|
1 theory Info_flow_shm_prop |
|
2 imports Main Flask_type Flask My_list_prefix Init_prop Valid_prop Delete_prop Current_prop |
|
3 begin |
|
4 |
|
5 context flask begin |
|
6 |
|
7 (*********** simpset for one_flow_shm **************) |
|
8 |
|
9 lemma one_flow_not_self: |
|
10 "one_flow_shm s h p p \<Longrightarrow> False" |
|
11 by (simp add:one_flow_shm_def) |
|
12 |
|
13 lemma one_flow_shm_attach: |
|
14 "valid (Attach p h flag # s) \<Longrightarrow> one_flow_shm (Attach p h flag # s) = (\<lambda> h' pa pb. |
|
15 if (h' = h) |
|
16 then (pa = p \<and> pb \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pb, flagb) \<in> procs_of_shm s h)) \<or> |
|
17 (pb = p \<and> pa \<noteq> p \<and> (pa, SHM_RDWR) \<in> procs_of_shm s h) \<or> |
|
18 (one_flow_shm s h pa pb) |
|
19 else one_flow_shm s h' pa pb )" |
|
20 apply (rule ext, rule ext, rule ext, frule vd_cons, frule vt_grant_os) |
|
21 by (auto simp add: one_flow_shm_def) |
|
22 |
|
23 lemma one_flow_shm_detach: |
|
24 "valid (Detach p h # s) \<Longrightarrow> one_flow_shm (Detach p h # s) = (\<lambda> h' pa pb. |
|
25 if (h' = h) |
|
26 then (pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h' pa pb) |
|
27 else one_flow_shm s h' pa pb)" |
|
28 apply (rule ext, rule ext, rule ext, frule vt_grant_os) |
|
29 by (auto simp:one_flow_shm_def) |
|
30 |
|
31 lemma one_flow_shm_deleteshm: |
|
32 "valid (DeleteShM p h # s) \<Longrightarrow> one_flow_shm (DeleteShM p h # s) = (\<lambda> h' pa pb. |
|
33 if (h' = h) |
|
34 then False |
|
35 else one_flow_shm s h' pa pb)" |
|
36 apply (rule ext, rule ext, rule ext, frule vt_grant_os) |
|
37 by (auto simp: one_flow_shm_def) |
|
38 |
|
39 lemma one_flow_shm_clone: |
|
40 "valid (Clone p p' fds shms # s) \<Longrightarrow> one_flow_shm (Clone p p' fds shms # s) = (\<lambda> h pa pb. |
|
41 if (pa = p' \<and> pb \<noteq> p' \<and> h \<in> shms) |
|
42 then (if (pb = p) then (flag_of_proc_shm s p h = Some SHM_RDWR) else one_flow_shm s h p pb) |
|
43 else if (pb = p' \<and> pa \<noteq> p' \<and> h \<in> shms) |
|
44 then (if (pa = p) then (flag_of_proc_shm s p h = Some SHM_RDWR) else one_flow_shm s h pa p) |
|
45 else one_flow_shm s h pa pb)" |
|
46 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons, clarsimp) |
|
47 apply (frule_tac p = p' in procs_of_shm_prop2', simp) |
|
48 apply (auto simp:one_flow_shm_def intro:procs_of_shm_prop4 flag_of_proc_shm_prop1) |
|
49 done |
|
50 |
|
51 lemma one_flow_shm_execve: |
|
52 "valid (Execve p f fds # s) \<Longrightarrow> one_flow_shm (Execve p f fds # s) = (\<lambda> h pa pb. |
|
53 pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h pa pb )" |
|
54 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
55 by (auto simp:one_flow_shm_def) |
|
56 |
|
57 lemma one_flow_shm_kill: |
|
58 "valid (Kill p p' # s) \<Longrightarrow> one_flow_shm (Kill p p' # s) = (\<lambda> h pa pb. |
|
59 pa \<noteq> p' \<and> pb \<noteq> p' \<and> one_flow_shm s h pa pb )" |
|
60 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
61 by (auto simp:one_flow_shm_def) |
|
62 |
|
63 lemma one_flow_shm_exit: |
|
64 "valid (Exit p # s) \<Longrightarrow> one_flow_shm (Exit p # s) = (\<lambda> h pa pb. |
|
65 pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h pa pb )" |
|
66 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
67 by (auto simp:one_flow_shm_def) |
|
68 |
|
69 lemma one_flow_shm_other: |
|
70 "\<lbrakk>valid (e # s); |
|
71 \<forall> p h flag. e \<noteq> Attach p h flag; |
|
72 \<forall> p h. e \<noteq> Detach p h; |
