no_shm_selinux/Tainted_prop.thy
changeset 77 6f7b9039715f
equal deleted inserted replaced
76:f27ba31b7e96 77:6f7b9039715f
       
     1 theory Tainted_prop 
       
     2 imports Main Flask Flask_type Init_prop Current_files_prop Current_sockets_prop Delete_prop Proc_fd_of_file_prop Current_prop Alive_prop
       
     3 begin
       
     4 
       
     5 ML {*quick_and_dirty := true*}
       
     6 
       
     7 context tainting begin
       
     8 
       
     9 lemma valid_tainted_obj:
       
    10   "\<lbrakk>obj \<in> tainted s; valid s\<rbrakk> \<Longrightarrow> (\<forall> f. obj \<noteq> O_dir f) \<and> (\<forall> q. obj \<noteq> O_msgq q) \<and> (\<forall> p fd. obj \<noteq> O_fd p fd) \<and> (\<forall> s. obj \<noteq> O_tcp_sock s) \<and> (\<forall> s. obj \<noteq> O_udp_sock s)" (*(\<forall> h. obj \<noteq> O_shm h) \<and>*)
       
    11 apply (induct s, simp)
       
    12 apply (drule seeds_appropriate, case_tac obj, simp+)
       
    13 apply (frule vd_cons, frule vt_grant_os, case_tac a)
       
    14 apply (auto split:if_splits option.splits)
       
    15 done
       
    16 
       
    17 lemma dir_not_tainted: "\<lbrakk>O_dir f \<in> tainted s; valid s\<rbrakk> \<Longrightarrow> False"
       
    18 by (auto dest!:valid_tainted_obj)
       
    19 
       
    20 lemma msgq_not_tainted: "\<lbrakk>O_msgq q \<in> tainted s; valid s\<rbrakk> \<Longrightarrow> False"
       
    21 by (auto dest:valid_tainted_obj)
       
    22 
       
    23 lemma tainted_in_current:
       
    24   "\<lbrakk>obj \<in> tainted s; valid s\<rbrakk> \<Longrightarrow> alive s obj"
       
    25 apply (induct s, simp)
       
    26 apply (drule seeds_appropriate, case_tac obj, simp_all add:is_file_nil)
       
    27 apply (frule vd_cons, frule valid_tainted_obj, simp, frule vt_grant_os, case_tac a)
       
    28 apply (auto simp:alive_simps split:if_splits option.splits t_object.splits
       
    29            intro:same_inode_files_prop1 (*procs_of_shm_prop2 
       
    30             dest:info_shm_flow_in_procs *))
       
    31 apply (auto simp:same_inode_files_def is_file_def split:if_splits)
       
    32 done 
       
    33 
       
    34 lemma tainted_proc_in_current:
       
    35   "\<lbrakk>O_proc p \<in> tainted s; valid s\<rbrakk> \<Longrightarrow> p \<in> current_procs s"
       
    36 by (drule tainted_in_current, simp+)
       
    37 
       
    38 (*
       
    39 lemma info_flow_shm_tainted:
       
    40   "\<lbrakk>O_proc p \<in> tainted s; info_flow_shm s p p'; valid s\<rbrakk> \<Longrightarrow> O_proc p' \<in> tainted s"
       
    41 proof (induct s arbitrary:p p')
       
    42   case Nil
       
    43   thus ?case by (simp add:flow_shm_in_seeds)
       
    44 next
       
    45   case (Cons e s)
       
    46   hence p1: "O_proc p \<in> tainted (e # s)" and p2: "info_flow_shm (e # s) p p'" and p3: "valid (e # s)"  
       
    47     and p4: "\<And> p p'. \<lbrakk>O_proc p \<in> tainted s; info_flow_shm s p p'\<rbrakk> \<Longrightarrow> O_proc p' \<in> tainted s" 
       
    48     and p5: "valid s" and p6: "os_grant s e"
       
    49     by (auto dest:vd_cons intro:vd_cons vt_grant_os)
       
    50   have p4': 
       
    51     "\<And> p p' h flag. \<lbrakk>O_proc p \<in> tainted s; (p, SHM_RDWR) \<in> procs_of_shm s h; (p', flag) \<in> procs_of_shm s h\<rbrakk> 
       
