Finite_current.thy
changeset 1 7d9c0ed02b56
child 72 526ba0410662
equal deleted inserted replaced
0:34d01e9a772e 1:7d9c0ed02b56
       
     1 theory Finite_current
       
     2 imports Main Valid_prop Flask Flask_type
       
     3 begin
       
     4 
       
     5 context flask begin
       
     6 
       
     7 lemma finite_cf: "valid \<tau> \<Longrightarrow> finite (current_files \<tau>)"
       
     8 apply (induct \<tau>)
       
     9 apply (simp add:current_files_def inum_of_file.simps)
       
    10 apply (rule_tac B = "init_files" in finite_subset)
       
    11 apply (clarsimp dest!:inof_has_file_tag, simp add:init_finite_sets)
       
    12 
       
    13 apply (frule vt_grant_os, frule vd_cons, simp, case_tac a)
       
    14 
       
    15 apply (auto simp:current_files_def os_grant.simps inum_of_file.simps split:if_splits option.splits)
       
    16 apply (rule_tac B = "insert list {f. \<exists>i. inum_of_file \<tau> f = Some i}" in finite_subset, clarsimp, simp)
       
    17 apply (rule_tac B = "{f. \<exists>i. inum_of_file \<tau> f = Some i}" in finite_subset, clarsimp, simp)
       
    18 apply (rule_tac B = "{f. \<exists>i. inum_of_file \<tau> f = Some i}" in finite_subset, clarsimp, simp)
       
    19 apply (rule_tac B = "{f. \<exists>i. inum_of_file \<tau> f = Some i}" in finite_subset, clarsimp, simp)
       
    20 apply (rule_tac B = "insert list {f. \<exists>i. inum_of_file \<tau> f = Some i}" in finite_subset, clarsimp, simp)
       
    21 apply (rule_tac B = "insert list2 {f. \<exists>i. inum_of_file \<tau> f = Some i}" in finite_subset, clarsimp, simp)
       
    22 done
       
    23 
       
    24 lemma finite_cp: "finite (current_procs \<tau>)"
       
    25 apply (induct \<tau>)
       
    26 apply (simp add:current_procs.simps init_finite_sets)
       
    27 apply (case_tac a, auto simp:current_procs.simps)
       
    28 done
       
    29 
       
    30 lemma finite_cfd: "valid \<tau> \<Longrightarrow> finite (current_proc_fds \<tau> p)"
       
    31 apply (induct \<tau> arbitrary:p)
       
    32 apply (simp add:current_proc_fds.simps init_finite_sets)
       
    33 apply (frule vd_cons, frule vt_grant_os, case_tac a, auto simp:current_proc_fds.simps)
       
    34 apply (metis double_diff equalityE finite_Diff)
       
    35 by (metis double_diff finite_Diff subset_refl)
       
    36 
       
    37 lemma finite_pair: "\<lbrakk>finite A; finite B\<rbrakk> \<Longrightarrow> finite {(x, y). x \<in> A \<and> y \<in> B}"
       
    38 by auto
       
    39 
       
    40 lemma finite_UN_I': "\<lbrakk>finite X; \<forall> x. x \<in> X \<longrightarrow> finite (f x)\<rbrakk> \<Longrightarrow> finite {(x, y). x \<in> X \<and> y \<in> f x}"
       
    41 apply (frule_tac B = f in finite_UN_I, simp)
       
    42 apply (drule_tac finite_pair, simp)
       
    43 apply (rule_tac B = "{(x, y). x \<in> X \<and> y \<in> (\<Union>a\<in>X. f a)}" in finite_subset, auto)
       
    44 done
       
    45 
       
    46 lemma finite_init_netobjs: "finite init_sockets"
       
    47 apply (subgoal_tac "finite {(p, fd). p \<in> init_procs \<and> fd \<in> init_fds_of_proc p}")
       
    48 apply (rule_tac B = "{(p, fd). p \<in> init_procs \<and> fd \<in> init_fds_of_proc p}" in finite_subset)
       
    49 apply (clarsimp dest!:init_socket_has_inode, simp)
       
    50 using init_finite_sets finite_UN_I'
       
    51 by (metis Collect_mem_eq SetCompr_Sigma_eq internal_split_def) 
       
    52 
       
    53 lemma finite_cn_aux: "valid \<tau> \<Longrightarrow> finite {s. \<exists>i. inum_of_socket \<tau> s = Some i}"
       
