53 |
53 |
54 lemma info_shm_flow_in_procs: |
54 lemma info_shm_flow_in_procs: |
55 "\<lbrakk>info_flow_shm s p p'; valid s\<rbrakk> \<Longrightarrow> p \<in> current_procs s \<and> p' \<in> current_procs s" |
55 "\<lbrakk>info_flow_shm s p p'; valid s\<rbrakk> \<Longrightarrow> p \<in> current_procs s \<and> p' \<in> current_procs s" |
56 by (auto intro:procs_of_shm_prop2 simp:info_flow_shm_def one_flow_shm_def) |
56 by (auto intro:procs_of_shm_prop2 simp:info_flow_shm_def one_flow_shm_def) |
57 |
57 |
58 (*********** simpset for info_flow_shm **************) |
58 lemma flag_of_proc_shm_prop1: |
59 |
59 "\<lbrakk>flag_of_proc_shm s p h = Some flag; valid s\<rbrakk> \<Longrightarrow> (p, flag) \<in> procs_of_shm s h" |
60 lemma info_flow_shm_attach: |
60 apply (induct s arbitrary:p flag) |
61 "valid (Attach p h flag # s) \<Longrightarrow> info_flow_shm (Attach p h flag # s) = (\<lambda> pa pb. |
61 apply (simp, drule init_shmflag_has_proc, simp) |
62 (pa = p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pb, flagb) \<in> procs_of_shm s h)) \<or> |
62 apply (frule vd_cons, frule vt_grant_os) |
63 (pb = p \<and> (pa, SHM_RDWR) \<in> procs_of_shm s h) \<or> |
63 apply (case_tac a, auto split:if_splits option.splits dest:procs_of_shm_prop2) |
64 (info_flow_shm s pa pb) )" |
64 done |
65 apply (rule ext, rule ext, frule vt_grant_os) |
65 |
66 by (auto simp add:info_flow_shm_def one_flow_shm_def) |
66 (*********** simpset for one_flow_shm **************) |
|
67 |
|
68 lemma one_flow_not_self: |
|
69 "one_flow_shm s h p p \<Longrightarrow> False" |
|
70 by (simp add:one_flow_shm_def) |
|
71 |
|
72 lemma one_flow_shm_attach: |
|
73 "valid (Attach p h flag # s) \<Longrightarrow> one_flow_shm (Attach p h flag # s) = (\<lambda> h' pa pb. |
|
74 if (h' = h) |
|
75 then (pa = p \<and> pb \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pb, flagb) \<in> procs_of_shm s h)) \<or> |
|
76 (pb = p \<and> pa \<noteq> p \<and> (pa, SHM_RDWR) \<in> procs_of_shm s h) \<or> |
|
77 (one_flow_shm s h pa pb) |
|
78 else one_flow_shm s h' pa pb )" |
|
79 apply (rule ext, rule ext, rule ext, frule vd_cons, frule vt_grant_os) |
|
80 by (auto simp add: one_flow_shm_def) |
|
81 |
|
82 lemma one_flow_shm_detach: |
|
83 "valid (Detach p h # s) \<Longrightarrow> one_flow_shm (Detach p h # s) = (\<lambda> h' pa pb. |
|
84 if (h' = h) |
|
85 then (pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h' pa pb) |
|
86 else one_flow_shm s h' pa pb)" |
|
87 apply (rule ext, rule ext, rule ext, frule vt_grant_os) |
|
88 by (auto simp:one_flow_shm_def) |
|
89 |
|
90 lemma one_flow_shm_deleteshm: |
|
91 "valid (DeleteShM p h # s) \<Longrightarrow> one_flow_shm (DeleteShM p h # s) = (\<lambda> h' pa pb. |
|
92 if (h' = h) |
|
93 then False |
|
94 else one_flow_shm s h' pa pb)" |
|
95 apply (rule ext, rule ext, rule ext, frule vt_grant_os) |
|
96 by (auto simp: one_flow_shm_def) |
|
97 |
|
98 lemma one_flow_shm_clone: |
|
99 "valid (Clone p p' fds shms # s) \<Longrightarrow> one_flow_shm (Clone p p' fds shms # s) = (\<lambda> h pa pb. |
|
100 if (pa = p' \<and> pb \<noteq> p' \<and> h \<in> shms) |
|
101 then (if (pb = p) then (flag_of_proc_shm s p h = Some SHM_RDWR) else one_flow_shm s h p pb) |
|
102 else if (pb = p' \<and> pa \<noteq> p' \<and> h \<in> shms) |
|
103 then (if (pa = p) then (flag_of_proc_shm s p h = Some SHM_RDWR) else one_flow_shm s h pa p) |