    52                 \<Longrightarrow> O_proc p' \<in> tainted s"
       
    53     by (rule p4, auto simp:info_flow_shm_def one_flow_shm_def procs_of_shm_prop2 p5)    
       
    54   from p2 p3 have p7: "p \<in> current_procs (e # s)" and p8: "p' \<in> current_procs (e # s)" 
       
    55     by (auto dest:info_shm_flow_in_procs) 
       
    56   show ?case
       
    57   proof (cases "self_shm s p p'")
       
    58     case True with p1 show ?thesis by simp
       
    59   next
       
    60     case False
       
    61     with p1 p2 p5 p6 p7 p8 p3 show ?thesis
       
    62     apply (case_tac e)(*
       
    63     prefer 7
       
    64     apply (simp add:info_flow_shm_simps split:if_splits option.splits)
       
    65     apply (rule allI|rule impI|rule conjI)+
       
    66     apply simp
       
    67     apply (case_tac "O_proc p \<in> tainted s", drule_tac p'=p' in p4, simp+)
       
    68     apply simp
       
    69 
       
    70 
       
    71 
       
    72 
       
    73     apply (auto simp:info_flow_shm_simps one_flow_shm_def dest:tainted_in_current 
       
    74   intro:p4 p4' split:if_splits option.splits)
       
    75     apply (auto simp:info_flow_shm_def one_flow_shm_def)
       
    76 
       
    77 
       
    78 
       
    79     apply (auto simp:one_flow_shm_def intro:p4 p4' split:if_splits option.splits)
       
    80 
       
    81 
       
    82 
       
    83     prefer 7
       
    84     apply (simp split:if_splits option.splits)
       
    85     apply (rule allI|rule impI|rule conjI)+
       
    86 
       
    87 
       
    88     apply (auto dest:p4'   procs_of_shm_prop2 tainted_in_current split:if_splits option.splits)[1]
       
    89 
       
    90     apply (erule disjE, drule_tac p = p and p' = p' in p4', simp+)
       
    91     apply (erule disjE, rule disjI2, rule disjI2, rule_tac x = h in exI, simp, rule_tac x= toflag in exI, simp)
       
    92     apply ((erule exE|erule conjE)+)
       
    93     
       
    94 
       
    95     apply (auto simp:info_flow_shm_def dest:p4'
       
    96            procs_of_shm_prop2 tainted_in_current split:if_splits option.splits)[1]
       
    97     apply (drule_tac p = p and p' = p' in p4')
       
    98     apply (erule_tac x = ha in allE, simp)
       
    99     apply (drule_tac p = "nat1" and p' = p' in p4')
       
   100     apply (auto dest:p4'[where p = nat1 and p' = p'])
       
   101     
       
   102 apply (induct s) 
       
   103 apply simp defer
       
   104 apply (frule vd_cons, frule vt_grant_os, case_tac a)
       
   105 apply (auto simp:info_flow_shm_def elim!:disjE)
       
   106 sorry *)
       
   107   sorry
       
   108 qed
       
   109 qed
       
   110 *)
       
   111 
       
   112 lemma has_same_inode_comm:
       
   113   "has_same_inode s f f' = has_same_inode s f' f"
       
   114 by (auto simp add:has_same_inode_def same_inode_files_def is_file_def)
       
   115 
       
   116 (*
       
   117 lemma info_flow_shm_tainted:
       
   118   "\<lbrakk>O_proc p \<in> tainted s; info_flow_shm s p p'; valid s\<rbrakk> \<Longrightarrow> O_proc p' \<in> tainted s"
       
   119 by (simp only:tainted_eq_tainted info_flow_shm_tainted)
       
   120 *)
       
   121 
       
   122 lemma same_inode_files_tainted:
       
   123   "\<lbrakk>O_file f \<in> tainted s; f' \<in> same_inode_files s f; valid s\<rbrakk> \<Longrightarrow> O_file f' \<in> tainted s"
       
   124 apply (induct s arbitrary:f f', simp add:same_inode_in_seeds has_same_inode_def)
       
