simp)
apply (drule_tac s = s in root_is_dir', simp add:vd, simp+)
done
have "inherit_fds_check s' (pu, nr, nt) p fds"
proof-
have "fds \<subseteq> proc_file_fds s' p" using os ffd_remain Execve
by (auto simp:proc_file_fds_def)
thus ?thesis using Execve grant vd cfd2sfd p1 p2 p3 os
apply (rule_tac s = s in enrich_inherit_fds_check)
by (simp_all split:option.splits)
qed
moreover have "search_check s' (pu, rp, tp) f"
using p1 p2 p2' vd cf2sf f_in' grant Execve p3 f_in
apply (rule_tac s = s in enrich_search_check)
by (simp_all split:option.splits)
ultimately show ?thesis using p1' p2' p3
apply (simp add:Execve split:option.splits)
using grant Execve p1 p2
by (simp add:Execve grant p1 p2)
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (Clone p p' fds)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Clone)
have p'_not_in: "p' \<notin> current_procs s'" using alive' notin_cur os Clone
apply (erule_tac x = "I_proc p'" in allE)
apply (auto simp del:nums_of_recvmsg.simps)
done
have fd_in: "fds \<subseteq> proc_file_fds s' p" using os alive ffd_remain
by (auto simp:Clone proc_file_fds_def)
have "os_grant s' e" using p_in p'_not_in fd_in by (simp add:Clone)
moreover have "grant s' e"
proof-
from grant obtain up rp tp
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
apply (simp add:Clone split:option.splits)
by (case_tac a, auto)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:Clone co2sobj.simps cp2sproc_def split:option.splits)
have p2: "inherit_fds_check s' (up, rp, tp) p fds"
proof-
have "fds \<subseteq> proc_file_fds s' p" using os ffd_remain Clone
by (auto simp:proc_file_fds_def)
thus ?thesis using Clone grant vd cfd2sfd p1 os
apply (rule_tac s = s in enrich_inherit_fds_check)
by (simp_all split:option.splits)
qed
show ?thesis using p1 p2 p1' grant
by (simp add:Clone)
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (Kill p p')
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Kill)
have p'_in: "p' \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p'" in allE)
by (auto simp:Kill)
have "os_grant s' e" using p_in p'_in by (simp add:Kill)
moreover have "grant s' e"
proof-
from grant obtain up rp tp up' rp' tp'
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p'1: "sectxt_of_obj s (O_proc p') = Some (up', rp', tp')"
apply (simp add:Kill split:option.splits)
by (case_tac a, case_tac aa, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:Kill co2sobj.simps cp2sproc_def split:option.splits)
from p'1 have p'1': "sectxt_of_obj s' (O_proc p') = Some (up', rp', tp')"
using os cp2sp
apply (erule_tac x = p' in allE)
by (auto simp:Kill co2sobj.simps cp2sproc_def split:option.splits)
show ?thesis using p1 p'1 p1' p'1' grant
by (simp add:Kill)
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (Ptrace p p')
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Ptrace)
have p'_in: "p' \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p'" in allE)
by (auto simp:Ptrace)
have "os_grant s' e" using p_in p'_in by (simp add:Ptrace)
moreover have "grant s' e"
proof-
from grant obtain up rp tp up' rp' tp'
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p'1: "sectxt_of_obj s (O_proc p') = Some (up', rp', tp')"
apply (simp add:Ptrace split:option.splits)
by (case_tac a, case_tac aa, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:Ptrace co2sobj.simps cp2sproc_def split:option.splits)
from p'1 have p'1': "sectxt_of_obj s' (O_proc p') = Some (up', rp', tp')"
using os cp2sp
apply (erule_tac x = p' in allE)
by (auto simp:Ptrace co2sobj.simps cp2sproc_def split:option.splits)
show ?thesis using p1 p'1 p1' p'1' grant
by (simp add:Ptrace)
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (Exit p)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Exit)
have "os_grant s' e" using p_in by (simp add:Exit)
moreover have "grant s' e"
by (simp add:Exit)
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (Open p f flags fd opt)
show ?thesis
proof (cases opt)
case None
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Open None)
have f_in: "is_file s' f" using os alive
apply (erule_tac x = "O_file f" in allE)
by (auto simp:Open None)
have fd_not_in: "fd \<notin> current_proc_fds s' p"
using os alive' p_in notin_cur Open None
apply (erule_tac x = "I_fd p fd" in allE)
apply (case_tac obj', auto)
done
have "os_grant s' e" using p_in f_in fd_not_in os
by (simp add:Open None)
moreover have "grant s' e"
proof-
from grant obtain up rp tp uf rf tf
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)"
apply (simp add:Open None split:option.splits)
by (case_tac a, case_tac aa, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:Open None co2sobj.simps cp2sproc_def split:option.splits)
from os have f_in': "is_file s f" by (simp add:Open None)
from vd os have "\<exists> sf. cf2sfile s f = Some sf"
by (auto dest!:is_file_in_current current_file_has_sfile simp:Open None)
hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using f_in f_in' p2 cf2sf
apply (erule_tac x = f in allE)
apply (auto dest:is_file_in_current simp:cf2sfile_def split:option.splits)
apply (case_tac f, simp)
apply (drule_tac s = s in root_is_dir', simp add:vd, simp+)
done
have "search_check s' (up, rp, tp) f"
using p1 p2 p2' vd cf2sf f_in' grant Open None f_in
apply (rule_tac s = s in enrich_search_check)
by (simp_all split:option.splits)
thus ?thesis using p1' p2'
apply (simp add:Open None split:option.splits)
using grant Open None p1 p2
by simp
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (Some inum)
from os obtain pf where pf_in_s: "is_dir s pf" and parent: "parent f = Some pf"
by (auto simp:Open Some)
have pf_in: "is_dir s' pf" using pf_in_s alive
apply (erule_tac x = "O_dir pf" in allE)
by simp
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Open Some)
have f_not_in: "f \<notin> current_files s'" using os alive' Open Some notin_cur nodel
apply (erule_tac x = "I_file f" in allE)
by (case_tac obj', auto simp:current_files_simps)
have fd_not_in: "fd \<notin> current_proc_fds s' p"
using os alive' p_in Open Some notin_cur
apply (erule_tac x = "I_fd p fd" in allE)
apply (case_tac obj', auto)
done
have inum_not_in: "inum \<notin> current_inode_nums s'"
using os alive' Open Some notin_cur nodel
apply (erule_tac x = "I_inum inum" in allE)
apply (case_tac obj', auto)
apply (auto simp add:current_inode_nums_def current_file_inums_def split:if_splits)
done
have "os_grant s' e" using p_in pf_in parent f_not_in fd_not_in inum_not_in os
by (simp add:Open Some hungs)
moreover have "grant s' e"
proof-
from grant parent obtain up rp tp uf rf tf
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_dir pf) = Some (uf, rf, tf)"
apply (simp add:Open Some split:option.splits)
by (case_tac a, case_tac aa, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:Open Some co2sobj.simps cp2sproc_def split:option.splits)
from vd os pf_in_s have "\<exists> sf. cf2sfile s pf = Some sf"
by (auto dest!:is_dir_in_current current_file_has_sfile simp:Open Some)
hence p2': "sectxt_of_obj s' (O_dir pf) = Some (uf, rf, tf)" using p2 cf2sf pf_in pf_in_s
apply (erule_tac x = pf in allE)
apply (erule exE, frule_tac s = s in is_dir_in_current, simp)
apply (drule is_dir_not_file, drule is_dir_not_file)
apply (auto simp:cf2sfile_def split:option.splits)
apply (case_tac pf, simp_all)
by (simp add:sroot_def root_sec_remains vd vs')
have "search_check s' (up, rp, tp) pf"
using p1 p2 p2' vd cf2sf pf_in grant Open Some pf_in_s parent vs'
apply (rule_tac s = s in enrich_search_check')
by (simp_all split:option.splits)
thus ?thesis using p1' p2' parent
apply (simp add:Open Some split:option.splits)
using grant Open Some p1 p2
by simp
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
qed
next
case (ReadFile p fd)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:ReadFile)
have fd_in: "fd \<in> current_proc_fds s' p" using os alive
apply (erule_tac x = "O_fd p fd" in allE)
by (auto simp:ReadFile)
obtain f where ffd: "file_of_proc_fd s p fd = Some f"
using os ReadFile by auto
hence f_in_s: "is_file s f" using vd
by (auto intro:file_of_pfd_is_file)
obtain flags where fflag: "flags_of_proc_fd s p fd = Some flags"
using os ReadFile by auto
have ffd_in: "file_of_proc_fd s' p fd = Some f"
using ffd_remain ffd by auto
hence f_in: "is_file s' f" using vs'
by (auto intro:file_of_pfd_is_file)
have flags_in: "flags_of_proc_fd s' p fd = Some flags"
using fflags_remain fflag by auto
have "os_grant s' e" using p_in fd_in ffd_in flags_in fflag os f_in
by (auto simp add:ReadFile is_file_in_current)
moreover have "grant s' e"
proof-
from grant ffd obtain up rp tp uf rf tf ufd rfd tfd
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)"
and p3: "sectxt_of_obj s (O_fd p fd) = Some (ufd, rfd, tfd)"
apply (simp add:ReadFile split:option.splits)
by (case_tac a, case_tac aa, case_tac ab, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:ReadFile co2sobj.simps cp2sproc_def split:option.splits)
from vd f_in_s have "\<exists> sf. cf2sfile s f = Some sf"
by (auto dest!:is_file_in_current current_file_has_sfile)
hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using f_in f_in_s p2 cf2sf
apply (erule_tac x = f in allE)
apply (auto dest:is_file_in_current simp:cf2sfile_def split:option.splits)
apply (case_tac f, simp)
apply (drule_tac s = s in root_is_dir', simp add:vd, simp+)
done
have p3': "sectxt_of_obj s' (O_fd p fd) = Some (ufd, rfd, tfd)"
using cfd2sfd ffd_in ffd p3 f_in f_in_s vd
apply (erule_tac x = p in allE)
apply (erule_tac x = fd in allE)
