no_shm_selinux/Dynamic_static.thy
changeset 77 6f7b9039715f
equal deleted inserted replaced
76:f27ba31b7e96 77:6f7b9039715f
       
     1 theory Dynamic_static
       
     2 imports Main Flask Static Init_prop Valid_prop Tainted_prop Delete_prop Co2sobj_prop S2ss_prop S2ss_prop2
       
     3  Temp Enrich
       
     4 begin
       
     5 
       
     6 context tainting_s begin
       
     7 
       
     8 
       
     9 
       
    10 lemma "alive s obj \<Longrightarrow> alive (enrich_proc s p p') obj"
       
    11 apply (induct s, simp)
       
    12 apply (case_tac a, case_tac[!] obj) sorry (*
       
    13 apply (auto simp:is_file_def is_dir_def split:option.splits t_inode_tag.splits)
       
    14 thm is_file_other
       
    15 *)
       
    16 lemma enrich_proc_valid:
       
    17   "\<lbrakk>p \<in> current_procs s; valid s; p \<in> init_procs \<longrightarrow> deleted (O_proc p) s; p' \<notin> current_procs s\<rbrakk> \<Longrightarrow> valid (enrich_proc s p p')" (* 
       
    18 apply (induct s, simp)
       
    19 apply (frule vd_cons, frule vt_grant, frule vt_grant_os, case_tac a)
       
    20 apply (auto intro!:valid.intros(2))
       
    21 prefer 28
       
    22        
       
    23 
       
    24 
       
    25 end
       
    26 *)
       
    27 sorry
       
    28 
       
    29 
       
    30 
       
    31 
       
    32 
       
    33 (* for any created obj, we can enrich trace with events that create new objs with the same static-properties *)
       
    34 definition enriched:: "t_state \<Rightarrow> t_object set \<Rightarrow> t_state \<Rightarrow> bool"
       
    35 where
       
    36   "enriched s objs s' \<equiv> \<forall> obj \<in> objs. \<exists> obj'. \<not> alive s obj' \<and> obj' \<notin> objs \<and>
       
    37                                                 alive s' obj' \<and> co2sobj s' obj' = co2sobj s' obj"
       
    38 
       
    39 definition reserved:: "t_state \<Rightarrow> t_object set \<Rightarrow> t_state \<Rightarrow> bool"
       
    40 where
       
    41   "reserved s objs s' \<equiv> \<forall> obj. alive s obj \<longrightarrow> alive s' obj \<and> co2sobj s' obj = co2sobj s obj"
       
    42 
       
    43 definition enrichable :: "t_state \<Rightarrow> t_object set \<Rightarrow> bool"
       
    44 where
       
    45   "enrichable s objs \<equiv> \<exists> s'. valid s' \<and> s2ss s' = s2ss s \<and> enriched s objs s' \<and> reserved s objs s'"
       
    46 
       
    47 fun is_created :: "t_state \<Rightarrow> t_object \<Rightarrow> bool"
       
    48 where
       
    49   "is_created s (O_file f) = (\<forall> f' \<in> same_inode_files s f. init_alive (O_file f') \<longrightarrow> deleted (O_file f') s)"
       
    50 | "is_created s obj        = (init_alive obj \<longrightarrow> deleted obj s)"
       
    51 
       
    52 definition is_inited :: "t_state \<Rightarrow> t_object \<Rightarrow> bool"
       
    53 where
       
    54   "is_inited s obj \<equiv> init_alive obj \<and> \<not> deleted obj s"
       
    55 
       
    56 (*
       
    57 lemma is_inited_eq_not_created:
       
    58   "is_inited s obj = (\<not> is_created s obj)"
       
    59 by (auto simp:is_created_def is_inited_def)
       
    60 *)
       
    61 
       
    62 lemma many_sq_imp_sms:
       
    63   "\<lbrakk>S_msgq (Create, sec, sms) \<in> ss; ss \<in> static\<rbrakk> \<Longrightarrow> \<forall> sm \<in> (set sms). is_many_smsg sm"
       
    64 sorry
       
    65 
       
    66 (* recorded in our static world *)
       
    67 fun recorded :: "t_object \<Rightarrow> bool"
       
    68 where
       
    69   "recorded (O_proc p)     = True"
       