|
104 else one_flow_shm s h pa pb)" |
|
105 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons, clarsimp) |
|
106 apply (frule_tac p = p' in procs_of_shm_prop2', simp) |
|
107 apply (auto simp:one_flow_shm_def intro:procs_of_shm_prop4 flag_of_proc_shm_prop1) |
|
108 done |
|
109 |
|
110 lemma one_flow_shm_execve: |
|
111 "valid (Execve p f fds # s) \<Longrightarrow> one_flow_shm (Execve p f fds # s) = (\<lambda> h pa pb. |
|
112 pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h pa pb )" |
|
113 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
114 by (auto simp:one_flow_shm_def) |
|
115 |
|
116 lemma one_flow_shm_kill: |
|
117 "valid (Kill p p' # s) \<Longrightarrow> one_flow_shm (Kill p p' # s) = (\<lambda> h pa pb. |
|
118 pa \<noteq> p' \<and> pb \<noteq> p' \<and> one_flow_shm s h pa pb )" |
|
119 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
120 by (auto simp:one_flow_shm_def) |
|
121 |
|
122 lemma one_flow_shm_exit: |
|
123 "valid (Exit p # s) \<Longrightarrow> one_flow_shm (Exit p # s) = (\<lambda> h pa pb. |
|
124 pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h pa pb )" |
|
125 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
126 by (auto simp:one_flow_shm_def) |
|
127 |
|
128 lemma one_flow_shm_other: |
|
129 "\<lbrakk>valid (e # s); |
|
130 \<forall> p h flag. e \<noteq> Attach p h flag; |
|
131 \<forall> p h. e \<noteq> Detach p h; |
|
132 \<forall> p h. e \<noteq> DeleteShM p h; |
|
133 \<forall> p p' fds shms. e \<noteq> Clone p p' fds shms; |
|
134 \<forall> p f fds. e \<noteq> Execve p f fds; |
|
135 \<forall> p p'. e \<noteq> Kill p p'; |
|
136 \<forall> p. e \<noteq> Exit p |
|
137 \<rbrakk> \<Longrightarrow> one_flow_shm (e # s) = one_flow_shm s" |
|
138 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
139 apply (case_tac e, auto simp:one_flow_shm_def dest:procs_of_shm_prop2) |
|
140 apply (drule procs_of_shm_prop1, auto) |
|
141 done |
|
142 |
|
143 lemmas one_flow_shm_simps = one_flow_shm_other one_flow_shm_attach one_flow_shm_detach one_flow_shm_deleteshm |
|
144 one_flow_shm_clone one_flow_shm_execve one_flow_shm_kill one_flow_shm_exit |
|
145 |
|
146 |
|
147 inductive Info_flow_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool" |
|
148 where |
|
149 ifs_self: "p \<in> current_procs s \<Longrightarrow> Info_flow_shm s p p" |
|
150 | ifs_flow:"\<lbrakk>Info_flow_shm s p p'; one_flow_shm s h p' p''\<rbrakk> \<Longrightarrow> Info_flow_shm s p p''" |
|
151 |
|
152 lemma Info_flow_trans_aux: |
|
153 "Info_flow_shm s p' p'' \<Longrightarrow> \<forall>p. Info_flow_shm s p p' \<longrightarrow> Info_flow_shm s p p''" |
|
154 apply (erule Info_flow_shm.induct) |
|
155 by (auto intro:Info_flow_shm.intros) |
|
156 |
|
157 lemma Info_flow_trans: |
|
158 "\<lbrakk>Info_flow_shm s p p'; Info_flow_shm s p' p''\<rbrakk> \<Longrightarrow> Info_flow_shm s p p''" |
|
159 by (auto dest:Info_flow_trans_aux) |
|
160 |
|
161 lemma one_flow_flows: |
|
162 "\<lbrakk>one_flow_shm s h p p'; valid s\<rbrakk> \<Longrightarrow> Info_flow_shm s p p'" |
|
163 apply (rule Info_flow_shm.intros(2), simp_all) |
|
164 apply (rule Info_flow_shm.intros(1)) |
|
165 apply (auto intro:procs_of_shm_prop2 simp:one_flow_shm_def) |
|
166 done |
|
167 |
|
168 lemma ifs_flow': "\<lbrakk>one_flow_shm s h p p'; Info_flow_shm s p' p''; valid s\<rbrakk> \<Longrightarrow> Info_flow_shm s p p''" |