   125 apply (frule vt_grant_os, frule vd_cons, case_tac a)
       
   126 prefer 6
       
   127 apply (simp split:if_splits option.splits add:same_inode_files_open current_files_simps)
       
   128 prefer 8
       
   129 apply (frule tainted_in_current, simp, simp add:alive.simps, drule is_file_in_current)
       
   130 apply (auto simp add:same_inode_files_closefd split:option.splits if_splits)[1]
       
   131 prefer 8
       
   132 apply (frule tainted_in_current, simp, simp add:alive.simps, drule is_file_in_current)
       
   133 apply (auto simp add:same_inode_files_unlink split:option.splits if_splits)[1]
       
   134 prefer 10
       
   135 apply (auto split:if_splits option.splits simp:same_inode_files_linkhard current_files_simps)[1]
       
   136 apply (drule tainted_in_current, simp, simp add:alive.simps is_file_in_current)
       
   137 apply (drule same_inode_files_prop5, simp)
       
   138 apply (drule same_inode_files_prop5, drule_tac f' = list1 and f'' = f' in same_inode_files_prop4, simp, simp)
       
   139 
       
   140 apply (auto simp:same_inode_files_other split:if_splits)
       
   141 apply (drule_tac f'' = f' and f' = f and f = fa in same_inode_files_prop4, simp+)
       
   142 apply (drule_tac f'' = f' and f' = f and f = list in same_inode_files_prop4, simp+)
       
   143 done
       
   144 
       
   145 lemma has_same_inode_tainted:
       
   146   "\<lbrakk>O_file f \<in> tainted s; has_same_inode s f f'; valid s\<rbrakk> \<Longrightarrow> O_file f' \<in> tainted s"
       
   147 by (simp add:has_same_inode_def same_inode_files_tainted)
       
   148 
       
   149 lemma same_inodes_tainted:
       
   150   "\<lbrakk>f \<in> same_inode_files s f'; valid s\<rbrakk> \<Longrightarrow> (O_file f \<in> tainted s) = (O_file f' \<in> tainted s)"
       
   151 apply (frule same_inode_files_prop8, frule same_inode_files_prop7)
       
   152 apply (auto intro:has_same_inode_tainted)
       
   153 done
       
   154 
       
   155 lemma t_remain: "\<lbrakk>obj \<in> tainted s; valid (e # s); alive (e # s) obj\<rbrakk> 
       
   156              \<Longrightarrow> obj \<in> tainted (e # s)"
       
   157 apply (frule vd_cons, frule vt_grant_os, case_tac e)
       
   158 apply (auto simp:alive_simps split:option.splits if_splits)
       
   159 done
       
   160 
       
   161 lemma not_exited_cons:
       
   162   "\<not> exited obj (e # s) \<Longrightarrow> \<not> exited obj s"
       
   163 apply (case_tac e, case_tac [!] obj)
       
   164 by (auto)
       
   165 
       
   166 lemma t_remain_app:
       
   167   "\<lbrakk>obj \<in> tainted s; \<not> died obj (s' @ s); valid (s' @ s)\<rbrakk> 
       
   168   \<Longrightarrow> obj \<in> tainted (s' @ s)"
       
   169 apply (induct s', simp)
       
   170 apply (simp (no_asm) only:cons_app_simp_aux, rule t_remain)
       
   171 apply (simp_all add:not_died_cons_D vd_cons) 
       
   172 apply (frule tainted_in_current)
       
   173 apply (simp add:vd_cons)
       
   174 apply (drule valid_tainted_obj, simp add:vd_cons) 
       
   175 apply (case_tac a, auto simp:alive_simps split:t_object.splits option.splits)
       
   176 done
       
   177 
       
   178 lemma t_remain_app_deleted:
       
   179   "\<lbrakk>obj \<in> tainted s; \<not> deleted obj (s' @ s); appropriate obj; \<not> exited obj (s' @ s); valid (s' @ s)\<rbrakk>
       
   180    \<Longrightarrow> obj \<in> tainted (s' @ s)"
       
   181 apply (rule t_remain_app, simp_all add:deleted_died)
       
   182 done
       
   183 
       
   184 end
       
   185 
       
   186 end