    70 | "recorded (O_file f)     = True"
       
    71 | "recorded (O_dir  f)     = True"
       
    72 | "recorded (O_node n)     = False" (* cause socket is temperary not considered *)
       
    73 | "recorded (O_shm  h)     = True"
       
    74 | "recorded (O_msgq q)     = True"
       
    75 | "recorded _              = False"
       
    76 
       
    77 lemma cf2sfile_fi_init_file:
       
    78   "\<lbrakk>cf2sfile s f = Some (Init f', sec, psec, asecs); is_file s f; valid s\<rbrakk> 
       
    79    \<Longrightarrow> is_init_file f \<and> \<not> deleted (O_file f) s"
       
    80 apply (simp add:cf2sfile_def sroot_def split:option.splits if_splits)
       
    81 apply (case_tac f, simp, drule root_is_dir', simp+)
       
    82 done
       
    83 
       
    84 lemma root_not_deleted:
       
    85   "valid s \<Longrightarrow> \<not> deleted (O_dir []) s"
       
    86 apply (induct s, simp)
       
    87 apply (frule vd_cons, frule vt_grant_os, case_tac a)
       
    88 by auto
       
    89 
       
    90 lemma cf2sfile_fi_init_dir:
       
    91   "\<lbrakk>cf2sfile s f = Some (Init f', sec, psec, asecs); is_dir s f; valid s\<rbrakk> 
       
    92    \<Longrightarrow> is_init_dir f \<and> \<not> deleted (O_dir f) s"
       
    93 apply (simp add:cf2sfile_def sroot_def split:option.splits if_splits)
       
    94 apply (case_tac f, simp add:root_is_init_dir root_not_deleted, simp)
       
    95 apply (drule file_dir_conflict, simp+)
       
    96 done
       
    97 
       
    98 lemma is_created_imp_many: 
       
    99   "\<lbrakk>is_created s obj; co2sobj s obj = Some sobj; alive s obj; valid s\<rbrakk> \<Longrightarrow> is_many sobj"
       
   100 apply (case_tac obj, auto simp:co2sobj.simps split:option.splits)
       
   101 apply (case_tac [!] a)
       
   102 apply (auto simp:cp2sproc_def ch2sshm_def cq2smsgq_def cf2sfiles_def same_inode_files_def
       
   103   split:option.splits if_splits)
       
   104 apply (frule cf2sfile_fi_init_file, simp add:is_file_def, simp)
       
   105 apply (erule_tac x = f' in allE, simp)
       
   106 apply (frule cf2sfile_fi_init_dir, simp+)+
       
   107 done
       
   108 
       
   109 lemma anotherp_imp_manysp: 
       
   110   "\<lbrakk>cp2sproc s p = Some sp; co2sobj s (O_proc p') = co2sobj s (O_proc p); p' \<noteq> p;
       
   111     p' \<in> current_procs s; p \<in> current_procs s\<rbrakk> 
       
   112    \<Longrightarrow> is_many_sproc sp"
       
   113 by (case_tac sp, auto simp:cp2sproc_def co2sobj.simps split:option.splits if_splits)
       
   114 
       
   115 lemma is_file_has_sfs:
       
   116   "\<lbrakk>is_file s f; valid s; cf2sfile s f = Some sf\<rbrakk> 
       
   117    \<Longrightarrow> \<exists> sfs. co2sobj s (O_file f) = Some (S_file sfs (O_file f \<in> Tainted s)) \<and> sf \<in> sfs"
       
   118 apply (rule_tac x = "{sf' | f' sf'. cf2sfile s f' = Some sf' \<and> f' \<in> same_inode_files s f}" in exI)
       
   119 apply (auto simp:co2sobj.simps cf2sfiles_def tainted_eq_Tainted)
       
   120 apply (rule_tac x = f in exI, simp add:same_inode_files_prop9)
       
   121 done
       
   122 
       
   123 declare Product_Type.split_paired_Ex Product_Type.split_paired_All [simp del]
       
   124 
       
   125 lemma current_proc_in_s2ss:
       
   126   "\<lbrakk>cp2sproc s p = Some sp; p \<in> current_procs s; valid s\<rbrakk>
       
   127    \<Longrightarrow> S_proc sp (O_proc p \<in> Tainted s) \<in> s2ss s"
       