apply (simp add:proc_file_fds_def)
apply (auto simp:cfd2sfd_def fflag flags_in p3 split:option.splits
dest!:current_file_has_sfile' simp:is_file_in_current)
done
show ?thesis using p1' p2' p3' ffd_in ffd
apply (simp add:ReadFile split:option.splits)
using grant p1 p2 p3 ReadFile
by simp
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (WriteFile p fd)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:WriteFile)
have fd_in: "fd \<in> current_proc_fds s' p" using os alive
apply (erule_tac x = "O_fd p fd" in allE)
by (auto simp:WriteFile)
obtain f where ffd: "file_of_proc_fd s p fd = Some f"
using os WriteFile by auto
hence f_in_s: "is_file s f" using vd
by (auto intro:file_of_pfd_is_file)
obtain flags where fflag: "flags_of_proc_fd s p fd = Some flags"
using os WriteFile by auto
have ffd_in: "file_of_proc_fd s' p fd = Some f"
using ffd_remain ffd by auto
hence f_in: "is_file s' f" using vs'
by (auto intro:file_of_pfd_is_file)
have flags_in: "flags_of_proc_fd s' p fd = Some flags"
using fflags_remain fflag by auto
have "os_grant s' e" using p_in fd_in ffd_in flags_in fflag os f_in
by (auto simp add:WriteFile is_file_in_current)
moreover have "grant s' e"
proof-
from grant ffd obtain up rp tp uf rf tf ufd rfd tfd
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)"
and p3: "sectxt_of_obj s (O_fd p fd) = Some (ufd, rfd, tfd)"
apply (simp add:WriteFile split:option.splits)
by (case_tac a, case_tac aa, case_tac ab, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:WriteFile co2sobj.simps cp2sproc_def split:option.splits)
from vd f_in_s have "\<exists> sf. cf2sfile s f = Some sf"
by (auto dest!:is_file_in_current current_file_has_sfile)
hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using f_in f_in_s p2 cf2sf
apply (erule_tac x = f in allE)
apply (auto dest:is_file_in_current simp:cf2sfile_def split:option.splits)
apply (case_tac f, simp)
apply (drule_tac s = s in root_is_dir', simp add:vd, simp+)
done
have p3': "sectxt_of_obj s' (O_fd p fd) = Some (ufd, rfd, tfd)"
using cfd2sfd ffd_in ffd p3 f_in f_in_s vd
apply (erule_tac x = p in allE)
apply (erule_tac x = fd in allE)
apply (simp add:proc_file_fds_def)
apply (auto simp:cfd2sfd_def fflag flags_in p3 split:option.splits
dest!:current_file_has_sfile' simp:is_file_in_current)
done
show ?thesis using p1' p2' p3' ffd_in ffd
apply (simp add:WriteFile split:option.splits)
using grant p1 p2 p3 WriteFile
by simp
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (CloseFd p fd)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:CloseFd)
have fd_in: "fd \<in> current_proc_fds s' p" using os alive
apply (erule_tac x = "O_fd p fd" in allE)
by (auto simp:CloseFd)
have "os_grant s' e" using p_in fd_in
by (auto simp add:CloseFd)
moreover have "grant s' e"
by(simp add:CloseFd)
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (UnLink p f)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:UnLink)
have f_in: "is_file s' f" using os alive
apply (erule_tac x = "O_file f" in allE)
by (auto simp:UnLink)
from os vd obtain pf where pf_in_s: "is_dir s pf"
and parent: "parent f = Some pf"
by (auto simp:UnLink dest!:file_has_parent)
from pf_in_s alive have pf_in: "is_dir s' pf"
apply (erule_tac x = "O_dir pf" in allE)
by (auto simp:UnLink)
have "os_grant s' e" using p_in f_in os
by (simp add:UnLink hungs)
moreover have "grant s' e"
proof-
from grant parent obtain up rp tp uf rf tf upf rpf tpf
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)"
and p3: "sectxt_of_obj s (O_dir pf) = Some (upf, rpf, tpf)"
apply (simp add:UnLink split:option.splits)
by (case_tac a, case_tac aa, case_tac ab, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:UnLink co2sobj.simps cp2sproc_def split:option.splits)
from vd os pf_in_s have "\<exists> sf. cf2sfile s f = Some sf"
by (auto dest!:is_file_in_current current_file_has_sfile simp:UnLink)
hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)"
using p2 cf2sf f_in os parent
apply (erule_tac x = f in allE)
apply (erule exE, clarsimp simp:UnLink)
apply (frule_tac s = s in is_file_in_current, simp)
by (auto simp:cf2sfile_def split:option.splits)
from vd os pf_in_s have "\<exists> sf. cf2sfile s pf = Some sf"
by (auto dest!:is_dir_in_current current_file_has_sfile simp:UnLink)
hence p3': "sectxt_of_obj s' (O_dir pf) = Some (upf, rpf, tpf)" using p3 cf2sf pf_in pf_in_s
apply (erule_tac x = pf in allE)
apply (erule exE, frule_tac s = s in is_dir_in_current, simp)
apply (drule is_dir_not_file, drule is_dir_not_file)
apply (auto simp:cf2sfile_def split:option.splits)
apply (case_tac pf, simp_all)
by (simp add:sroot_def root_sec_remains vd vs')
have "search_check s' (up, rp, tp) f"
using p1 p2 p2' vd cf2sf f_in grant UnLink os parent vs'
apply (rule_tac s = s in enrich_search_check)
by (simp_all split:option.splits)
thus ?thesis using p1' p2' p3' parent
apply (simp add:UnLink split:option.splits)
using grant UnLink p1 p2 p3
by simp
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (Rmdir p f)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Rmdir)
have f_in: "is_dir s' f" using os alive
apply (erule_tac x = "O_dir f" in allE)
by (auto simp:Rmdir dir_is_empty_def)
have not_root: "f \<noteq> []" using os
by (auto simp:Rmdir)
from os vd obtain pf where pf_in_s: "is_dir s pf"
and parent: "parent f = Some pf"
apply (auto simp:Rmdir dir_is_empty_def)
apply (case_tac f, simp+)
apply (drule parentf_is_dir_prop1, auto)
done
from pf_in_s alive have pf_in: "is_dir s' pf"
apply (erule_tac x = "O_dir pf" in allE)
by (auto simp:Rmdir)
have empty_in: "dir_is_empty s' f" using os Rmdir notin_cur
apply (clarsimp simp add:dir_is_empty_def f_in)
using alive'
apply (erule_tac x = "I_file f'" in allE)
apply simp
apply (erule disjE)
apply (erule_tac x = f' in allE, simp)
apply (case_tac obj', simp_all)
apply (clarsimp)
apply (drule_tac f' = f in parent_ancen)
apply (simp, rule notI, simp add:noJ_Anc)
apply (case_tac "f = pf")
using vd' Rmdir
apply (simp_all add:is_dir_rmdir)
apply (erule_tac x = pf in allE)
apply (drule_tac f = pf in is_dir_in_current)
apply (simp add:noJ_Anc)
apply (clarsimp)
apply (drule_tac f' = f in parent_ancen)
apply (simp, rule notI, simp add:noJ_Anc)
apply (case_tac "f = pf")
using vd' Rmdir
apply (simp_all add:is_dir_rmdir)
apply (erule_tac x = pf in allE)
apply (drule_tac f = pf in is_dir_in_current)
apply (simp add:noJ_Anc)
done
have "os_grant s' e" using p_in f_in os empty_in
by (simp add:Rmdir hungs)
moreover have "grant s' e"
proof-
from grant parent obtain up rp tp uf rf tf upf rpf tpf
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_dir f) = Some (uf, rf, tf)"
and p3: "sectxt_of_obj s (O_dir pf) = Some (upf, rpf, tpf)"
apply (simp add:Rmdir split:option.splits)
by (case_tac a, case_tac aa, case_tac ab, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:Rmdir co2sobj.simps cp2sproc_def split:option.splits)
from vd os pf_in_s have "\<exists> sf. cf2sfile s f = Some sf"
by (auto dest!:is_dir_in_current current_file_has_sfile simp:dir_is_empty_def Rmdir)
hence p2': "sectxt_of_obj s' (O_dir f) = Some (uf, rf, tf)"
using p2 cf2sf f_in os parent
apply (erule_tac x = f in allE)
apply (erule exE, clarsimp simp:Rmdir dir_is_empty_def)
apply (frule_tac s = s in is_dir_in_current, simp)
apply (drule is_dir_not_file, drule is_dir_not_file)
by (auto simp:cf2sfile_def split:option.splits)
from vd os pf_in_s have "\<exists> sf. cf2sfile s pf = Some sf"
by (auto dest!:is_dir_in_current current_file_has_sfile simp:Rmdir)
hence p3': "sectxt_of_obj s' (O_dir pf) = Some (upf, rpf, tpf)" using p3 cf2sf pf_in pf_in_s
apply (erule_tac x = pf in allE)
apply (erule exE, frule_tac s = s in is_dir_in_current, simp)
apply (drule is_dir_not_file, drule is_dir_not_file)
apply (auto simp:cf2sfile_def split:option.splits)
apply (case_tac pf, simp_all)
by (simp add:sroot_def root_sec_remains vd vs')
have "search_check s' (up, rp, tp) f"
using p1 p2 p2' vd cf2sf f_in grant Rmdir os parent vs'
apply (rule_tac s = s in enrich_search_check')
by (simp_all add:dir_is_empty_def split:option.splits)
thus ?thesis using p1' p2' p3' parent
apply (simp add:Rmdir split:option.splits)
using grant Rmdir p1 p2 p3
by simp
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (Mkdir p f inum)
from os obtain pf where pf_in_s: "is_dir s pf" and parent: "parent f = Some pf"
by (auto simp:Mkdir)
have pf_in: "is_dir s' pf" using pf_in_s alive
apply (erule_tac x = "O_dir pf" in allE)
by simp
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Mkdir)
have f_not_in: "f \<notin> current_files s'"
using os alive' Mkdir notin_cur
apply (erule_tac x = "I_file f" in allE)
by (auto simp:current_files_simps)
have inum_not_in: "inum \<notin> current_inode_nums s'"
using os alive' Mkdir notin_cur
apply (erule_tac x = "I_inum inum" in allE)
apply (auto simp:current_inode_nums_def current_file_inums_def split:if_splits)
done
have "os_grant s' e" using p_in pf_in parent f_not_in os inum_not_in
by (simp add:Mkdir hungs)
moreover have "grant s' e"
proof-
from grant parent obtain up rp tp uf rf tf
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_dir pf) = Some (uf, rf, tf)"
apply (simp add:Mkdir split:option.splits)
by (case_tac a, case_tac aa, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:Mkdir co2sobj.simps cp2sproc_def split:option.splits)
from vd os pf_in_s have "\<exists> sf. cf2sfile s pf = Some sf"
by (auto dest!:is_dir_in_current current_file_has_sfile simp:Mkdir)
hence p2': "sectxt_of_obj s' (O_dir pf) = Some (uf, rf, tf)" using p2 cf2sf pf_in pf_in_s