|
169 apply (drule one_flow_flows, simp+) |
|
170 apply (erule Info_flow_trans, simp+) |
|
171 done |
|
172 |
|
173 lemma Info_flow_shm_cases1: |
|
174 "\<lbrakk>Info_flow_shm s pa pb; |
|
175 \<And>p \<tau>. \<lbrakk>\<tau> = s; pa = p; pb = p; p \<in> current_procs \<tau>\<rbrakk> \<Longrightarrow> P; |
|
176 \<And>\<tau> p p' h p''. \<lbrakk>\<tau> = s; pa = p; pb = p''; Info_flow_shm \<tau> p p'; one_flow_shm \<tau> h p' p''\<rbrakk> \<Longrightarrow> P\<rbrakk> |
|
177 \<Longrightarrow> P" |
|
178 by (erule Info_flow_shm.cases, auto) |
|
179 |
|
180 |
|
181 lemma Info_flow_shm_prop1: |
|
182 "\<not> Info_flow_shm s p p \<Longrightarrow> p \<notin> current_procs s" |
|
183 by (rule notI, drule Info_flow_shm.intros(1), simp) |
|
184 |
|
185 lemma Info_flow_shm_intro4: |
|
186 "\<lbrakk>(p, flagb) \<in> procs_of_shm s h; valid s\<rbrakk> \<Longrightarrow> Info_flow_shm s p p" |
|
187 by (drule procs_of_shm_prop2, simp, simp add:Info_flow_shm.intros) |
|
188 |
|
189 (********* simpset for inductive Info_flow_shm **********) |
|
190 |
|
191 lemma Info_flow_shm_attach1: |
|
192 "Info_flow_shm s' pa pb \<Longrightarrow> valid s' \<and> (s' = Attach p h flag # s) \<longrightarrow> |
|
193 ((Info_flow_shm s pa pb) \<or> |
|
194 (\<not> Info_flow_shm s pa pb \<and> pa = p \<and> pb \<noteq> p \<and> flag = SHM_RDWR \<and> |
|
195 (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb)) \<or> |
|
196 (\<not> Info_flow_shm s pa pb \<and> pb = p \<and> pa \<noteq> p \<and> |
|
197 (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p')))" |
|
198 proof (induct rule:Info_flow_shm.induct) |
|
199 case (ifs_self proc \<tau>) |
|
200 show ?case |
|
201 proof (rule impI) |
|
202 assume pre: "valid \<tau> \<and> \<tau> = Attach p h flag # s" |
|
203 hence p1: "p \<in> current_procs s" and p2: "valid s" by (auto intro:vd_cons dest:vt_grant_os) |
|
204 hence p3: "Info_flow_shm s p p" by (auto intro:Info_flow_shm.intros) |
|
205 from ifs_self pre have "proc \<in> current_procs s" by simp |
|
206 hence p4: "Info_flow_shm s proc proc" by (auto intro:Info_flow_shm.intros) |
|
207 show "Info_flow_shm s proc proc \<or> |
|
208 (\<not> Info_flow_shm s proc proc \<and> proc = p \<and> proc \<noteq> p \<and> flag = SHM_RDWR \<and> |
|
209 (\<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' proc)) \<or> |
|
210 (\<not> Info_flow_shm s proc proc \<and> proc = p \<and> proc \<noteq> p \<and> |
|
211 (\<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s proc p'))" |
|
212 using p4 p3 by auto |
|
213 qed |
|
214 next |
|
215 case (ifs_flow \<tau> pa pb h' pc) |
|
216 thus ?case |
|
217 proof (rule_tac impI) |
|
218 assume p1:"Info_flow_shm \<tau> pa pb" and p2: "valid \<tau> \<and> (\<tau> = Attach p h flag # s) \<longrightarrow> Info_flow_shm s pa pb \<or> |
|
219 \<not> Info_flow_shm s pa pb \<and> pa = p \<and> |
|
220 pb \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb) \<or> |
|
221 \<not> Info_flow_shm s pa pb \<and> pb = p \<and> pa \<noteq> p \<and> (\<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p')" |
|
222 and p3: "one_flow_shm \<tau> h' pb pc" and p4: "valid \<tau> \<and> \<tau> = Attach p h flag # s" |
|
223 from p2 and p4 have p2': "Info_flow_shm s pa pb \<or> |
|