   128 apply (simp add:s2ss_def, rule_tac x = "O_proc p" in exI)
       
   129 apply (auto simp:co2sobj.simps tainted_eq_Tainted)
       
   130 done
       
   131 
       
   132 lemma current_file_in_s2ss:
       
   133   "\<lbrakk>co2sobj s (O_file f) = Some (S_file sfs tagf); is_file s f; valid s\<rbrakk>
       
   134    \<Longrightarrow> S_file sfs tagf \<in> s2ss s"
       
   135 by (simp add:s2ss_def, rule_tac x = "O_file f" in exI, simp)
       
   136 
       
   137 declare npctxt_execve.simps grant_execve.simps search_check.simps [simp del]
       
   138 
       
   139 
       
   140 lemma npctxt_execve_eq_sec:
       
   141   "\<lbrakk>sectxt_of_obj (Execve p f fds # s) (O_proc p) = Some sec'; sectxt_of_obj s (O_proc p) = Some sec;
       
   142     sectxt_of_obj s (O_file f) = Some fsec; valid (Execve p f fds # s)\<rbrakk>
       
   143    \<Longrightarrow> npctxt_execve sec fsec = Some sec'"
       
   144 by (case_tac sec, case_tac fsec, auto simp:npctxt_execve.simps sectxt_of_obj_simps split:option.splits)
       
   145 
       
   146 lemma npctxt_execve_eq_cp2sproc:
       
   147   "\<lbrakk>cp2sproc (Execve p f fds # s) p = Some (pi', sec', sfds', shms'); valid (Execve p f fds # s);
       
   148     cp2sproc s p = Some (pi, sec, sfds, shms); cf2sfile s f = Some (fi, fsec, psec, asecs)\<rbrakk>
       
   149    \<Longrightarrow> npctxt_execve sec fsec = Some sec'"
       
   150 apply (frule vt_grant_os, frule vd_cons)
       
   151 apply (rule npctxt_execve_eq_sec, auto simp:cp2sproc_def cf2sfile_def split:option.splits)
       
   152 apply (case_tac f, auto dest:root_is_dir')
       
   153 done
       
   154 
       
   155 lemma seach_check_eq_static:
       
   156   "\<lbrakk>cf2sfile s f = Some sf; valid s; is_dir s f \<or> is_file s f\<rbrakk>
       
   157    \<Longrightarrow> search_check_s sec sf (is_file s f) = search_check s sec f"
       
   158 apply (case_tac sf)
       
   159 apply (induct f)
       
   160 apply (auto simp:search_check_s_def search_check.simps cf2sfile_def sroot_def 
       
   161                  root_sec_remains init_sectxt_prop sec_of_root_valid
       
   162            dest!:root_is_dir' current_has_sec' split:option.splits)
       
   163 done
       
   164 
       
   165 lemma grant_execve_intro_execve:
       
   166   "\<lbrakk>cp2sproc (Execve p f fds # s) p = Some (pi', sec', sfds', shms'); valid (Execve p f fds # s);
       
   167      cp2sproc s p = Some (pi, sec, sfds, shms); cf2sfile s f = Some (fi, fsec, psec, asecs)\<rbrakk>
       
   168     \<Longrightarrow> grant_execve sec fsec sec'"
       
   169 apply (frule vt_grant_os, frule vd_cons, frule vt_grant)
       
   170 apply (auto split:option.splits dest!:current_has_sec' simp del:grant_execve.simps simp add:cp2sproc_execve)
       
   171 apply (erule_tac x = aba in allE, erule_tac x = aca in allE, erule_tac x = bb in allE)
       
   172 apply (auto simp del:grant_execve.simps simp add:cp2sproc_def cf2sfile_def split:option.splits)
       
   173 apply (case_tac f, simp, drule root_is_dir', simp, simp, simp)
       
   174 apply (simp add:sectxt_of_obj_simps)
       
   175 done
       
   176 
       
   177 lemma search_check_intro_execve:
       
   178   "\<lbrakk>cp2sproc s p = Some (pi, sec, sfds, shms); valid (Execve p f fds # s)\<rbrakk>
       
   179    \<Longrightarrow> search_check s sec f"
       