apply (erule_tac x = pf in allE)
apply (erule exE, frule_tac s = s in is_dir_in_current, simp)
apply (drule is_dir_not_file, drule is_dir_not_file)
apply (auto simp:cf2sfile_def split:option.splits)
apply (case_tac pf, simp_all)
by (simp add:sroot_def root_sec_remains vd vs')
have "search_check s' (up, rp, tp) pf"
using p1 p2 p2' vd cf2sf pf_in grant Mkdir pf_in_s parent vs'
apply (rule_tac s = s in enrich_search_check')
apply (simp_all split:option.splits)
done
thus ?thesis using p1' p2' parent
apply (simp add:Mkdir split:option.splits)
using grant Mkdir p1 p2
apply simp
done
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (LinkHard p f f')
from os obtain pf where pf_in_s: "is_dir s pf" and parent: "parent f' = Some pf"
by (auto simp:LinkHard)
have pf_in: "is_dir s' pf" using pf_in_s alive
apply (erule_tac x = "O_dir pf" in allE)
by simp
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:LinkHard)
have f'_not_in: "f' \<notin> current_files s'"
using os alive' LinkHard notin_cur vd'
apply (erule_tac x = "I_file f'" in allE)
apply (auto simp:LinkHard current_files_simps)
done
have f_in: "is_file s' f" using os alive
apply (erule_tac x = "O_file f" in allE)
by (auto simp:LinkHard)
have "os_grant s' e" using p_in pf_in parent os f_in f'_not_in
by (simp add:LinkHard hungs)
moreover have "grant s' e"
proof-
from grant parent obtain up rp tp uf rf tf upf rpf tpf
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)"
and p3: "sectxt_of_obj s (O_dir pf) = Some (upf, rpf, tpf)"
apply (simp add:LinkHard split:option.splits)
by (case_tac a, case_tac aa, case_tac ab, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:LinkHard co2sobj.simps cp2sproc_def split:option.splits)
from vd os pf_in_s have "\<exists> sf. cf2sfile s f = Some sf"
by (auto dest!:is_file_in_current current_file_has_sfile simp:LinkHard)
hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)"
using p2 cf2sf f_in os parent
apply (erule_tac x = f in allE)
apply (erule exE, clarsimp simp:LinkHard)
apply (frule_tac s = s in is_file_in_current, simp)
apply (auto simp:cf2sfile_def split:option.splits)
apply (case_tac f, simp)
by (drule_tac s = s in root_is_dir', simp add:vd, simp+)
from vd os pf_in_s have "\<exists> sf. cf2sfile s pf = Some sf"
by (auto dest!:is_dir_in_current current_file_has_sfile simp:LinkHard)
hence p3': "sectxt_of_obj s' (O_dir pf) = Some (upf, rpf, tpf)" using p3 cf2sf pf_in pf_in_s
apply (erule_tac x = pf in allE)
apply (erule exE, frule_tac s = s in is_dir_in_current, simp)
apply (drule is_dir_not_file, drule is_dir_not_file)
apply (auto simp:cf2sfile_def split:option.splits)
apply (case_tac pf, simp_all)
by (simp add:sroot_def root_sec_remains vd vs')
have "search_check s' (up, rp, tp) f"
using p1 p2 p2' vd cf2sf f_in grant LinkHard os parent vs'
apply (rule_tac s = s in enrich_search_check)
by (simp_all split:option.splits)
moreover have "search_check s' (up, rp, tp) pf"
using p1 p3 p3' vd cf2sf pf_in grant LinkHard os parent vs'
apply (rule_tac s = s in enrich_search_check')
apply (simp_all split:option.splits)
done
ultimately show ?thesis using p1' p2' p3' parent
apply (simp add:LinkHard split:option.splits)
using grant LinkHard p1 p2 p3
apply simp
done
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (Truncate p f len)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:Truncate)
have f_in: "is_file s' f" using os alive
apply (erule_tac x = "O_file f" in allE)
by (auto simp:Truncate)
have "os_grant s' e" using p_in f_in by (simp add:Truncate)
moreover have "grant s' e"
proof-
from grant obtain up rp tp uf rf tf
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_file f) = Some (uf, rf, tf)"
apply (simp add:Truncate split:option.splits)
by (case_tac a, case_tac aa, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:Truncate co2sobj.simps cp2sproc_def split:option.splits)
from os have f_in': "is_file s f" by (simp add:Truncate)
from vd os have "\<exists> sf. cf2sfile s f = Some sf"
by (auto dest!:is_file_in_current current_file_has_sfile simp:Truncate)
hence p2': "sectxt_of_obj s' (O_file f) = Some (uf, rf, tf)" using f_in f_in' p2 cf2sf
apply (erule_tac x = f in allE)
apply (auto dest:is_file_in_current simp:cf2sfile_def split:option.splits)
apply (case_tac f, simp)
apply (drule_tac s = s in root_is_dir', simp add:vd, simp+)
done
have "search_check s' (up, rp, tp) f"
using p1 p2 p2' vd cf2sf f_in' grant Truncate f_in
apply (rule_tac s = s in enrich_search_check)
by (simp_all split:option.splits)
thus ?thesis using p1' p2'
apply (simp add:Truncate split:option.splits)
using grant Truncate p1 p2
by (simp add:Truncate grant p1 p2)
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (CreateMsgq p q)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:CreateMsgq)
have q_not_in: "q \<notin> current_msgqs s'"
using os alive' CreateMsgq notin_cur nodel vd
apply (erule_tac x = "I_msgq q" in allE)
apply (auto split:t_enrich_obj.splits)
apply (drule nums_of_recv_0, simp+)
apply (drule new_msgq_1, simp+)
done
have "os_grant s' e" using p_in q_not_in by (simp add:CreateMsgq)
moreover have "grant s' e"
proof-
from grant obtain up rp tp
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
apply (simp add:CreateMsgq split:option.splits)
by (case_tac a, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:CreateMsgq co2sobj.simps cp2sproc_def split:option.splits)
show ?thesis using p1'
apply (simp add:CreateMsgq split:option.splits)
using grant CreateMsgq p1
by simp
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (RemoveMsgq p q)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:RemoveMsgq)
have q_in: "q \<in> current_msgqs s'" using os alive
apply (erule_tac x = "O_msgq q" in allE)
by (simp add:RemoveMsgq)
have "os_grant s' e" using p_in q_in by (simp add:RemoveMsgq)
moreover have "grant s' e"
proof-
from grant obtain up rp tp uq rq tq
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_msgq q) = Some (uq, rq, tq)"
apply (simp add:RemoveMsgq split:option.splits)
by (case_tac a, case_tac aa, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:RemoveMsgq co2sobj.simps cp2sproc_def split:option.splits)
from p2 have p2': "sectxt_of_obj s' (O_msgq q) = Some (uq, rq, tq)"
using os cq2sq vd
apply (erule_tac x = q in allE)
by (auto simp:RemoveMsgq co2sobj.simps cq2smsgq_def dest!:current_has_sms' split:option.splits)
show ?thesis using p1' p2' grant p1 p2
by (simp add:RemoveMsgq)
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (SendMsg p q m)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:SendMsg)
have q_in: "q \<in> current_msgqs s'" using os alive
apply (erule_tac x = "O_msgq q" in allE)
by (simp add:SendMsg)
have m_not_in: "m \<notin> set (msgs_of_queue s' q)"
using os alive' notin_cur SendMsg q_in nodel vd
apply (erule_tac x = "I_msg q m" in allE)
apply (case_tac obj', auto)
apply (drule nums_of_recv_0, simp+)
apply (drule new_msgq_1, simp+)
done
have "os_grant s' e" using p_in q_in m_not_in sms_remain os
by (simp add:SendMsg)
moreover have "grant s' e"
proof-
from grant obtain up rp tp uq rq tq
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_msgq q) = Some (uq, rq, tq)"
apply (simp add:SendMsg split:option.splits)
by (case_tac a, case_tac aa, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:SendMsg co2sobj.simps cp2sproc_def split:option.splits)
from p2 have p2': "sectxt_of_obj s' (O_msgq q) = Some (uq, rq, tq)"
using os cq2sq vd
apply (erule_tac x = q in allE)
by (auto simp:SendMsg co2sobj.simps cq2smsgq_def dest!:current_has_sms' split:option.splits)
show ?thesis using p1' p2' grant p1 p2
by (simp add:SendMsg)
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (RecvMsg p q m)
have p_in: "p \<in> current_procs s'" using os alive
apply (erule_tac x = "O_proc p" in allE)
by (auto simp:RecvMsg)
have q_in: "q \<in> current_msgqs s'" using os alive
apply (erule_tac x = "O_msgq q" in allE)
by (simp add:RecvMsg)
have m_in: "m = hd (msgs_of_queue s' q)"
and sms_not_empty: "msgs_of_queue s' q \<noteq> []"
using os sms_remain
by (auto simp:RecvMsg)
have "os_grant s' e" using p_in q_in m_in sms_not_empty os
by (simp add:RecvMsg)
moreover have "grant s' e"
proof-
from grant obtain up rp tp uq rq tq um rm tm
where p1: "sectxt_of_obj s (O_proc p) = Some (up, rp, tp)"
and p2: "sectxt_of_obj s (O_msgq q) = Some (uq, rq, tq)"
and p3: "sectxt_of_obj s (O_msg q m) = Some (um, rm, tm)"
apply (simp add:RecvMsg split:option.splits)
by (case_tac a, case_tac aa, case_tac ab, blast)
from p1 have p1': "sectxt_of_obj s' (O_proc p) = Some (up, rp, tp)"
using os cp2sp
apply (erule_tac x = p in allE)
by (auto simp:RecvMsg co2sobj.simps cp2sproc_def split:option.splits)
from p2 have p2': "sectxt_of_obj s' (O_msgq q) = Some (uq, rq, tq)"
using os cq2sq vd
apply (erule_tac x = q in allE)
by (auto simp:RecvMsg co2sobj.simps cq2smsgq_def dest!:current_has_sms' split:option.splits)
from p3 have p3': "sectxt_of_obj s' (O_msg q m) = Some (um, rm, tm)"
using sms_remain cq2sq vd os p2 p2' p3
apply (erule_tac x = q in allE)
apply (erule_tac x = q in allE)
apply (clarsimp simp:RecvMsg)
apply (simp add:cq2smsgq_def split:option.splits if_splits)
apply (drule current_has_sms', simp, simp)
apply (case_tac "msgs_of_queue s q", simp)
apply (simp add:cqm2sms.simps split:option.splits)
apply (auto simp add:cm2smsg_def split:option.splits if_splits)[1]
done
show ?thesis using p1' p2' p3' grant p1 p2 p3
by (simp add:RecvMsg)
qed
ultimately show ?thesis using vs'