224 (\<not> Info_flow_shm s pa pb \<and> pa = p \<and> pb \<noteq> p \<and> flag = SHM_RDWR \<and> |
|
225 (\<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb)) \<or> |
|
226 (\<not> Info_flow_shm s pa pb \<and> pb = p \<and> pa \<noteq> p \<and> |
|
227 (\<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p'))" |
|
228 by (erule_tac impE, simp) |
|
229 from p4 have p5: "valid s" and p6: "os_grant s (Attach p h flag)" by (auto intro:vd_cons dest:vt_grant_os) |
|
230 from p6 have "p \<in> current_procs s" by simp hence p7:"Info_flow_shm s p p" by (erule_tac Info_flow_shm.intros) |
|
231 from p3 p4 have p8: "if (h' = h) |
|
232 then (pb = p \<and> pc \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pc, flagb) \<in> procs_of_shm s h)) \<or> |
|
233 (pc = p \<and> pb \<noteq> p \<and> (pb, SHM_RDWR) \<in> procs_of_shm s h) \<or> |
|
234 (one_flow_shm s h pb pc) |
|
235 else one_flow_shm s h' pb pc " by (auto simp add:one_flow_shm_attach) |
|
236 |
|
237 have "\<lbrakk>pa = p; pc = p\<rbrakk> \<Longrightarrow> Info_flow_shm s pa pc " using p7 by simp |
|
238 moreover have "\<lbrakk>pa = p; pc \<noteq> p; flag = SHM_RDWR; \<not> Info_flow_shm s pa pc\<rbrakk> |
|
239 \<Longrightarrow> \<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc" |
|
240 sorry |
|
241 moreover have "\<lbrakk>pa = p; pc \<noteq> p; flag \<noteq> SHM_RDWR; \<not> Info_flow_shm s pa pc\<rbrakk> |
|
242 \<Longrightarrow> Info_flow_shm s pa pc" |
|
243 sorry |
|
244 moreover have "\<lbrakk>pc = p; pa \<noteq> p; \<not> Info_flow_shm s pa pc\<rbrakk> |
|
245 \<Longrightarrow> \<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p'" |
|
246 sorry |
|
247 ultimately |
|
248 |
|
249 |
|
250 |
|
251 show "Info_flow_shm s pa pc \<or> |
|
252 (\<not> Info_flow_shm s pa pc \<and> pa = p \<and> pc \<noteq> p \<and> flag = SHM_RDWR \<and> |
|
253 (\<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc)) \<or> |
|
254 (\<not> Info_flow_shm s pa pc \<and> pc = p \<and> pa \<noteq> p \<and> |
|
255 (\<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p'))" |
|
256 apply auto |
|
257 sorry |
|
258 qed |
|
259 qed |
|
260 |
|
261 lemma Info_flow_shm_intro3: |
|
262 "\<lbrakk>Info_flow_shm s p from; (from, SHM_RDWR) \<in> procs_of_shm s h; (to, flag) \<in> procs_of_shm s h\<rbrakk> |
|
263 \<Longrightarrow> Info_flow_shm s p to" |
|
264 apply (case_tac "from = to", simp) |
|
265 apply (erule_tac h = h in Info_flow_shm.intros(2), simp add:one_flow_shm_def) |
|
266 by (rule_tac x = flag in exI, simp) |
|
267 |
|
268 lemma Info_flow_shm_attach1: |
|
269 "Info_flow_shm s' pa pb \<Longrightarrow> valid s' \<and> (s' = Attach p h flag # s) \<longrightarrow> |
|
270 (if Info_flow_shm s pa pb then True else |
|
271 (if (pa = p \<and> flag = SHM_RDWR) |
|
272 then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb) |
|
273 else if (pb = p) |
|
274 then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p') |
|
275 else (\<exists> p' flag'. Info_flow_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> |
|
276 Info_flow_shm s p' pb) \<or> |
|
277 (\<exists> p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pb) |
|
278 ) )" |
|
279 proof (induct rule:Info_flow_shm.induct) |
|
280 case (ifs_self proc \<tau>) |
|
281 show ?case |
|
282 proof (rule impI) |
|
283 assume pre: "valid \<tau> \<and> \<tau> = Attach p h flag # s" |
|