   180 apply (frule vt_grant_os, frule vd_cons, frule vt_grant)
       
   181 apply (auto split:option.splits dest!:current_has_sec' simp del:grant_execve.simps simp add:cp2sproc_execve)
       
   182 apply (erule_tac x = aaa in allE, erule_tac x = ab in allE, erule_tac x = ba in allE)
       
   183 apply (auto simp add:cp2sproc_def cf2sfile_def split:option.splits)
       
   184 done
       
   185 
       
   186 lemma inherit_fds_check_intro_execve:
       
   187   "\<lbrakk>cp2sproc (Execve p f fds # s) p = Some (pi', sec', sfds', shms'); valid (Execve p f fds # s)\<rbrakk>
       
   188     \<Longrightarrow> inherit_fds_check s sec' p fds"
       
   189 apply (frule vt_grant_os, frule vd_cons, frule vt_grant)
       
   190 apply (auto split:option.splits dest!:current_has_sec' simp add:cp2sproc_execve)
       
   191 apply (erule_tac x = aba in allE, erule_tac x = aca in allE, erule_tac x = bb in allE)
       
   192 apply (auto simp add:cp2sproc_def cf2sfile_def split:option.splits)
       
   193 apply (simp add:sectxt_of_obj_simps)
       
   194 done
       
   195 
       
   196 lemma execve_sfds_subset: 
       
   197   "\<lbrakk>cp2sproc (Execve p f fds # s) p = Some (pi', sec', sfds', shms'); valid (Execve p f fds # s);
       
   198     cp2sproc s p = Some (pi, sec, sfds, shms)\<rbrakk>
       
   199    \<Longrightarrow> sfds' \<subseteq> sfds"
       
   200 apply (frule vt_grant_os)
       
   201 apply (auto simp:cp2sproc_def cpfd2sfds_execve split:option.splits dest!:current_has_sec')
       
   202 apply (simp add:cpfd2sfds_def)
       
   203 apply (rule_tac x = fd in bexI, auto simp:proc_file_fds_def)
       
   204 done
       
   205 
       
   206 lemma inherit_fds_check_imp_static:
       
   207   "\<lbrakk>cp2sproc (Execve p f fds # s) p = Some (pi', sec', sfds', shms');
       
   208     inherit_fds_check s sec' p fds; valid (Execve p f fds # s)\<rbrakk>
       
   209    \<Longrightarrow> inherit_fds_check_s sec' sfds'"
       
   210 apply (frule vt_grant_os, frule vd_cons, frule vt_grant)
       
   211 apply (auto simp:cp2sproc_def cpfd2sfds_execve inherit_fds_check_def inherit_fds_check_s_def split:option.splits)
       
   212 sorry (*
       
   213 apply (erule_tac x = "(ad, ae, bc)" in ballE, auto simp:sectxts_of_sfds_def sectxts_of_fds_def)
       
   214 apply (erule_tac x = fd in ballE, auto simp:cfd2sfd_def split:option.splits)
       
   215 done *)
       
   216 
       
   217 lemma d2s_main_execve_grant_aux:
       
   218   "\<lbrakk>cp2sproc (Execve p f fds # s) p = Some (pi', sec', sfds', shms'); valid (Execve p f fds # s);
       
   219     cp2sproc s p = Some (pi, sec, sfds, shms); cf2sfile s f = Some (fi, fsec, psec, asecs)\<rbrakk>
       
   220    \<Longrightarrow> (npctxt_execve sec fsec = Some sec') \<and> grant_execve sec fsec sec' \<and> 
       
   221        search_check_s sec (fi, fsec, psec, asecs) (is_file s f) \<and> 
       
   222        inherit_fds_check_s sec' sfds' \<and> sfds' \<subseteq> sfds"
       
   223 apply (rule conjI, erule_tac pi = pi and sec = sec and sfds = sfds and 
       
   224    shms = shms and fi = fi and fsec = fsec and psec = psec and 
       
   225    asecs = asecs in npctxt_execve_eq_cp2sproc, simp, simp, simp)
       
   226 apply (rule conjI, erule_tac pi = pi and sec = sec and sfds = sfds and 
       
   227    shms = shms and fi = fi and fsec = fsec and psec = psec and 
       
   228    asecs = asecs in grant_execve_intro_execve, simp, simp, simp)
       