by (erule_tac valid.intros(2), simp+)
next
case (CreateSock p af st fd inum)
show ?thesis using grant
by (simp add:CreateSock)
next
case (Bind p fd addr)
show ?thesis using grant
by (simp add:Bind)
next
case (Connect p fd addr)
show ?thesis using grant
by (simp add:Connect)
next
case (Listen p fd)
show ?thesis using grant
by (simp add:Listen)
next
case (Accept p fd addr port fd' inum)
show ?thesis using grant
by (simp add:Accept)
next
case (SendSock p fd)
show ?thesis using grant
by (simp add:SendSock)
next
case (RecvSock p fd)
show ?thesis using grant
by (simp add:RecvSock)
next
case (Shutdown p fd how)
show ?thesis using grant
by (simp add:Shutdown)
qed
qed
lemma current_proc_fds_in_curp:
"\<lbrakk>fd \<in> current_proc_fds s p; valid s\<rbrakk> \<Longrightarrow> p \<in> current_procs s"
apply (induct s)
apply (simp add:init_fds_of_proc_prop1)
apply (frule vt_grant_os, frule vd_cons)
apply (case_tac a, auto split:if_splits option.splits)
done
lemma get_parentfs_ctxts_prop:
"\<lbrakk>get_parentfs_ctxts s (a # f) = Some ctxts; sectxt_of_obj s (O_dir f) = Some ctxt; valid s\<rbrakk>
\<Longrightarrow> ctxt \<in> set (ctxts)"
apply (induct f)
apply (auto split:option.splits)
done
lemma search_check_allp_intro:
"\<lbrakk>search_check s sp pf; get_parentfs_ctxts s pf = Some ctxts; valid s; is_dir s pf\<rbrakk>
\<Longrightarrow> search_check_allp sp (set ctxts)"
apply (case_tac pf)
apply (simp split:option.splits if_splits add:search_check_allp_def)
apply (rule ballI)
apply (auto simp:search_check_ctxt_def search_check_dir_def split:if_splits option.splits)
apply (auto simp:search_check_allp_def search_check_file_def)
apply (frule is_dir_not_file, simp)
done
lemma search_check_leveling_f:
"\<lbrakk>search_check s sp pf; parent f = Some pf; is_file s f; valid s;
sectxt_of_obj s (O_file f) = Some fctxt; search_check_file sp fctxt\<rbrakk>
\<Longrightarrow> search_check s sp f"
apply (case_tac f, simp+)
apply (auto split:option.splits simp:search_check_ctxt_def)
apply (frule parentf_is_dir_prop2, simp)
apply (erule get_pfs_secs_prop, simp)
apply (erule_tac search_check_allp_intro, simp_all)
apply (simp add:parentf_is_dir_prop2)
done
lemma current_fflag_in_fds:
"\<lbrakk>flags_of_proc_fd s p fd = Some flag; valid s\<rbrakk> \<Longrightarrow> fd \<in> current_proc_fds s p"
apply (induct s arbitrary:p)
apply (simp add:flags_of_proc_fd.simps file_of_proc_fd.simps init_oflags_prop2)
apply (frule vd_cons, frule vt_grant_os, case_tac a)
apply (auto split:if_splits option.splits dest:proc_fd_in_fds)
done
lemma current_fflag_has_ffd:
"\<lbrakk>flags_of_proc_fd s p fd = Some flag; valid s\<rbrakk> \<Longrightarrow> \<exists> f. file_of_proc_fd s p fd = Some f"
apply (induct s arbitrary:p)
apply (simp add: file_of_proc_fd.simps init_fileflag_valid)
apply (frule vd_cons, frule vt_grant_os, case_tac a)
apply (auto split:if_splits option.splits dest:proc_fd_in_fds)
done
lemma oflags_check_remove_create:
"oflags_check flags sp sf \<Longrightarrow> oflags_check (remove_create_flag flags) sp sf"
apply (case_tac flags)
apply (auto simp:oflags_check_def perms_of_flags_def perm_of_oflag_def split:bool.splits)
done
fun enrich_msgq :: "t_state \<Rightarrow> t_msgq \<Rightarrow> t_msgq \<Rightarrow> t_state"
where
"enrich_msgq [] tq dq = []"
| "enrich_msgq (CreateMsgq p q # s) tq dq =
(if (tq = q)
then (CreateMsgq p dq # CreateMsgq p q # s)
else CreateMsgq p q # (enrich_msgq s tq dq))"
| "enrich_msgq (SendMsg p q m # s) tq dq =
(if (tq = q)
then (SendMsg p dq m # SendMsg p q m # (enrich_msgq s tq dq))
else SendMsg p q m # (enrich_msgq s tq dq))"
| "enrich_msgq (RecvMsg p q m # s) tq dq =
(if (tq = q)
then (RecvMsg p dq m # RecvMsg p q m # (enrich_msgq s tq dq))
else RecvMsg p q m # (enrich_msgq s tq dq))"
| "enrich_msgq (e # s) tq dq = e # (enrich_msgq s tq dq)"
lemma enrich_msgq_duq_in:
"\<lbrakk>q' \<notin> current_msgqs s; q \<in> current_msgqs s; no_del_event s; valid s\<rbrakk>
\<Longrightarrow> q' \<in> current_msgqs (enrich_msgq s q q')"
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons, case_tac a)
apply auto
done
lemma enrich_msgq_duq_sms:
"\<lbrakk>q' \<notin> current_msgqs s; q \<in> current_msgqs s; no_del_event s; valid s\<rbrakk>
\<Longrightarrow> msgs_of_queue (enrich_msgq s q q') q' = msgs_of_queue s q"
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons, case_tac a)
apply auto
done
lemma enrich_msgq_cur_inof:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> inum_of_file (enrich_msgq s q q') f = inum_of_file s f"
apply (induct s arbitrary:f, simp)
apply (frule vt_grant_os, frule vd_cons, case_tac a)
apply (auto split:option.splits)
done
lemma enrich_msgq_cur_inos:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> inum_of_socket (enrich_msgq s q q') = inum_of_socket s"
apply (rule ext)
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons, case_tac a)
apply (auto split:option.splits)
done
lemma enrich_msgq_cur_inos':
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> inum_of_socket (enrich_msgq s q q') sock = inum_of_socket s sock"
apply (simp add:enrich_msgq_cur_inos)
done
lemma enrich_msgq_cur_inums:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> current_inode_nums (enrich_msgq s q q') = current_inode_nums s"
apply (auto simp:current_inode_nums_def current_file_inums_def
current_sock_inums_def enrich_msgq_cur_inof enrich_msgq_cur_inos)
done
lemma enrich_msgq_cur_itag:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> itag_of_inum (enrich_msgq s q q') = itag_of_inum s"
apply (rule ext)
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons, case_tac a)
apply (auto split:option.splits t_socket_type.splits)
done
lemma enrich_msgq_cur_tcps:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> is_tcp_sock (enrich_msgq s q q') = is_tcp_sock s"
apply (rule ext)
apply (auto simp:is_tcp_sock_def enrich_msgq_cur_itag enrich_msgq_cur_inos
split:option.splits t_inode_tag.splits)
done
lemma enrich_msgq_cur_udps:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> is_udp_sock (enrich_msgq s q q') = is_udp_sock s"
apply (rule ext)
apply (auto simp:is_udp_sock_def enrich_msgq_cur_itag enrich_msgq_cur_inos
split:option.splits t_inode_tag.splits)
done
lemma enrich_msgq_cur_msgqs:
"\<lbrakk>q \<in> current_msgqs s; no_del_event s; valid s\<rbrakk>
\<Longrightarrow> current_msgqs (enrich_msgq s q q') = current_msgqs s \<union> {q'}"
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons)
apply (case_tac a, auto)
done
lemma enrich_msgq_cur_msgs:
"\<lbrakk>q' \<notin> current_msgqs s; q \<in> current_msgqs s; no_del_event s; valid s\<rbrakk>
\<Longrightarrow> msgs_of_queue (enrich_msgq s q q') = (msgs_of_queue s) (q' := msgs_of_queue s q)"
apply (rule ext, simp, rule conjI, rule impI)
apply (simp add:enrich_msgq_duq_sms)
apply (rule impI)
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons)
apply (case_tac a, auto)
done
lemma enrich_msgq_cur_procs:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> current_procs (enrich_msgq s q q') = current_procs s"
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons)
apply (case_tac a, auto)
done
lemma enrich_msgq_cur_files:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> current_files (enrich_msgq s q q') = current_files s"
apply (auto simp:current_files_def)
apply (simp add:enrich_msgq_cur_inof)+
done
lemma enrich_msgq_cur_fds:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> current_proc_fds (enrich_msgq s q q') = current_proc_fds s"
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons, case_tac a)
apply auto
done
lemma enrich_msgq_filefd:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> file_of_proc_fd (enrich_msgq s q q') = file_of_proc_fd s"
apply (rule ext, rule ext)
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons, case_tac a)
apply auto
done
lemma enrich_msgq_flagfd:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> flags_of_proc_fd (enrich_msgq s q q') = flags_of_proc_fd s"
apply (rule ext, rule ext)
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons, case_tac a)
apply auto
done
lemma enrich_msgq_proc_fds:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> proc_file_fds (enrich_msgq s q q') = proc_file_fds s"
apply (auto simp:proc_file_fds_def enrich_msgq_filefd)
done
lemma enrich_msgq_hungs:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> files_hung_by_del (enrich_msgq s q q') = files_hung_by_del s"
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons, case_tac a)
apply (auto simp:files_hung_by_del.simps)
done
lemma enrich_msgq_is_file:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> is_file (enrich_msgq s q q') = is_file s"
apply (rule ext)
apply (auto simp add:is_file_def enrich_msgq_cur_itag enrich_msgq_cur_inof
split:option.splits t_inode_tag.splits)
done
lemma enrich_msgq_is_dir:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> is_dir (enrich_msgq s q q') = is_dir s"
apply (rule ext)
apply (auto simp add:is_dir_def enrich_msgq_cur_itag enrich_msgq_cur_inof
split:option.splits t_inode_tag.splits)
done
lemma enrich_msgq_sameinode:
"\<lbrakk>no_del_event s; valid s\<rbrakk>
\<Longrightarrow> (f \<in> same_inode_files (enrich_msgq s q q') f') = (f \<in> same_inode_files s f')"
apply (induct s, simp)
apply (simp add:same_inode_files_def)
apply (auto simp:enrich_msgq_is_file enrich_msgq_cur_inof)
done
lemma enrich_msgq_tainted_aux1:
"\<lbrakk>no_del_event s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; valid s\<rbrakk>