    54 apply (induct \<tau>)
       
    55 apply (rule_tac B = "init_sockets" in finite_subset)
       
    56 apply (clarsimp simp:inum_of_socket.simps dest!:inos_has_sock_tag, simp add:finite_init_netobjs)
       
    57 
       
    58 apply (frule vd_cons, frule vt_grant_os, simp, case_tac a)
       
    59 apply (auto split:option.splits if_splits) 
       
    60 apply (rule_tac B = "{s. \<exists>i. inum_of_socket \<tau> s = Some i}" in finite_subset, clarsimp split:if_splits, simp)
       
    61 apply (rule_tac B = "{s. \<exists>i. inum_of_socket \<tau> s = Some i} \<union> {(p, fd). \<exists> i. inum_of_socket \<tau> (nat1, fd) = Some i \<and> p = nat2 \<and> fd \<in> set1}" in finite_subset, clarsimp split:if_splits)
       
    62 apply (simp only:finite_Un, rule conjI, simp)
       
    63 apply (rule_tac B = "{(p, fd). \<exists> i. inum_of_socket \<tau> (nat1, fd) = Some i \<and> p = nat2}" in finite_subset, clarsimp)
       
    64 apply (drule_tac h = "\<lambda> (p, fd). if (p = nat1) then (nat2, fd) else (p, fd)" in finite_imageI)
       
    65 apply (rule_tac B = "((\<lambda>(p, fd). if p = nat1 then (nat2, fd) else (p, fd)) ` {a. \<exists>i. inum_of_socket \<tau> a = Some i})" in finite_subset) 
       
    66 apply (rule subsetI,erule CollectE, case_tac x, simp, (erule exE|erule conjE)+)
       
    67 unfolding image_def
       
    68 apply (rule CollectI, rule_tac x = "(nat1, b)" in bexI, simp+)
       
    69 apply (rule_tac B = "{s. \<exists>i. inum_of_socket \<tau> s = Some i}" in finite_subset, clarsimp split:if_splits, simp)+
       
    70 apply (rule_tac B = "insert (nat1, nat2) {s. \<exists>i. inum_of_socket \<tau> s = Some i}" in finite_subset, clarsimp, simp)
       
    71 apply (rule_tac B = "insert (nat1, nat4) {s. \<exists>i. inum_of_socket \<tau> s = Some i}" in finite_subset, clarsimp, simp)
       
    72 done
       
    73 
       
    74 lemma finite_cn: "valid \<tau> \<Longrightarrow> finite (current_sockets \<tau>)"
       
    75 apply (simp add:current_sockets_def inum_of_socket.simps)
       
    76 using finite_cn_aux[where \<tau> = \<tau>] by auto
       
    77 
       
    78 lemma finite_ch: "finite (current_shms \<tau>)"
       
    79 apply (induct \<tau>) defer
       
    80 apply (case_tac a, auto simp:current_shms.simps init_finite_sets)
       
    81 done
       
    82 
       
    83 lemma finite_cm: "finite (current_msgqs \<tau>)"
       
    84 apply (induct \<tau>) defer
       
    85 apply (case_tac a, auto simp: init_finite_sets)
       
    86 done
       
    87 
       
    88 
       
    89 lemma finite_option: "finite {x. \<exists> y. f x = Some y} \<Longrightarrow> finite {y. \<exists> x. f x = Some y}"
       
    90 apply (drule_tac h = f in finite_imageI)
       
    91 apply (clarsimp simp only:image_def)
       
    92 apply (rule_tac f = Some in finite_imageD)
       
    93 apply (rule_tac B = "{y. \<exists>x. (\<exists>y. f x = Some y) \<and> y = f x}" in finite_subset)
       
    94 unfolding image_def
       
    95 apply auto
       
    96 done
       
    97 
       
    98 lemma finite_ci: "valid \<tau> \<Longrightarrow> finite (current_inode_nums \<tau>)"
       
    99 apply (simp add:current_inode_nums_def current_file_inums_def current_sock_inums_def)
       
   100 apply (rule conjI, drule finite_cf, simp add:current_files_def, erule finite_option) 
       
   101 using finite_cn[where \<tau> = \<tau>] 
       
   102 apply (simp add:current_sockets_def, drule_tac finite_option, simp)
       
   103 done
       
   104 
       
   105 end
       
   106 
       
   107 end
       
   108 
       
   109