   229 apply (rule conjI, drule_tac sec = sec in search_check_intro_execve, simp)
       
   230 apply (frule vd_cons, frule vt_grant_os)
       
   231 apply (drule_tac sec = sec in seach_check_eq_static, simp, simp, simp)
       
   232 apply (rule conjI, rule inherit_fds_check_imp_static, simp)
       
   233 apply (erule inherit_fds_check_intro_execve, simp, simp)
       
   234 apply (erule_tac pi = pi and sfds = sfds and shms = shms in execve_sfds_subset, simp+)
       
   235 done
       
   236 
       
   237 lemma d2s_main_execve:
       
   238   "\<lbrakk>valid (Execve p f fds # s); s2ss s \<propto> static\<rbrakk> \<Longrightarrow> s2ss (Execve p f fds # s) \<propto> static"
       
   239 apply (frule vd_cons, frule vt_grant_os, clarsimp)
       
   240 apply (frule is_file_has_sfile', simp, erule exE, frule is_file_has_sfs, simp+, erule exE, erule conjE)
       
   241 apply (auto simp:s2ss_execve split:if_splits option.splits dest:current_proc_has_sp')
       
   242 apply (clarsimp simp add:init_ss_in_def init_ss_eq_def)
       
   243 apply (rule_tac x = "update_ss ss' (S_proc (ah, (ai, aj, bd), ak, be) (O_proc p \<in> Tainted s))
       
   244   (S_proc (ad, (ae, af, bb), ag, bc) (O_proc p \<in> Tainted s \<or> O_file f \<in> Tainted s))" in bexI)
       
   245 apply (auto simp:update_ss_def elim:Set.subset_insertI2 simp:anotherp_imp_manysp)[1]
       
   246 apply (case_tac "ah = ad", case_tac "bc = {}", simp)
       
   247 apply (erule_tac sfs = sfs and fi = a and fsec = "(aa, ab,b)" and pfsec = ac and asecs = ba in s_execve,
       
   248   auto intro:current_proc_in_s2ss current_file_in_s2ss split:option.splits dest:d2s_main_execve_grant_aux)[1]
       
   249 apply (simp add:cp2sproc_execve split:option.splits)
       
   250 apply (simp add:cp2sproc_def split:option.splits if_splits)
       
   251 
       
   252 apply (clarsimp simp add:init_ss_in_def init_ss_eq_def)
       
   253 apply (rule_tac x = "update_ss ss' (S_proc (ah, (ai, aj, bd), ak, be) (O_proc p \<in> Tainted s))
       
   254   (S_proc (ad, (ae, af, bb), ag, bc) (O_proc p \<in> Tainted s \<or> O_file f \<in> Tainted s))" in bexI)
       
   255 apply (rule conjI, simp add:update_ss_def)
       
   256 apply (rule conjI, simp add:update_ss_def)
       
   257 apply (auto)[1]
       
   258 apply (simp add:update_ss_def)
       
   259 apply (rule conjI, rule impI)
       
   260 apply (rule subsetI, clarsimp)
       
   261 apply (erule impE)
       
   262 apply (erule set_mp, simp)
       
   263 apply (case_tac ah, simp+)
       
   264 apply (rule impI, rule subsetI, clarsimp)
       
   265 apply (erule set_mp, simp)
       
   266 
       
   267 apply (case_tac "ah = ad", case_tac "bc = {}", simp)
       
   268 apply (erule_tac sfs = sfs and fi = a and fsec = "(aa, ab,b)" and pfsec = ac and asecs = ba in s_execve,
       
   269   auto intro:current_proc_in_s2ss current_file_in_s2ss split:option.splits dest:d2s_main_execve_grant_aux)[1]
       
   270 apply (simp add:cp2sproc_execve split:option.splits)
       
   271 apply (simp add:cp2sproc_def split:option.splits if_splits)
       
   272 done
       
   273 
       
   274 lemma co2sobj_eq_alive_proc_imp:
       
   275   "\<lbrakk>co2sobj s obj = co2sobj s (O_proc p); alive s (O_proc p); valid s\<rbrakk>
       
   276    \<Longrightarrow> \<exists> p'. obj = O_proc p'"
       