\<Longrightarrow> (tainted s \<union> {O_msg q' m| m. O_msg q m \<in> tainted s}) \<subseteq> tainted (enrich_msgq s q q')"
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons)
apply (case_tac a)
apply (auto split:option.splits if_splits dest:tainted_in_current
simp:enrich_msgq_filefd enrich_msgq_sameinode)
done
lemma enrich_msgq_tainted_aux2:
"\<lbrakk>no_del_event s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; valid s; valid (enrich_msgq s q q')\<rbrakk>
\<Longrightarrow> tainted (enrich_msgq s q q') \<subseteq> (tainted s \<union> {O_msg q' m| m. O_msg q m \<in> tainted s})"
apply (induct s, simp)
apply (frule vt_grant_os, frule vd_cons)
apply (case_tac a)
apply (auto split:option.splits if_splits simp:enrich_msgq_filefd enrich_msgq_sameinode
dest:tainted_in_current vd_cons)
apply (drule_tac vd_cons)+
apply (simp)
apply (drule set_mp)
apply simp
apply simp
apply (drule_tac s = s in tainted_in_current)
apply simp+
done
lemma enrich_msgq_alive:
"\<lbrakk>alive s obj; valid s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s\<rbrakk>
\<Longrightarrow> alive (enrich_msgq s q q') obj"
apply (case_tac obj)
apply (simp_all add:enrich_msgq_is_file enrich_msgq_is_dir enrich_msgq_cur_msgqs
enrich_msgq_cur_msgs enrich_msgq_cur_procs enrich_msgq_cur_fds
enrich_msgq_cur_tcps enrich_msgq_cur_udps)
apply (rule impI, simp)
done
lemma enrich_msgq_alive':
"\<lbrakk>alive (enrich_msgq s q q') obj; valid s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s\<rbrakk>
\<Longrightarrow> alive s obj \<or> obj = O_msgq q' \<or> (\<exists> m. obj = O_msg q' m \<and> alive s (O_msg q m))"
apply (case_tac obj)
apply (simp_all add:enrich_msgq_is_file enrich_msgq_is_dir enrich_msgq_cur_msgqs
enrich_msgq_cur_msgs enrich_msgq_cur_procs enrich_msgq_cur_fds
enrich_msgq_cur_tcps enrich_msgq_cur_udps)
apply (auto split:if_splits)
done
lemma enrich_msgq_not_alive:
"\<lbrakk>enrich_not_alive s (E_msgq q') obj; q' \<notin> current_msgqs s; q \<in> current_msgqs s; no_del_event s; valid s\<rbrakk>
\<Longrightarrow> enrich_not_alive (enrich_msgq s q q') (E_msgq q') obj"
apply (case_tac obj)
apply (auto simp:enrich_msgq_cur_fds enrich_msgq_cur_files
enrich_msgq_cur_procs enrich_msgq_cur_inums enrich_msgq_cur_msgqs enrich_msgq_cur_msgs)
done
lemma enrich_msgq_nodel:
"no_del_event (enrich_msgq s q q') = no_del_event s"
apply (induct s, simp)
by (case_tac a, auto)
lemma enrich_msgq_died_proc:
"died (O_proc p) (enrich_msgq s q q') = died (O_proc p) s"
apply (induct s, simp)
by (case_tac a, auto)
lemma cf2sfile_execve:
"\<lbrakk>ff \<in> current_files (Execve p f fds # s); valid (Execve p f fds # s)\<rbrakk>
\<Longrightarrow> cf2sfile (Execve p f fds # s) ff= cf2sfile s ff"
by (auto dest:cf2sfile_other' simp:current_files_simps)
lemma cf2sfile_clone:
"\<lbrakk>ff \<in> current_files (Clone p p' fds # s); valid (Clone p p' fds # s)\<rbrakk>
\<Longrightarrow> cf2sfile (Clone p p' fds # s) ff= cf2sfile s ff"
by (auto dest:cf2sfile_other' simp:current_files_simps)
lemma cf2sfile_ptrace:
"\<lbrakk>ff \<in> current_files (Ptrace p p' # s); valid (Ptrace p p' # s)\<rbrakk>
\<Longrightarrow> cf2sfile (Ptrace p p' # s) ff= cf2sfile s ff"
by (auto dest:cf2sfile_other' simp:current_files_simps)
lemma cf2sfile_readfile:
"\<lbrakk>ff \<in> current_files (ReadFile p fd # s); valid (ReadFile p fd # s)\<rbrakk>
\<Longrightarrow> cf2sfile (ReadFile p fd # s) ff= cf2sfile s ff"
by (auto dest:cf2sfile_other' simp:current_files_simps)
lemma cf2sfile_writefile:
"\<lbrakk>ff \<in> current_files (WriteFile p fd # s); valid (WriteFile p fd # s)\<rbrakk>
\<Longrightarrow> cf2sfile (WriteFile p fd # s) ff= cf2sfile s ff"
by (auto dest:cf2sfile_other' simp:current_files_simps)
lemma cf2sfile_truncate:
"\<lbrakk>ff \<in> current_files (Truncate p f len # s); valid (Truncate p f len # s)\<rbrakk>
\<Longrightarrow> cf2sfile (Truncate p f len # s) ff= cf2sfile s ff"
by (auto dest:cf2sfile_other' simp:current_files_simps)
lemma cf2sfile_createmsgq:
"\<lbrakk>ff \<in> current_files (CreateMsgq p q # s); valid (CreateMsgq p q # s)\<rbrakk>
\<Longrightarrow> cf2sfile (CreateMsgq p q # s) ff= cf2sfile s ff"
by (auto dest:cf2sfile_other' simp:current_files_simps)
lemma cf2sfile_sendmsg:
"\<lbrakk>ff \<in> current_files (SendMsg p q m # s); valid (SendMsg p q m # s)\<rbrakk>
\<Longrightarrow> cf2sfile (SendMsg p q m # s) ff = cf2sfile s ff"
by (auto dest:cf2sfile_other' simp:current_files_simps)
lemma cf2sfile_recvmsg:
"\<lbrakk>ff \<in> current_files (RecvMsg p q m # s); valid (RecvMsg p q m # s)\<rbrakk>
\<Longrightarrow> cf2sfile (RecvMsg p q m # s) ff = cf2sfile s ff"
by (auto dest:cf2sfile_other' simp:current_files_simps)
lemmas cf2sfile_other'' = cf2sfile_recvmsg cf2sfile_sendmsg cf2sfile_createmsgq cf2sfile_truncate
cf2sfile_writefile cf2sfile_readfile cf2sfile_ptrace cf2sfile_clone cf2sfile_execve
lemma enrich_msgq_prop:
"\<lbrakk>valid s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s\<rbrakk>
\<Longrightarrow> valid (enrich_msgq s q q') \<and>
(\<forall> tp. tp \<in> current_procs s \<longrightarrow> cp2sproc (enrich_msgq s q q') tp = cp2sproc s tp) \<and>
(\<forall> f. f \<in> current_files s \<longrightarrow> cf2sfile (enrich_msgq s q q') f = cf2sfile s f) \<and>
(\<forall> tq. tq \<in> current_msgqs s \<longrightarrow> cq2smsgq (enrich_msgq s q q') tq = cq2smsgq s tq) \<and>
(\<forall> tp fd. fd \<in> proc_file_fds s tp \<longrightarrow> cfd2sfd (enrich_msgq s q q') tp fd = cfd2sfd s tp fd) \<and>
(cq2smsgq (enrich_msgq s q q') q' = cq2smsgq s q) \<and>
(tainted (enrich_msgq s q q') = (tainted s \<union> {O_msg q' m| m. O_msg q m \<in> tainted s}))"
proof (induct s)
case Nil
thus ?case by (auto)
next
case (Cons e s)
hence vd_cons': "valid (e # s)" and curq_cons: "q \<in> current_msgqs (e # s)"
and curq'_cons: "q' \<notin> current_msgqs (e # s)" and nodel_cons: "no_del_event (e # s)"
and os: "os_grant s e" and grant: "grant s e" and vd: "valid s"
by (auto dest:vd_cons vt_grant_os vt_grant)
from curq'_cons nodel_cons have curq': "q' \<notin> current_msgqs s" by (case_tac e, auto)
from nodel_cons have nodel: "no_del_event s" by (case_tac e, auto)
from nodel curq' vd Cons
have pre: "q \<in> current_msgqs s \<Longrightarrow> valid (enrich_msgq s q q') \<and>
(\<forall>tp. tp \<in> current_procs s \<longrightarrow> cp2sproc (enrich_msgq s q q') tp = cp2sproc s tp) \<and>
(\<forall>f. f \<in> current_files s \<longrightarrow> cf2sfile (enrich_msgq s q q') f = cf2sfile s f) \<and>
(\<forall>tq. tq \<in> current_msgqs s \<longrightarrow> cq2smsgq (enrich_msgq s q q') tq = cq2smsgq s tq) \<and>
(\<forall>tp fd. fd \<in> proc_file_fds s tp \<longrightarrow> cfd2sfd (enrich_msgq s q q') tp fd = cfd2sfd s tp fd) \<and>
(cq2smsgq (enrich_msgq s q q') q' = cq2smsgq s q) \<and>
(tainted (enrich_msgq s q q') = (tainted s \<union> {O_msg q' m| m. O_msg q m \<in> tainted s}))"
by auto
from pre have pre_vd: "q \<in> current_msgqs s \<Longrightarrow> valid (enrich_msgq s q q')" by simp
from pre have pre_sp: "\<And> tp. \<lbrakk>tp \<in> current_procs s; q \<in> current_msgqs s\<rbrakk>
\<Longrightarrow> cp2sproc (enrich_msgq s q q') tp = cp2sproc s tp" by auto
from pre have pre_sf: "\<And> f. \<lbrakk>f \<in> current_files s; q \<in> current_msgqs s\<rbrakk>
\<Longrightarrow> cf2sfile (enrich_msgq s q q') f = cf2sfile s f" by auto
from pre have pre_sq: "\<And> tq. \<lbrakk>tq \<in> current_msgqs s; q \<in> current_msgqs s\<rbrakk>
\<Longrightarrow> cq2smsgq (enrich_msgq s q q') tq = cq2smsgq s tq" by auto
from pre have pre_sfd: "\<And> tp fd. \<lbrakk>fd \<in> proc_file_fds s tp; q \<in> current_msgqs s\<rbrakk>
\<Longrightarrow> cfd2sfd (enrich_msgq s q q') tp fd = cfd2sfd s tp fd" by auto
hence pre_sfd': "\<And> tp fd f. \<lbrakk>file_of_proc_fd s tp fd = Some f; q \<in> current_msgqs s\<rbrakk>
\<Longrightarrow> cfd2sfd (enrich_msgq s q q') tp fd = cfd2sfd s tp fd" by (auto simp:proc_file_fds_def)
from pre have pre_duq: "q \<in> current_msgqs s \<Longrightarrow> cq2smsgq (enrich_msgq s q q') q' = cq2smsgq s q"
by auto
have vd_enrich:"q \<in> current_msgqs s \<Longrightarrow> valid (e # enrich_msgq s q q')"
apply (frule pre_vd)
apply (erule_tac s = s and obj' = "E_msgq q'" in enrich_valid_intro_cons)
apply (simp_all add:pre nodel nodel_cons curq_cons vd_cons' vd enrich_msgq_hungs)
apply (clarsimp simp:nodel vd curq' enrich_msgq_alive)
apply (rule allI, rule impI, erule enrich_msgq_not_alive)
apply (simp_all add:curq' curq'_cons nodel vd enrich_msgq_cur_msgs enrich_msgq_filefd enrich_msgq_flagfd)
done
have q_neq_q': "q' \<noteq> q" using curq'_cons curq_cons by auto
have vd_enrich_cons: "valid (enrich_msgq (e # s) q q')"
proof-
have "\<And> p q''. e = CreateMsgq p q'' \<Longrightarrow> valid (enrich_msgq (e # s) q q')"
proof-
fix p q'' assume ev: "e = CreateMsgq p q''"
show "valid (enrich_msgq (e # s) q q')"
proof (cases "q'' = q")
case False with ev vd_enrich curq_cons
show ?thesis by simp
next
case True
have "os_grant (CreateMsgq p q # s) (CreateMsgq p q')"
using os ev
by (simp add:q_neq_q' curq')
moreover have "grant (CreateMsgq p q # s) (CreateMsgq p q')"
using grant ev
by (auto simp add:sectxt_of_obj_def split:option.splits)
ultimately
show ?thesis using ev vd_cons' True
by (auto intro: valid.intros(2))
qed
qed
moreover have "\<And> p q'' m. \<lbrakk>e = SendMsg p q'' m; q \<in> current_msgqs s\<rbrakk>
\<Longrightarrow> valid (enrich_msgq (e # s) q q')"
proof-
fix p q'' m assume ev: "e = SendMsg p q'' m" and q_in: "q \<in> current_msgqs s"