284 hence p1: "p \<in> current_procs s" and p2: "valid s" by (auto intro:vd_cons dest:vt_grant_os) |
|
285 hence p3: "Info_flow_shm s p p" by (auto intro:Info_flow_shm.intros) |
|
286 from ifs_self pre have "proc \<in> current_procs s" by simp |
|
287 hence p4: "Info_flow_shm s proc proc" by (auto intro:Info_flow_shm.intros) |
|
288 show "if Info_flow_shm s proc proc then True |
|
289 else if proc = p \<and> flag = SHM_RDWR then \<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' proc |
|
290 else if proc = p then \<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s proc p' |
|
291 else (\<exists>p' flag'. Info_flow_shm s proc p \<and> |
|
292 flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> Info_flow_shm s p' proc) \<or> |
|
293 (\<exists>p'. Info_flow_shm s proc p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p proc)" using p4 p3 by auto |
|
294 qed |
|
295 next |
|
296 case (ifs_flow \<tau> pa pb h' pc) |
|
297 thus ?case |
|
298 proof (rule_tac impI) |
|
299 assume p1:"Info_flow_shm \<tau> pa pb" and p2: "valid \<tau> \<and> \<tau> = Attach p h flag # s \<longrightarrow> |
|
300 (if Info_flow_shm s pa pb then True |
|
301 else if pa = p \<and> flag = SHM_RDWR then \<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb |
|
302 else if pb = p then \<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p' |
|
303 else (\<exists>p' flag'. Info_flow_shm s pa p \<and> |
|
304 flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb) \<or> |
|
305 (\<exists>p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pb))" |
|
306 and p3: "one_flow_shm \<tau> h' pb pc" and p4: "valid \<tau> \<and> \<tau> = Attach p h flag # s" |
|
307 |
|
308 from p2 and p4 have p2': "(if Info_flow_shm s pa pb then True |
|
309 else if pa = p \<and> flag = SHM_RDWR then \<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb |
|
310 else if pb = p then \<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p' |
|
311 else (\<exists>p' flag'. Info_flow_shm s pa p \<and> |
|
312 flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb) \<or> |
|
313 (\<exists>p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pb))" |
|
314 by (erule_tac impE, simp) |
|
315 from p4 have p5: "valid s" and p6: "os_grant s (Attach p h flag)" by (auto intro:vd_cons dest:vt_grant_os) |
|
316 from p6 have "p \<in> current_procs s" by simp hence p7:"Info_flow_shm s p p" by (erule_tac Info_flow_shm.intros) |
|
317 from p3 p4 have p8: "if (h' = h) |
|
318 then (pb = p \<and> pc \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pc, flagb) \<in> procs_of_shm s h)) \<or> |
|
319 (pc = p \<and> pb \<noteq> p \<and> (pb, SHM_RDWR) \<in> procs_of_shm s h) \<or> |
|
320 (one_flow_shm s h pb pc) |
|
321 else one_flow_shm s h' pb pc " by (auto simp add:one_flow_shm_attach) |
|
322 |
|
323 have "\<And> flagb. (pc, flagb) \<in> procs_of_shm s h |
|
324 \<Longrightarrow> \<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc" |
|
325 apply (rule_tac x= pc in exI, rule_tac x = flagb in exI, frule procs_of_shm_prop2) |
|
326 by (simp add:p5, simp add:Info_flow_shm.intros(1)) |
|
327 hence p10: "\<not> Info_flow_shm s p pc \<Longrightarrow> (\<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc) \<or> |
|
328 Info_flow_shm s pa pc" |
|
329 using p2' p7 p8 p5 |
|
330 by (auto split:if_splits dest:Info_flow_shm.intros(2)) |
|