   277 by (auto simp add:co2sobj.simps split:option.splits dest:current_proc_has_sp' intro:co2sobj_sproc_imp)
       
   278 
       
   279 
       
   280 lemma enrichable_execve:
       
   281  assumes p1: "\<And> objs. \<forall> obj \<in> objs. alive s obj \<and> is_created s obj \<and> recorded obj
       
   282               \<Longrightarrow> \<exists> s'. valid s' \<and> s2ss s' = s2ss s \<and> enriched s objs s' \<and> reserved s objs s'"
       
   283   and p2: "valid (e # s)" and p3: "\<forall>obj\<in>objs. alive (e # s) obj \<and> is_created (e # s) obj \<and> recorded obj"
       
   284   and p4: "e = Execve p f fds" 
       
   285   shows "enrichable (e # s) objs"
       
   286 proof-
       
   287   from p2 have os: "os_grant s e" and se: "grant s e" and vd: "valid s"
       
   288     by (auto dest:vt_grant_os vd_cons vt_grant)
       
   289   from p3 have recorded: "\<forall> obj \<in> objs. recorded obj" by auto
       
   290   from p3 p4 p2 have p1': "\<forall> obj \<in> objs. alive s obj \<and> is_created s obj"
       
   291     apply clarify
       
   292     apply (erule_tac x = obj in ballE, simp add:alive_simps)
       
   293     apply (case_tac obj, auto simp:same_inode_files_simps)
       
   294     done
       
   295   then obtain s' where a1: "valid s'" and a2: "s2ss s' = s2ss s" and a3: "enriched s objs s'"
       
   296     and a4: "reserved s objs s'"
       
   297     using p1 recorded by metis 
       
   298   show ?thesis
       
   299   proof (cases "O_proc p \<in> objs")
       
   300     case True
       
   301     hence p_in: "p \<in> current_procs s'" using a4 os p4
       
   302       by (auto simp:reserved_def elim:allE[where x = "O_proc p"])
       
   303     with a1 a3 True obtain p' where b1: "\<not> alive s (O_proc p')" and b2: "O_proc p' \<notin> objs" 
       
   304       and b3: "alive s' (O_proc p')" and b4: "co2sobj s' (O_proc p') = co2sobj s' (O_proc p)"
       
   305       apply (simp only:enriched_def)
       
   306       apply (erule_tac x = "O_proc p" in ballE)
       
   307       apply (erule exE|erule conjE)+
       
   308       apply (frule co2sobj_eq_alive_proc_imp, auto)
       
   309       done
       
   310     have "valid (Execve p' f fds # e # s')"
       
   311       sorry
       
   312     moreover have "s2ss (Execve p' f fds # e # s') = s2ss (e # s)"
       
   313       sorry
       
   314     moreover have "enriched (e # s) objs (Execve p' f fds # e # s')"
       
   315       sorry
       
   316     moreover have "reserved (e # s) objs (Execve p' f fds # e # s')"
       
   317       sorry
       
   318     ultimately show ?thesis
       
   319       apply (simp add:enrichable_def)
       
   320       apply (rule_tac x = "Execve p' f fds # e # s'" in exI)
       
   321       by auto
       
   322   next
       
   323     case False
       
   324     from a4 os p4 have "p \<in> current_procs s'"
       
   325       apply (simp add:reserved_def)
       
   326       by (erule_tac x = "O_proc p" in allE, auto)      
       
   327     moreover from a4 os p4 have "is_file s' f"
       
   328       apply (simp add:reserved_def)
       
   329       by (erule_tac x = "O_file f" in allE, auto)
       
   330     moreover from a4 os p4 vd have "fds \<subseteq> proc_file_fds s' p"
       
   331       apply (rule_tac subsetI, clarsimp simp:reserved_def current_proc_fds.simps)
       
   332       apply (erule_tac x = "O_fd p x" in allE, erule impE)
       
   333       sorry
       
   334     ultimately have "os_grant s' e" 
       
   335       by (simp add:p4)
       
   336     moreover have "grant s' e"
       
   337       sorry
       
   338     ultimately have "valid (e # s')"
       
   339       using a1 by (erule_tac valid.intros(2), simp+)
       
   340     thus ?thesis
       
   341       apply (simp add:enrichable_def)
       