show "valid (enrich_msgq (e # s) q q')"
proof (cases "q'' = q")
case False with ev vd_enrich q_in
show ?thesis by simp
next
case True
from grant os ev True obtain psec qsec
where psec: "sectxt_of_obj s (O_proc p) = Some psec"
and qsec: "sectxt_of_obj s (O_msgq q) = Some qsec"
by (auto split:option.splits)
from psec q_in os ev
have psec':"sectxt_of_obj (enrich_msgq s q q') (O_proc p) = Some psec"
by (auto dest!:pre_sp simp:cp2sproc_def split:option.splits)
from qsec q_in pre_duq vd
have qsec': "sectxt_of_obj (enrich_msgq s q q') (O_msgq q') = Some qsec"
by (auto simp:cq2smsgq_def split:option.splits dest!:current_has_sms')
show ?thesis using ev True vd_cons' q_in vd_enrich nodel vd
curq' psec psec' qsec qsec' grant os q_neq_q'
apply (simp, erule_tac valid.intros(2))
apply (auto simp:q_neq_q' enrich_msgq_cur_msgqs enrich_msgq_cur_procs
enrich_msgq_cur_msgs sectxt_of_obj_simps)
done
qed
qed
moreover have "\<And> p q'' m. \<lbrakk>e = RecvMsg p q'' m; q \<in> current_msgqs s\<rbrakk>
\<Longrightarrow> valid (enrich_msgq (e # s) q q')"
proof-
fix p q'' m assume ev: "e = RecvMsg p q'' m" and q_in: "q \<in> current_msgqs s"
show "valid (enrich_msgq (e # s) q q')"
proof (cases "q'' = q")
case False with ev vd_enrich q_in
show ?thesis by simp
next
case True
from grant os ev True obtain psec qsec msec
where psec: "sectxt_of_obj s (O_proc p) = Some psec"
and qsec: "sectxt_of_obj s (O_msgq q) = Some qsec"
and msec: "sectxt_of_obj s (O_msg q (hd (msgs_of_queue s q))) = Some msec"
by (auto split:option.splits)
from psec q_in os ev
have psec':"sectxt_of_obj (enrich_msgq s q q') (O_proc p) = Some psec"
by (auto dest!:pre_sp simp:cp2sproc_def split:option.splits)
from qsec q_in pre_duq vd
have qsec': "sectxt_of_obj (enrich_msgq s q q') (O_msgq q') = Some qsec"
by (auto simp:cq2smsgq_def split:option.splits dest!:current_has_sms')
from qsec q_in vd
have qsec'': "sectxt_of_obj (enrich_msgq s q q') (O_msgq q) = Some qsec"
apply (frule_tac pre_sq, simp_all)
by (auto simp:cq2smsgq_def split:option.splits dest!:current_has_sms')
from msec q_in pre_duq vd qsec qsec' qsec'' curq' nodel
have msec': "sectxt_of_obj (enrich_msgq s q q') (O_msg q' (hd (msgs_of_queue s q))) = Some msec"
apply (auto simp:cq2smsgq_def enrich_msgq_cur_msgs
split:option.splits dest!:current_has_sms')
apply (case_tac "msgs_of_queue s q")
using os ev True apply simp
apply (simp add:cqm2sms.simps split:option.splits)
apply (auto simp:cm2smsg_def split:option.splits)
done
show ?thesis using ev True vd_cons' q_in vd_enrich nodel vd
curq' grant os q_neq_q' psec psec' msec msec' qsec qsec'
apply (simp, erule_tac valid.intros(2))
apply (auto simp:enrich_msgq_cur_msgqs enrich_msgq_cur_procs
enrich_msgq_cur_msgs sectxt_of_obj_simps)
done
qed
qed
ultimately
show ?thesis using vd_enrich curq_cons vd_cons'
apply (case_tac e)
apply (auto simp del:enrich_msgq.simps)
apply (auto split:if_splits )
done
qed
have curpsec: "\<And> tp. \<lbrakk>tp \<in> current_procs s; q \<in> current_msgqs s\<rbrakk> \<Longrightarrow>
sectxt_of_obj (enrich_msgq s q q') (O_proc tp) = sectxt_of_obj s (O_proc tp)"
using pre_vd vd
apply (frule_tac pre_sp, simp)
by (auto simp:cp2sproc_def split:option.splits if_splits dest!:current_has_sec')
have curfsec: "\<And> f. \<lbrakk>is_file s f; q \<in> current_msgqs s\<rbrakk> \<Longrightarrow>
sectxt_of_obj (enrich_msgq s q q') (O_file f) = sectxt_of_obj s (O_file f)"
proof-
fix f
assume a1: "is_file s f" and a2: "q \<in> current_msgqs s"
from a2 pre_sf pre_vd
have pre': "\<And>f. f \<in> current_files s \<Longrightarrow> cf2sfile (enrich_msgq s q q') f = cf2sfile s f"
and vd_enrich: "valid (enrich_msgq s q q')"
by auto
hence csf: "cf2sfile (enrich_msgq s q q') f = cf2sfile s f"
using a1 by (auto simp:is_file_in_current)
from a1 obtain sf where csf_some: "cf2sfile s f = Some sf"
apply (case_tac "cf2sfile s f")
apply (drule current_file_has_sfile')
apply (simp add:vd, simp add:is_file_in_current, simp)
done
from a1 have a1': "is_file (enrich_msgq s q q') f"
using vd nodel by (simp add:enrich_msgq_is_file)
show "sectxt_of_obj (enrich_msgq s q q') (O_file f) = sectxt_of_obj s (O_file f)"
using csf csf_some vd_enrich vd a1 a1'
apply (auto simp:cf2sfile_def split:option.splits if_splits)
apply (case_tac f, simp_all)
apply (drule root_is_dir', simp+)
done
qed
have curdsec: "\<And> tf. \<lbrakk>is_dir s tf; q \<in> current_msgqs s\<rbrakk>
\<Longrightarrow> sectxt_of_obj (enrich_msgq s q q') (O_dir tf) = sectxt_of_obj s (O_dir tf)"
proof-
fix tf
assume a1: "is_dir s tf" and a2: "q \<in> current_msgqs s"
from a2 pre_sf pre_vd
have pre': "\<And>f. f \<in> current_files s \<Longrightarrow> cf2sfile (enrich_msgq s q q') f = cf2sfile s f"
and vd_enrich: "valid (enrich_msgq s q q')"
by auto
hence csf: "cf2sfile (enrich_msgq s q q') tf = cf2sfile s tf"
using a1 by (auto simp:is_dir_in_current)
from a1 obtain sf where csf_some: "cf2sfile s tf = Some sf"
apply (case_tac "cf2sfile s tf")
apply (drule current_file_has_sfile')
apply (simp add:vd, simp add:is_dir_in_current, simp)
done
from a1 have a1': "is_dir (enrich_msgq s q q') tf"
using enrich_msgq_is_dir vd nodel by simp
from a1 have a3: "\<not> is_file s tf" using vd by (simp add:is_dir_not_file)
from a1' vd have a3': "\<not> is_file (enrich_msgq s q q') tf" by (simp add:is_dir_not_file)
show "sectxt_of_obj (enrich_msgq s q q') (O_dir tf) = sectxt_of_obj s (O_dir tf)"
using csf csf_some a3 a3' vd_enrich vd
apply (auto simp:cf2sfile_def split:option.splits)
apply (case_tac tf)
apply (simp add:root_sec_remains, simp)
done
qed
have curpsecs: "\<And> tf ctxts'. \<lbrakk>is_dir s tf; q \<in> current_msgqs s; get_parentfs_ctxts s tf = Some ctxts'\<rbrakk>
\<Longrightarrow> \<exists> ctxts. get_parentfs_ctxts (enrich_msgq s q q') tf = Some ctxts \<and> set ctxts = set ctxts'"
proof-
fix tf ctxts'
assume a1: "is_dir s tf" and a2: "q \<in> current_msgqs s"
and a4: "get_parentfs_ctxts s tf = Some ctxts'"
from a2 pre
have pre': "\<And>f. f \<in> current_files s \<Longrightarrow> cf2sfile (enrich_msgq s q q') f = cf2sfile s f"
and vd_enrich': "valid (enrich_msgq s q q')"
by auto
hence csf: "cf2sfile (enrich_msgq s q q') tf = cf2sfile s tf"
using a1 by (auto simp:is_dir_in_current)
from a1 obtain sf where csf_some: "cf2sfile s tf = Some sf"
apply (case_tac "cf2sfile s tf")
apply (drule current_file_has_sfile')
apply (simp add:vd, simp add:is_dir_in_current, simp)
done
from a1 have a1': "is_dir (enrich_msgq s q q') tf"
using enrich_msgq_is_dir vd nodel by simp
from a1 have a5: "\<not> is_file s tf" using vd by (simp add:is_dir_not_file)
from a1' vd have a5': "\<not> is_file (enrich_msgq s q q') tf" by (simp add:is_dir_not_file)
from a1' pre_vd a2 obtain ctxts
where a3: "get_parentfs_ctxts (enrich_msgq s q q') tf = Some ctxts"
apply (case_tac "get_parentfs_ctxts (enrich_msgq s q q') tf")
apply (drule get_pfs_secs_prop', simp+)
done
moreover have "set ctxts = set ctxts'"
proof (cases tf)
case Nil
with a3 a4 vd vd_enrich'
show ?thesis
by (simp add:get_parentfs_ctxts.simps root_sec_remains split:option.splits)
next
case (Cons a ff)
with csf csf_some a5 a5' vd_enrich' vd a3 a4
show ?thesis
apply (auto simp:cf2sfile_def split:option.splits if_splits)
done
qed
ultimately
show "\<exists> ctxts. get_parentfs_ctxts (enrich_msgq s q q') tf = Some ctxts \<and> set ctxts = set ctxts'"
by auto
qed
have psec_cons: "\<And> tp. tp \<in> current_procs (e # s) \<Longrightarrow>
sectxt_of_obj (enrich_msgq (e # s) q q') (O_proc tp) = sectxt_of_obj (e # s) (O_proc tp)"
using curq_cons vd_enrich_cons vd_cons' os pre_vd nodel_cons vd
apply (case_tac e)
apply (auto intro:curpsec simp:sectxt_of_obj_simps)
apply (frule curpsec, simp, frule curfsec, simp)
apply (auto split:option.splits)[1]
apply (frule vd_cons) defer apply (frule vd_cons)
apply (auto intro:curpsec simp:sectxt_of_obj_simps)
done
have sf_cons: "\<And> f. f \<in> current_files (e # s) \<Longrightarrow> cf2sfile (enrich_msgq (e # s) q q') f = cf2sfile (e # s) f"
proof-
fix f
assume a1: "f \<in> current_files (e # s)"
hence a1': "f \<in> current_files (enrich_msgq (e # s) q q')"
using nodel_cons os vd vd_cons' vd_enrich_cons
apply (case_tac e)
apply (auto simp:current_files_simps enrich_msgq_cur_files dest:is_file_in_current split:option.splits)
done
have b1: "\<And> p f' flags fd opt. e = Open p f' flags fd opt \<Longrightarrow>
cf2sfile (enrich_msgq (e # s) q q') f = cf2sfile (e # s) f"
proof-
fix p f' flags fd opt
assume ev: "e = Open p f' flags fd opt"
show "cf2sfile (enrich_msgq (e # s) q q') f = cf2sfile (e # s) f"
proof (cases opt)
case None
with a1 a1' ev vd_cons' vd_enrich_cons curq_cons
show ?thesis
apply (simp add:cf2sfile_open_none)
apply (simp add:pre_sf current_files_simps)
done
next
case (Some inum)
show ?thesis
proof (cases "f = f'")
case False
with a1 a1' ev vd_cons' vd_enrich_cons curq_cons Some
show ?thesis
apply (simp add:cf2sfile_open)
apply (simp add:pre_sf current_files_simps)
done
next
case True
with vd_cons' ev os Some
obtain pf where pf: "parent f = Some pf" by auto
then obtain ctxts where psecs: "get_parentfs_ctxts s pf = Some ctxts"
using os vd ev Some True
apply (case_tac "get_parentfs_ctxts s pf")
apply (drule get_pfs_secs_prop', simp, simp)
apply auto
done
have "sectxt_of_obj (Open p f' flags fd (Some inum) # enrich_msgq s q q') (O_file f') =
sectxt_of_obj (Open p f' flags fd (Some inum) # s) (O_file f')"
using Some vd_enrich_cons vd_cons' ev pf True os curq_cons
by (simp add:sectxt_of_obj_simps curpsec curdsec)