331 (* apply (rule_tac x = pb in exI, simp add:one_flow_flows, rule_tac x = flagb in exI, simp)+ *) |
|
332 moreover have "pc = p \<Longrightarrow> (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p') |
|
333 \<or> Info_flow_shm s pa pc" |
|
334 using p2' p7 p8 p5 |
|
335 by (auto split:if_splits intro:Info_flow_shm_intro3 simp:one_flow_shm_def) |
|
336 moreover have "\<lbrakk>pc \<noteq> p; pa \<noteq> p \<or> flag \<noteq> SHM_RDWR\<rbrakk> \<Longrightarrow> (\<exists>p' flag'. Info_flow_shm s pa p \<and> |
|
337 flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc) \<or> |
|
338 (\<exists>p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pc) \<or> |
|
339 Info_flow_shm s pa pc" |
|
340 using p2' p7 p8 p5 |
|
341 apply (auto split:if_splits intro:Info_flow_shm_intro3 simp:one_flow_shm_def) |
|
342 apply (rule_tac x = pc in exI, simp add:Info_flow_shm_intro4) |
|
343 apply (rule_tac x = flagb in exI, simp) |
|
344 done |
|
345 ultimately show "if Info_flow_shm s pa pc then True |
|
346 else if pa = p \<and> flag = SHM_RDWR then \<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc |
|
347 else if pc = p then \<exists>p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s pa p' |
|
348 else (\<exists>p' flag'. Info_flow_shm s pa p \<and> |
|
349 flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> Info_flow_shm s p' pc) \<or> |
|
350 (\<exists>p'. Info_flow_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p pc)" |
|
351 using p7 by auto |
|
352 qed |
|
353 qed |
|
354 |
|
355 |
|
356 |
|
357 |
|
358 |
|
359 |
|
360 |
|
361 |
|
362 |
|
363 |
|
364 lemma Info_flow_shm_attach: |
|
365 "valid (Attach p h flag # s) \<Longrightarrow> Info_flow_shm (Attach p h flag # s) = (\<lambda> pa pb. |
|
366 (Info_flow_shm s pa pb) \<or> |
|
367 (pa = p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb)) \<or> |
|
368 (pb = p \<and> (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pa)) )" |
|
369 apply (rule ext, rule ext, rule iffI) |
|
370 apply (case_tac "Info_flow_shm s pa pb", simp) |
|
371 apply (case_tac "pa = p \<and> flag = SHM_RDWR \<and> (\<exists>flagb. (p', flagb) \<in> procs_of_shm s h \<and> Info_flow_shm s p' pb)", simp) |
|
372 |
|
373 apply (erule Info_flow_shm_cases1, simp, drule_tac p = pc in Info_flow_shm.intros(1), simp) |
|
374 apply (simp add:one_flow_shm_simps split:if_splits, erule disjE, simp) |
|
375 |
|
376 |
|
377 |
|
378 apply (simp split:if_splits, (rule impI|rule allI|rule conjI|erule conjE|erule exE)+, simp) |
|
379 apply (simp) |
|
380 apply (simp, erule Info_flow_shm_cases', simp, simp) |
|
381 apply (rule_tac x = |
|
382 apply (auto dest:Info_flow_shm.cases) |
|
383 apply (auto simp add:one_flow_shm_simps) |
67 |
384 |
68 lemma info_flow_shm_detach: |
385 lemma info_flow_shm_detach: |
69 "valid (Detach p h # s) \<Longrightarrow> info_flow_shm (Detach p h # s) = (\<lambda> pa pb. |
386 "valid (Detach p h # s) \<Longrightarrow> info_flow_shm (Detach p h # s) = (\<lambda> pa pb. |
70 self_shm s pa pb \<or> ((p = pa \<or> p = pb) \<and> (\<exists> h'. h' \<noteq> h \<and> one_flow_shm s h' pa pb)) \<or> |
387 self_shm s pa pb \<or> ((p = pa \<or> p = pb) \<and> (\<exists> h'. h' \<noteq> h \<and> one_flow_shm s h' pa pb)) \<or> |
71 (pa \<noteq> p \<and> pb \<noteq> p \<and> info_flow_shm s pa pb) )" |
388 (pa \<noteq> p \<and> pb \<noteq> p \<and> info_flow_shm s pa pb) )" |