   342       apply (rule_tac x = "e # s'" in exI)
       
   343       apply (simp)
       
   344     sorry
       
   345 qed
       
   346 qed
       
   347 
       
   348 lemma s2d_main_execve:
       
   349   "\<lbrakk>grant_execve pctxt fsec pctxt'; ss \<in> static; S_proc (pi, pctxt, fds, shms) tagp \<in> ss; S_file sfs tagf \<in> ss;
       
   350      (fi, fsec, pfsec, asecs) \<in> sfs; npctxt_execve pctxt fsec = Some pctxt'; 
       
   351     search_check_s pctxt (fi, fsec, pfsec, asecs) True; inherit_fds_check_s pctxt' fds'; fds' \<subseteq> fds; valid s;
       
   352     s2ss s = ss\<rbrakk> \<Longrightarrow> \<exists>s. valid s \<and> 
       
   353     s2ss s = update_ss ss (S_proc (pi, pctxt, fds, shms) tagp) (S_proc (pi, pctxt', fds', {}) (tagp \<or> tagf))"
       
   354 apply (simp add:update_ss_def)
       
   355 thm update_ss_def
       
   356 sorry
       
   357 
       
   358 (*
       
   359 lemma s2d_main_execve:
       
   360   "ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss"
       
   361 apply (erule static.induct)
       
   362 apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros)
       
   363 apply (erule exE|erule conjE)+
       
   364 apply (rule s2d_main_execve, simp+)
       
   365 
       
   366 apply (erule exE|erule conjE)+
       
   367 
       
   368 
       
   369 sorry
       
   370 *)
       
   371 
       
   372 
       
   373 (*********************** uppest-level 3 theorems ***********************)
       
   374 
       
   375 lemma enrichability: 
       
   376   "\<lbrakk>valid s; \<forall> obj \<in> objs. alive s obj \<and> is_created s obj \<and> recorded obj\<rbrakk>
       
   377    \<Longrightarrow> enrichable s objs" sorry (* 
       
   378 proof (induct s arbitrary:objs)
       
   379   case Nil
       
   380   hence "objs = {}" 
       
   381     apply (auto)
       
   382     apply (erule_tac x = x in ballE)
       
   383     apply (case_tac x)
       
   384     apply (auto simp:init_alive_prop)
       
   385     sorry (*     done *)
       
   386   thus ?case using Nil unfolding enrichable_def enriched_def reserved_def
       
   387     by (rule_tac x = "[]" in exI, auto)
       
   388 next
       
   389   case (Cons e s)
       
   390   hence p1: "\<And> objs. \<forall> obj \<in> objs. alive s obj \<and> is_created s obj \<and> recorded obj
       
   391              \<Longrightarrow> \<exists> s'. valid s' \<and> s2ss s' = s2ss s \<and> enriched s objs s' \<and> reserved s objs s'"
       
   392     and p2: "valid (e # s)" and p3: "\<forall>obj\<in>objs. alive (e # s) obj \<and> is_created (e # s) obj \<and> recorded obj"
       
   393     and os: "os_grant s e" and se: "grant s e" and vd: "valid s"
       
   394     by (auto dest:vt_grant_os vd_cons vt_grant simp:enrichable_def)
       
   395   show ?case 
       
   396   proof (cases e)
       
   397     case (Execve p f fds) 
       
   398     hence p4: "e = Execve p f fds" by simp
       
   399     from p3 have p5: "is_inited s (O_proc p) \<Longrightarrow> (O_proc p) \<notin> objs" 
       
   400       by (auto simp:is_created_def is_inited_def p4 elim!:ballE[where x = "O_proc p"])
       
   401     show "enrichable (e # s) objs"
       
   402     proof (cases "is_inited s (O_proc p)")
       
   403       case True
       
   404       with p5 have a1: "(O_proc p) \<notin> objs" by simp
       
   405       with p3 p4 p2 have a2: "\<forall> obj \<in> objs. alive s obj \<and> is_created s obj" and a2': "\<forall> obj \<in> objs. recorded obj"
       
   406         apply (auto simp:is_created_def alive_simps is_inited_def)
       
   407         apply (erule_tac x = obj in ballE, auto simp:alive_simps split:t_object.splits)
       