moreover
have "sectxt_of_obj (enrich_msgq s q q') (O_dir pf) = sectxt_of_obj s (O_dir pf)"
using curq_cons ev pf Some True os
by (simp add:curdsec)
moreover
have "\<exists> ctxts'. get_parentfs_ctxts (enrich_msgq s q q') pf = Some ctxts' \<and> set ctxts' = set ctxts"
using curq_cons ev pf Some True os vd psecs
apply (case_tac "get_parentfs_ctxts s pf")
apply (drule get_pfs_secs_prop', simp+)
apply (rule curpsecs, simp+)
done
then obtain ctxts' where psecs': "get_parentfs_ctxts (enrich_msgq s q q') pf = Some ctxts'"
and psecs_eq: "set ctxts' = set ctxts" by auto
ultimately show ?thesis
using a1 a1' ev vd_cons' vd_enrich_cons Some True pf psecs
by (simp add:cf2sfile_open split:option.splits)
qed
qed
qed
have b2: "\<And> p f' inum. e = Mkdir p f' inum \<Longrightarrow>
cf2sfile (enrich_msgq (e # s) q q') f = cf2sfile (e # s) f"
proof-
fix p f' inum
assume ev: "e = Mkdir p f' inum"
show "cf2sfile (enrich_msgq (e # s) q q') f = cf2sfile (e # s) f"
proof (cases "f' = f")
case False
with a1 a1' ev vd_cons' vd_enrich_cons curq_cons
show ?thesis
apply (simp add:cf2sfile_mkdir)
apply (simp add:pre_sf current_files_simps)
done
next
case True
with vd_cons' ev os
obtain pf where pf: "parent f = Some pf" by auto
then obtain ctxts where psecs: "get_parentfs_ctxts s pf = Some ctxts"
using os vd ev True
apply (case_tac "get_parentfs_ctxts s pf")
apply (drule get_pfs_secs_prop', simp, simp)
apply auto
done
have "sectxt_of_obj (Mkdir p f' inum # enrich_msgq s q q') (O_dir f') =
sectxt_of_obj (Mkdir p f' inum # s) (O_dir f')"
using vd_enrich_cons vd_cons' ev pf True os curq_cons
by (simp add:sectxt_of_obj_simps curpsec curdsec)
moreover
have "sectxt_of_obj (enrich_msgq s q q') (O_dir pf) = sectxt_of_obj s (O_dir pf)"
using curq_cons ev pf True os
by (simp add:curdsec)
moreover
have "\<exists> ctxts'. get_parentfs_ctxts (enrich_msgq s q q') pf = Some ctxts' \<and> set ctxts' = set ctxts"
using curq_cons ev pf True os vd psecs
apply (case_tac "get_parentfs_ctxts s pf")
apply (drule get_pfs_secs_prop', simp+)
apply (rule curpsecs, simp+)
done
then obtain ctxts' where psecs': "get_parentfs_ctxts (enrich_msgq s q q') pf = Some ctxts'"
and psecs_eq: "set ctxts' = set ctxts" by auto
ultimately show ?thesis
using a1 a1' ev vd_cons' vd_enrich_cons True pf psecs
apply (simp add:cf2sfile_mkdir split:option.splits)
done
qed
qed
have b3: "\<And> p f' f''. e = LinkHard p f' f'' \<Longrightarrow>
cf2sfile (enrich_msgq (e # s) q q') f = cf2sfile (e # s) f"
proof-
fix p f' f''
assume ev: "e = LinkHard p f' f''"
show "cf2sfile (enrich_msgq (e # s) q q') f = cf2sfile (e # s) f"
proof (cases "f'' = f")
case False
with a1 a1' ev vd_cons' vd_enrich_cons curq_cons
show ?thesis
apply (simp add:cf2sfile_linkhard)
apply (simp add:pre_sf current_files_simps)
done
next
case True
with vd_cons' ev os
obtain pf where pf: "parent f = Some pf" by auto
then obtain ctxts where psecs: "get_parentfs_ctxts s pf = Some ctxts"
using os vd ev True
apply (case_tac "get_parentfs_ctxts s pf")
apply (drule get_pfs_secs_prop', simp, simp)
apply auto
done
have "sectxt_of_obj (LinkHard p f' f'' # enrich_msgq s q q') (O_file f) =
sectxt_of_obj (LinkHard p f' f'' # s) (O_file f)"
using vd_enrich_cons vd_cons' ev pf True os curq_cons
by (simp add:sectxt_of_obj_simps curpsec curdsec)
moreover
have "sectxt_of_obj (enrich_msgq s q q') (O_dir pf) = sectxt_of_obj s (O_dir pf)"
using curq_cons ev pf True os
by (simp add:curdsec)
moreover
have "\<exists> ctxts'. get_parentfs_ctxts (enrich_msgq s q q') pf = Some ctxts' \<and> set ctxts' = set ctxts"
using curq_cons ev pf True os vd psecs
apply (case_tac "get_parentfs_ctxts s pf")
apply (drule get_pfs_secs_prop', simp+)
apply (rule curpsecs, simp+)
done
then obtain ctxts' where psecs': "get_parentfs_ctxts (enrich_msgq s q q') pf = Some ctxts'"
and psecs_eq: "set ctxts' = set ctxts" by auto
ultimately show ?thesis
using a1 a1' ev vd_cons' vd_enrich_cons True pf psecs
apply (simp add:cf2sfile_linkhard split:option.splits)
done
qed
qed
show "cf2sfile (enrich_msgq (e # s) q q') f = cf2sfile (e # s) f"
apply (case_tac e)
prefer 6 apply (erule b1)
prefer 11 apply (erule b2)
prefer 11 apply (erule b3)
apply (simp_all only:b1 b2 b3)
using a1' a1 vd_enrich_cons vd_cons' curq_cons nodel_cons
apply (simp_all add:cf2sfile_other'' cf2sfile_simps enrich_msgq.simps no_del_event.simps split:if_splits)
apply (simp_all add:pre_sf cf2sfile_other' current_files_simps split:if_splits)
apply (drule vd_cons, simp add:cf2sfile_other', drule pre_sf, simp+)+
done
qed
have sfd_cons:"\<And> tp fd f. file_of_proc_fd (e # s) tp fd = Some f \<Longrightarrow>
cfd2sfd (enrich_msgq (e # s) q q') tp fd = cfd2sfd (e # s) tp fd"
proof-
fix tp fd f
assume a1: "file_of_proc_fd (e # s) tp fd = Some f"
hence a1': "file_of_proc_fd (enrich_msgq (e # s) q q') tp fd = Some f"
using nodel_cons vd_enrich os vd_cons'
apply (case_tac e, auto simp:enrich_msgq_filefd simp del:enrich_msgq.simps)
done
have b1: "\<And> p f' flags fd' opt. e = Open p f' flags fd' opt \<Longrightarrow>
cfd2sfd (enrich_msgq (e # s) q q') tp fd = cfd2sfd (e # s) tp fd"
proof-
fix p f' flags fd' opt
assume ev: "e = Open p f' flags fd' opt"
have c1': "file_of_proc_fd (Open p f' flags fd' opt # s) tp fd = Some f"
using a1' ev a1 by (simp split:if_splits)
show "cfd2sfd (enrich_msgq (e # s) q q') tp fd = cfd2sfd (e # s) tp fd" thm cfd2sfd_open
proof (cases "tp = p \<and> fd = fd'")
case False
show ?thesis using ev vd_enrich_cons vd_cons' a1' a1 False curq_cons
apply (simp add:cfd2sfd_open split:if_splits del:file_of_proc_fd.simps)
apply (rule conjI, rule impI, simp)
apply (rule conjI, rule impI, simp)
apply (auto simp: False intro!:pre_sfd' split:if_splits)
done
next
case True
have "f' \<in> current_files (Open p f' flags fd' opt # s)" using ev vd_cons' os
by (auto simp:current_files_simps is_file_in_current split:option.splits)
hence "cf2sfile (Open p f' flags fd' opt # enrich_msgq s q q') f'
= cf2sfile (Open p f' flags fd' opt # s) f'"
using sf_cons ev by auto
moreover have "sectxt_of_obj (enrich_msgq s q q') (O_proc p) = sectxt_of_obj s (O_proc p)"
apply (rule curpsec)
using os ev curq_cons
by (auto split:option.splits)
ultimately show ?thesis
using ev True a1 a1' vd_enrich_cons vd_cons'
apply (simp add:cfd2sfd_open sectxt_of_obj_simps del:file_of_proc_fd.simps)
done
qed
qed
show "cfd2sfd (enrich_msgq (e # s) q q') tp fd = cfd2sfd (e # s) tp fd"
apply (case_tac e)
prefer 6 apply (erule b1)
using a1' a1 vd_enrich_cons vd_cons' curq_cons
apply (simp_all only:cfd2sfd_simps enrich_msgq.simps)
apply (auto simp:cfd2sfd_simps pre_sfd' dest:vd_cons cfd2sfd_other split:if_splits)
done
qed
have pfds_cons: "\<And> tp. tp \<in> current_procs (e # s) \<Longrightarrow>
cpfd2sfds (enrich_msgq (e # s) q q') tp = cpfd2sfds (e # s) tp"
apply (auto simp add:cpfd2sfds_def proc_file_fds_def)
apply (rule_tac x = fd in exI, rule conjI, rule_tac x = f in exI)
prefer 3
apply (rule_tac x = fd in exI, rule conjI, rule_tac x = f in exI)
apply (auto simp:sfd_cons enrich_msgq_filefd nodel_cons vd_cons')
done
have tainted_cons: "tainted (enrich_msgq (e # s) q q') =
(tainted (e # s) \<union> {O_msg q' m | m. O_msg q m \<in> tainted (e # s)})"
apply (rule equalityI)
using nodel_cons curq_cons curq'_cons vd_cons' vd_enrich_cons
apply (rule enrich_msgq_tainted_aux2)
using nodel_cons curq_cons curq'_cons vd_cons'
apply (rule enrich_msgq_tainted_aux1)
done
have pre_tainted: "q \<in> current_msgqs s \<Longrightarrow> tainted (enrich_msgq s q q') =
(tainted s \<union> {O_msg q' m| m. O_msg q m \<in> tainted s})" by (simp add:pre)
have "\<forall>tp fd. fd \<in> proc_file_fds (e # s) tp \<longrightarrow> cfd2sfd (enrich_msgq (e # s) q q') tp fd = cfd2sfd (e # s) tp fd"
by (auto simp:proc_file_fds_def elim!:sfd_cons)
moreover
have "\<forall>tp. tp \<in> current_procs (e # s) \<longrightarrow> cp2sproc (enrich_msgq (e # s) q q') tp = cp2sproc (e # s) tp"
by (auto simp:cp2sproc_def pfds_cons psec_cons enrich_msgq_died_proc split:option.splits)
moreover
have "\<forall>tq. tq \<in> current_msgqs (e # s) \<longrightarrow> cq2smsgq (enrich_msgq (e # s) q q') tq = cq2smsgq (e # s) tq"
proof clarify
fix tq assume a1: "tq \<in> current_msgqs (e # s)"
have curqsec: "\<And> tq. \<lbrakk>tq \<in> current_msgqs s; q \<in> current_msgqs s\<rbrakk> \<Longrightarrow>
sectxt_of_obj (enrich_msgq s q q') (O_msgq tq) = sectxt_of_obj s (O_msgq tq)"
using pre_vd vd
apply (frule_tac pre_sq, simp)
by (auto simp:cq2smsgq_def split:option.splits if_splits dest!:current_has_sec' current_has_sms')
have cursms: "\<And> q''. \<lbrakk>q'' \<in> current_msgqs s; q \<in> current_msgqs s\<rbrakk> \<Longrightarrow>
cqm2sms (enrich_msgq s q q') q'' (msgs_of_queue (enrich_msgq s q q') q'') =
cqm2sms s q'' (msgs_of_queue s q'')"
using pre_vd vd
apply (frule_tac pre_sq, simp)
by (auto simp:cq2smsgq_def split:option.splits if_splits dest!:current_has_sec' current_has_sms')
have qsec_cons: "sectxt_of_obj (enrich_msgq (e # s) q q') (O_msgq tq) = sectxt_of_obj (e # s) (O_msgq tq)"
using curq_cons vd_enrich_cons vd_cons' os pre_vd nodel_cons vd curq'_cons curq_cons a1
apply (case_tac e)
apply (auto intro:curqsec simp:sectxt_of_obj_simps curpsec split:option.splits dest!:current_has_sec')
apply (frule vd_cons) defer apply (frule vd_cons)
apply (auto intro:curqsec simp:sectxt_of_obj_simps)
done
have sms_cons: "cqm2sms (enrich_msgq (e # s) q q') tq (msgs_of_queue (enrich_msgq (e # s) q q') tq) =
cqm2sms (e # s) tq (msgs_of_queue (e # s) tq)"
proof-
