New_obj_prop.thy
changeset 1 7d9c0ed02b56
equal deleted inserted replaced
0:34d01e9a772e 1:7d9c0ed02b56
       
     1 theory New_obj_prop
       
     2 imports Main Finite_current Flask_type Flask Static
       
     3 begin
       
     4 
       
     5 context tainting_s begin
       
     6 
       
     7 lemma nn_notin_aux: "finite s \<Longrightarrow> \<forall> a \<in> s. Max s \<ge> a "
       
     8 apply (erule finite.induct, simp)
       
     9 apply (rule ballI)
       
    10 apply (case_tac "aa = a", simp+)
       
    11 done
       
    12 
       
    13 lemma nn_notin: "finite s \<Longrightarrow> next_nat s \<notin> s"
       
    14 apply (drule nn_notin_aux)
       
    15 apply (simp add:next_nat_def)
       
    16 by (auto)
       
    17 
       
    18 
       
    19 (* lemmas of new created obj *)
       
    20 
       
    21 lemma np_notin_curp: "valid \<tau> \<Longrightarrow> new_proc \<tau> \<notin> current_procs \<tau>" using finite_cp
       
    22 by (simp add:new_proc_def nn_notin)
       
    23 
       
    24 lemma np_notin_curp': "\<lbrakk>new_proc \<tau> \<in> current_procs \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> False"
       
    25 apply (drule np_notin_curp, simp)
       
    26 done
       
    27 
       
    28 lemma ni_notin_curi: "valid \<tau> \<Longrightarrow> new_inode_num \<tau> \<notin> current_inode_nums \<tau>"
       
    29 apply (drule finite_ci)
       
    30 by (simp add:new_inode_num_def nn_notin)
       
    31 
       
    32 lemma ni_notin_curi': "\<lbrakk>new_inode_num \<tau> \<in> current_inode_nums \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> False"
       
    33 by (drule ni_notin_curi, simp)
       
    34 
       
    35 lemma nm_notin_curm: "valid \<tau> \<Longrightarrow> new_msgq \<tau> \<notin> current_msgqs \<tau>" using finite_cm
       
    36 by (simp add:new_msgq_def nn_notin)
       
    37 
       
    38 lemma nm_notin_curm': "\<lbrakk>new_msgq \<tau> \<in> current_msgqs \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> False"
       
    39 by (drule nm_notin_curm, simp)
       
    40 
       
    41 lemma nh_notin_curh: "valid \<tau> \<Longrightarrow> new_shm \<tau> \<notin> current_shms \<tau>" using finite_ch
       
    42 by (simp add:new_shm_def nn_notin)
       
    43 
       
    44 lemma nh_notin_curh': "\<lbrakk>new_shm \<tau> \<in> current_shms \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> False"
       
    45 by (drule nh_notin_curh, simp)
       
    46 
       
    47 lemma nfd_notin_curfd: "valid \<tau> \<Longrightarrow> new_proc_fd \<tau> p \<notin> current_proc_fds \<tau> p" 
       
    48 using finite_cfd[where p = p]
       
    49 apply (simp add:new_proc_fd_def nn_notin)
       
    50 done
       
    51 
       
    52 lemma nfd_notin_curfd': "\<lbrakk>new_proc_fd \<tau> p \<in> current_proc_fds \<tau> p; valid \<tau>\<rbrakk> \<Longrightarrow> False"
       
    53 by (drule nfd_notin_curfd[where p = p], simp)
       
    54 
       
    55 lemma nim_notin_curim: "valid \<tau> \<Longrightarrow> new_inode_num \<tau> \<notin> current_inode_nums \<tau>"
       
    56 by (drule finite_ci, simp add:new_inode_num_def nn_notin)
       
    57 
       
    58 lemma nim_notin_curim': "\<lbrakk>new_inode_num \<tau> \<in> current_inode_nums \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> False"
       
    59 by (drule nim_notin_curim, simp)
       
    60 
       
    61 lemma len_fname_all: "length (fname_all_a len) = len"
       
    62 by (induct len, auto simp:fname_all_a.simps)
       
    63 
       
    64 lemma ncf_notin_curf: "valid \<tau> \<Longrightarrow> new_childf f \<tau> \<notin> current_files \<tau>"
       
    65 apply (drule finite_cf)
       
    66 apply (simp add:new_childf_def next_fname_def all_fname_under_dir_def)
       
    67 apply (rule notI)
       
    68 apply (subgoal_tac "(CHR ''a'' # fname_all_a (Max (fname_length_set {fn. fn # f \<in> current_files \<tau>}))) \<in> {fn. fn # f \<in> current_files \<tau>}")
       
    69 defer apply simp
       
    70 apply (subgoal_tac "length (CHR ''a'' # fname_all_a (Max (fname_length_set {fn. fn # f \<in> current_files \<tau>}))) \<in> fname_length_set {fn. fn # f \<in> current_files \<tau>}")
       
    71 defer apply (auto simp:fname_length_set_def image_def)[1]
       
    72 apply (subgoal_tac "finite (fname_length_set {fn. fn # f \<in> current_files \<tau>})")  
       
    73 defer
       
    74 apply (simp add:fname_length_set_def) 
       
    75 apply (rule finite_imageI)
       
    76 apply (drule_tac h = "\<lambda> f'. case f' of [] \<Rightarrow> '''' | fn # pf' \<Rightarrow> if (pf' = f) then fn else ''''" in finite_imageI)
       
    77 apply (rule_tac B = "(list_case [] (\<lambda>fn pf'. if pf' = f then fn else []) ` current_files \<tau>)" in finite_subset)
       
    78 unfolding image_def
       
    79 apply (clarsimp  split:if_splits)
       
    80 apply (rule_tac x = "x # f" in bexI, simp+)
       
    81 
       
    82 apply (drule_tac s = "(fname_length_set {fn. fn # f \<in> current_files \<tau>})" in nn_notin_aux)
       
    83 apply (erule_tac x = "length (CHR ''a'' # fname_all_a (Max (fname_length_set {fn. fn # f \<in> current_files \<tau>})))" in ballE)
       
    84 apply (simp add:len_fname_all, simp)
       
    85 done
       
    86 
       
    87 lemma ncf_parent: "valid \<tau> \<Longrightarrow> parent (new_childf f \<tau>) = Some f"
       
    88 by (simp add:new_childf_def)
       
    89 
       
    90 end
       
    91 
       
    92 end