   408         done
       
   409       then obtain s' where a3: "valid s'" and a4: "s2ss s' = s2ss s"
       
   410         and a5: "enriched s objs s'" and a6: "reserved s objs s'"
       
   411         using p1 apply (simp add:enrichable_def) sorry
       
   412       from a5 p4 p2 a2' have a7: "enriched s objs (e # s')"
       
   413         apply (clarsimp simp add:enriched_def co2sobj_execve)
       
   414         apply (erule_tac x = obj in ballE, clarsimp)
       
   415         apply (rule_tac x = obj' in exI, auto simp:co2sobj_execve alive_simps)
       
   416         thm enriched_def
       
   417 
       
   418 
       
   419 
       
   420 obtain s' where p6:"enriched s objs s'"
       
   421         apply (simp add: alive_simps enrichable_def)       
       
   422         apply auto apply (rule ballI, rule_tac x = obj in exI)
       
   423 
       
   424         have p6:"enriched (e # s) objs (e # s)"
       
   425         apply (simp add:enriched_def alive_simps)       
       
   426         apply auto apply (rule ballI, rule_tac x = obj in exI)
       
   427 
       
   428       have "enrich (e # s) objs (e # s)"
       
   429         apply (simp add:enrich_def p4)
       
   430         sorry
       
   431       moreover have "reserve (e # s) objs (e # s)"
       
   432         sorry
       
   433       ultimately show ?thesis using p2
       
   434         apply (simp add:enrichable_def)
       
   435         by (rule_tac x = "e # s" in exI, simp)
       
   436     next
       
   437         
       
   438       
       
   439 thm enrichable_def
       
   440       apply (simp add:enrichable_def p4)
       
   441 
       
   442       
       
   443   
       
   444     apply auto
       
   445     apply (auto simp:enrichable_def)
       
   446 apply (induct s)
       
   447 
       
   448 
       
   449 
       
   450 done
       
   451 
       
   452 qed 
       
   453 *)
       
   454 
       
   455 lemma d2s_main:
       
   456   "valid s \<Longrightarrow> s2ss s \<propto> static"
       
   457 apply (induct s, simp add:s2ss_nil_prop init_ss_in_def)
       
   458 apply (rule_tac x = "init_static_state" in bexI, simp, simp add:s_init)
       
   459 apply (frule vd_cons, frule vt_grant_os, simp)
       
   460 apply (case_tac a) 
       
   461 apply (clarsimp simp add:s2ss_execve)
       
   462 apply (rule conjI, rule impI)
       
   463 
       
   464 
       
   465 
       
   466 sorry
       
   467 
       
   468 lemma s2d_main:
       
   469   "ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss"
       
   470 apply (erule static.induct)
       
   471 apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros)
       
   472 
       
   473 apply (erule exE|erule conjE)+
       
   474 
       
   475 apply (simp add:update_ss_def)
       
   476 
       
   477 sorry
       
   478 
       
   479 lemma deleted_imp_deleted_s:
       
   480   "\<lbrakk>deleted obj s; valid s\<rbrakk> \<Longrightarrow> \<exists> ss \<in> static. deleted_s ss obj "
       
   481 sorry
       
   482 
       
   483 lemma deleted_s_imp_deleted:
       
   484   "\<lbrakk>deleted_s ss obj; ss \<in> static\<rbrakk> \<Longrightarrow> \<exists> s. valid s \<and> deleted obj s"
       
   485 sorry
       
   486 
       
   487 lemma updeletable_s_sound_comp:
       
   488   "undeletable_s obj = undeletable obj"
       
   489 apply (simp add:undeletable_def undeletable_s_def)
       
   490 apply (auto dest:deleted_imp_deleted_s deleted_s_imp_deleted)
       
   491 done
       
   492 
       
   493 
       
   494 
       
   495 end
       
   496 
       
   497 end
       
   498 
       
   499 (* 
       
   500 lemma s2d_main':
       
   501   "ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s \<doteq> ss"
       
   502 apply (erule static.induct)
       
   503 apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros)
       
   504 
       
   505 apply (erule exE|erule conjE)+
       
   506 
       
   507 apply (simp add:update_ss_def)
       
   508 
       
   509 sorry
       
   510 
       
   511 *)