have b1: "\<And> p q'' m. e = SendMsg p q'' m \<Longrightarrow>
cqm2sms (enrich_msgq (e # s) q q') tq (msgs_of_queue (enrich_msgq (e # s) q q') tq) =
cqm2sms (e # s) tq (msgs_of_queue (e # s) tq)"
apply (case_tac e)
using a1 curq_cons vd_enrich_cons vd_cons' os pre_vd nodel_cons vd curq'_cons
apply (auto simp:sectxt_of_obj_simps cqm2sms_simps curpsec qsec_cons curqsec cursms pre_tainted
split:option.splits dest!:current_has_sec' current_has_sms' simp del:cqm2sms.simps)
apply (tactic {*ALLGOALS (ftac @{thm vd_cons})*})
apply (auto simp:sectxt_of_obj_simps cqm2sms_simps curpsec qsec_cons curqsec cursms pre_tainted
split:option.splits dest!:current_has_sec' current_has_sms' simp del:cqm2sms.simps)
done
have b2: "\<And> p q''. e = CreateMsgq p q'' \<Longrightarrow>
cqm2sms (enrich_msgq (e # s) q q') tq (msgs_of_queue (enrich_msgq (e # s) q q') tq) =
cqm2sms (e # s) tq (msgs_of_queue (e # s) tq)"
using a1 curq_cons curq'_cons vd_enrich_cons vd_cons'
apply (auto simp:cqm2sms_simps intro:cursms)
apply (auto simp:cqm2sms.simps)
done
have b3: "\<And> p q'' m. e = RecvMsg p q'' m \<Longrightarrow>
cqm2sms (enrich_msgq (e # s) q q') tq (msgs_of_queue (enrich_msgq (e # s) q q') tq) =
cqm2sms (e # s) tq (msgs_of_queue (e # s) tq)"
using a1 curq_cons vd_enrich_cons vd_cons' os pre_vd nodel_cons vd curq'_cons
apply (auto simp:sectxt_of_obj_simps cqm2sms_simps curpsec qsec_cons curqsec cursms
split:option.splits dest!:current_has_sec' current_has_sms' simp del:cqm2sms.simps)
apply (frule vd_cons) defer apply (frule vd_cons)
apply (auto simp:sectxt_of_obj_simps cqm2sms_simps curpsec qsec_cons curqsec cursms
split:option.splits dest!:current_has_sec' current_has_sms' simp del:cqm2sms.simps)
done
show "cqm2sms (enrich_msgq (e # s) q q') tq (msgs_of_queue (enrich_msgq (e # s) q q') tq) =
cqm2sms (e # s) tq (msgs_of_queue (e # s) tq)"
apply (case_tac e)
prefer 15 apply (erule b2)
prefer 15 apply (erule b1)
prefer 15 apply (erule b3)
using curq_cons vd_enrich_cons vd_cons' os pre_vd nodel_cons vd curq'_cons a1
apply (auto intro:cursms simp:sectxt_of_obj_simps cqm2sms_simps curpsec qsec_cons curqsec
split:option.splits dest!:current_has_sec' current_has_sms' simp del:cqm2sms.simps)
done
qed
show "cq2smsgq (enrich_msgq (e # s) q q') tq = cq2smsgq (e # s) tq"
using a1 curq_cons
apply (simp add:cq2smsgq_def qsec_cons sms_cons)
done
qed
moreover
have "cq2smsgq (enrich_msgq (e # s) q q') q' = cq2smsgq (e # s) q"
proof-
have duqsec: "q \<in> current_msgqs s \<Longrightarrow>
sectxt_of_obj (enrich_msgq s q q') (O_msgq q') = sectxt_of_obj s (O_msgq q)"
apply (frule pre_duq) using vd
by (auto simp:cq2smsgq_def split:option.splits if_splits dest!:current_has_sec' current_has_sms')
have duqsms: "q \<in> current_msgqs s \<Longrightarrow>
cqm2sms (enrich_msgq s q q') q' (msgs_of_queue (enrich_msgq s q q') q') =
cqm2sms s q (msgs_of_queue s q)"
apply (frule pre_duq) using vd
by (auto simp:cq2smsgq_def split:option.splits if_splits dest!:current_has_sec' current_has_sms')
have qsec_cons: "sectxt_of_obj (enrich_msgq (e # s) q q') (O_msgq q') = sectxt_of_obj (e # s) (O_msgq q)"
using curq_cons vd_enrich_cons vd_cons' os pre_vd nodel_cons vd curq'_cons curq_cons
apply (case_tac e)
apply (auto simp:duqsec sectxt_of_obj_simps curpsec split:option.splits dest!:current_has_sec')
apply (frule vd_cons) defer apply (frule vd_cons)
apply (auto intro:duqsec simp:sectxt_of_obj_simps)
done
have sms_cons: "cqm2sms (enrich_msgq (e # s) q q') q' (msgs_of_queue (enrich_msgq (e # s) q q') q') =
cqm2sms (e # s) q (msgs_of_queue (e # s) q)"
proof-
have b1: "\<And> p q'' m. e = SendMsg p q'' m \<Longrightarrow>
cqm2sms (enrich_msgq (e # s) q q') q' (msgs_of_queue (enrich_msgq (e # s) q q') q') =
cqm2sms (e # s) q (msgs_of_queue (e # s) q)"
apply (case_tac e)
using curq_cons vd_enrich_cons vd_cons' os pre_vd nodel_cons vd curq'_cons
apply (auto simp:sectxt_of_obj_simps cqm2sms_simps curpsec qsec_cons duqsec duqsms pre_tainted
enrich_msgq_cur_procs enrich_msgq_cur_msgqs
split:option.splits dest!:current_has_sec' current_has_sms' simp del:cqm2sms.simps)
apply (tactic {*ALLGOALS (ftac @{thm vd_cons})*})
apply (auto simp:sectxt_of_obj_simps cqm2sms_simps curpsec qsec_cons duqsec duqsms pre_tainted
enrich_msgq_cur_procs enrich_msgq_cur_msgqs dest:tainted_in_current
split:option.splits dest!:current_has_sec' current_has_sms' simp del:cqm2sms.simps)
done
have b2: "\<And> p q''. e = CreateMsgq p q'' \<Longrightarrow>
cqm2sms (enrich_msgq (e # s) q q') q' (msgs_of_queue (enrich_msgq (e # s) q q') q') =
cqm2sms (e # s) q (msgs_of_queue (e # s) q)"
using curq_cons curq'_cons vd_enrich_cons vd_cons'
apply (auto simp:cqm2sms_simps intro:duqsms)
apply (auto simp:cqm2sms.simps)
done
have b3: "\<And> p q'' m. e = RecvMsg p q'' m \<Longrightarrow>
cqm2sms (enrich_msgq (e # s) q q') q' (msgs_of_queue (enrich_msgq (e # s) q q') q') =
cqm2sms (e # s) q (msgs_of_queue (e # s) q)"
using curq_cons vd_enrich_cons vd_cons' os pre_vd nodel_cons vd curq'_cons
apply (auto simp:sectxt_of_obj_simps cqm2sms_simps curpsec qsec_cons duqsec duqsms pre_tainted
enrich_msgq_cur_procs enrich_msgq_cur_msgqs
split:option.splits dest!:current_has_sec' current_has_sms' simp del:cqm2sms.simps)
apply (tactic {*ALLGOALS (ftac @{thm vd_cons})*})
apply (auto simp:sectxt_of_obj_simps cqm2sms_simps curpsec qsec_cons duqsec duqsms pre_tainted
enrich_msgq_cur_procs enrich_msgq_cur_msgqs dest:tainted_in_current
split:option.splits dest!:current_has_sec' current_has_sms' simp del:cqm2sms.simps)
done
show ?thesis
apply (case_tac e)
prefer 15 apply (erule b2)
prefer 15 apply (erule b1)
prefer 15 apply (erule b3)
using curq_cons vd_enrich_cons vd_cons' os pre_vd nodel_cons vd curq'_cons
apply (auto intro:duqsms simp:sectxt_of_obj_simps cqm2sms_simps curpsec qsec_cons duqsms
split:option.splits dest!:current_has_sec' current_has_sms' simp del:cqm2sms.simps)
done
qed
show ?thesis
using curq_cons
apply (simp add:cq2smsgq_def qsec_cons sms_cons)
done
qed
ultimately show ?case using vd_enrich_cons sf_cons tainted_cons
by auto
qed
lemma enrich_msgq_vd:
"\<lbrakk>q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s; valid s\<rbrakk> \<Longrightarrow>
valid (enrich_msgq s q q')"
by (auto dest:enrich_msgq_prop)
lemma enrich_msgq_sp:
"\<lbrakk>tp \<in> current_procs s; valid s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s\<rbrakk>
\<Longrightarrow> cp2sproc (enrich_msgq s q q') tp = cp2sproc s tp"
by (auto dest:enrich_msgq_prop)
lemma enrich_msgq_sf:
"\<lbrakk>f \<in> current_files s; valid s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s\<rbrakk>
\<Longrightarrow> cf2sfile (enrich_msgq s q q') f = cf2sfile s f"
by (auto dest:enrich_msgq_prop)
lemma enrich_msgq_sfs:
"\<lbrakk>is_file s f; valid s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s\<rbrakk>
\<Longrightarrow> cf2sfiles (enrich_msgq s q q') f = cf2sfiles s f"
apply (auto simp add:cf2sfiles_def)
apply (rule_tac x = f' in bexI) defer
apply (simp add:enrich_msgq_sameinode)
apply (rule_tac x = f' in bexI) defer
apply (simp add:enrich_msgq_sameinode)+
apply (drule same_inode_files_prop11, drule_tac f = f' in is_file_in_current)
apply (simp add:enrich_msgq_sf)
apply (drule same_inode_files_prop11, drule_tac f = f' in is_file_in_current)
apply (simp add:enrich_msgq_sf)
done
lemma enrich_msgq_sq:
"\<lbrakk>tq \<in> current_msgqs s; valid s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s\<rbrakk>
\<Longrightarrow> cq2smsgq (enrich_msgq s q q') tq = cq2smsgq s tq"
by (auto dest:enrich_msgq_prop)
lemma enrich_msgq_sfd':
"\<lbrakk>fd \<in> proc_file_fds s tp; valid s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s\<rbrakk>
\<Longrightarrow> cfd2sfd (enrich_msgq s q q') tp fd = cfd2sfd s tp fd"
by (auto dest:enrich_msgq_prop)
lemma enrich_msgq_sfd:
"\<lbrakk>file_of_proc_fd s tp fd = Some f; valid s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s\<rbrakk>
\<Longrightarrow> cfd2sfd (enrich_msgq s q q') tp fd = cfd2sfd s tp fd"
by (auto intro:enrich_msgq_sfd' simp:proc_file_fds_def)
lemma enrich_msgq_duq:
"\<lbrakk>valid s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s\<rbrakk>
\<Longrightarrow> cq2smsgq (enrich_msgq s q q') q' = cq2smsgq s q"
by (auto dest:enrich_msgq_prop)
lemma enrich_msgq_tainted:
"\<lbrakk>valid s; q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s\<rbrakk>
\<Longrightarrow> tainted (enrich_msgq s q q') = (tainted s \<union> {O_msg q' m| m. O_msg q m \<in> tainted s})"
by (auto dest:enrich_msgq_prop)
lemma enrich_msgq_dalive:
"\<lbrakk>q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s; valid s\<rbrakk>
\<Longrightarrow> dalive (enrich_msgq s q q') obj = (dalive s obj \<or> obj = D_msgq q')"
apply (case_tac obj)
apply (auto simp:enrich_msgq_is_file enrich_msgq_is_dir enrich_msgq_cur_msgqs enrich_msgq_cur_procs)
done
lemma enrich_msgq_s2ss:
"\<lbrakk>q \<in> current_msgqs s; q' \<notin> current_msgqs s; no_del_event s; valid s\<rbrakk> \<Longrightarrow>
s2ss (enrich_msgq s q q') = s2ss s"
apply (auto simp add:s2ss_def)
apply (simp add:enrich_msgq_dalive)
apply (erule disjE)
apply (rule_tac x = obj in exI) defer
apply (rule_tac x = "D_msgq q" in exI) defer
apply (rule_tac x = obj in exI)
apply (case_tac[!] obj)
apply (auto simp:enrich_msgq_duq enrich_msgq_tainted enrich_msgq_sq enrich_msgq_sf
enrich_msgq_sp co2sobj.simps enrich_msgq_is_file enrich_msgq_is_dir
enrich_msgq_cur_procs enrich_msgq_cur_msgqs enrich_msgq_sfs
split:option.splits dest:is_dir_in_current)
done
end
end