|
73 \<forall> p h. e \<noteq> DeleteShM p h; |
|
74 \<forall> p p' fds shms. e \<noteq> Clone p p' fds shms; |
|
75 \<forall> p f fds. e \<noteq> Execve p f fds; |
|
76 \<forall> p p'. e \<noteq> Kill p p'; |
|
77 \<forall> p. e \<noteq> Exit p |
|
78 \<rbrakk> \<Longrightarrow> one_flow_shm (e # s) = one_flow_shm s" |
|
79 apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
80 apply (case_tac e, auto simp:one_flow_shm_def dest:procs_of_shm_prop2) |
|
81 apply (drule procs_of_shm_prop1, auto) |
|
82 done |
|
83 |
|
84 lemmas one_flow_shm_simps = one_flow_shm_other one_flow_shm_attach one_flow_shm_detach one_flow_shm_deleteshm |
|
85 one_flow_shm_clone one_flow_shm_execve one_flow_shm_kill one_flow_shm_exit |
|
86 |
|
87 type_synonym t_edge_shm = "t_process \<times> t_shm \<times> t_process" |
|
88 fun Fst:: "t_edge_shm \<Rightarrow> t_process" where "Fst (a, b, c) = a" |
|
89 fun Snd:: "t_edge_shm \<Rightarrow> t_shm" where "Snd (a, b, c) = b" |
|
90 fun Trd:: "t_edge_shm \<Rightarrow> t_process" where "Trd (a, b, c) = c" |
|
91 |
|
92 fun edge_related:: "t_edge_shm list \<Rightarrow> t_process \<Rightarrow> t_shm \<Rightarrow> bool" |
|
93 where |
|
94 "edge_related [] p h = False" |
|
95 | "edge_related ((from, shm, to) # path) p h = |
|
96 (if (((p = from) \<or> (p = to)) \<and> (h = shm)) then True |
|
97 else edge_related path p h)" |
|
98 |
|
99 inductive path_by_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_edge_shm list \<Rightarrow> t_process \<Rightarrow> bool" |
|
100 where |
|
101 pbs1: "p \<in> current_procs s \<Longrightarrow> path_by_shm s p [] p" |
|
102 | pbs2: "\<lbrakk>path_by_shm s p path p'; one_flow_shm s h p' p''; p'' \<notin> set (map Fst path)\<rbrakk> |
|
103 \<Longrightarrow> path_by_shm s p ((p', h, p'')# path) p''" |
|
104 |
|
105 |
|
106 lemma one_step_path: "\<lbrakk>one_flow_shm s h p p'; valid s\<rbrakk> \<Longrightarrow> path_by_shm s p [(p, h, p')] p'" |
|
107 apply (rule_tac path = "[]" and p = p in path_by_shm.intros(2)) |
|
108 apply (rule path_by_shm.intros(1)) |
|
109 apply (auto intro:procs_of_shm_prop2 simp:one_flow_shm_def) |
|
110 done |
|
111 |
|
112 lemma pbs_prop1: |
|
113 "path_by_shm s p path p' \<Longrightarrow> ((path = []) = (p = p')) \<and> (path \<noteq> [] \<longrightarrow> p \<in> set (map Fst path))" |
|
114 apply (erule path_by_shm.induct, simp) |
|
115 apply (auto simp:one_flow_shm_def) |
|
116 done |
|
117 |
|
118 lemma pbs_prop2: |
|
119 "path_by_shm s p path p' \<Longrightarrow> (path = []) = (p = p')" |
|
120 by (simp add:pbs_prop1) |
|
121 |
|
122 lemma pbs_prop2': |
|
123 "path_by_shm s p path p \<Longrightarrow> path = []" |
|
124 by (simp add:pbs_prop2) |
|
125 |
|
126 lemma pbs_prop3: |
|
127 "\<lbrakk>path_by_shm s p path p'; path \<noteq> []\<rbrakk> \<Longrightarrow> p \<in> set (map Fst path)" |
|
128 by (drule pbs_prop1, auto) |
|
129 |
|
130 lemma pbs_prop4[rule_format]: |
|
131 "path_by_shm s p path p'\<Longrightarrow> path \<noteq> [] \<longrightarrow> p' \<in> set (map Trd path)" |
|
132 by (erule path_by_shm.induct, auto) |
|
133 |
|
134 lemma pbs_prop5[rule_format]: |
|
135 "path_by_shm s p path p' \<Longrightarrow> path \<noteq> [] \<longrightarrow> p' \<notin> set (map Fst path)" |
|
136 by (erule path_by_shm.induct, auto simp:one_flow_shm_def) |
|
137 |
|
138 lemma pbs_prop6_aux: |
|
139 "path_by_shm s pa pathac pc \<Longrightarrow> valid s \<longrightarrow> (\<forall> pb \<in> set (map Fst pathac). \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab)" |
|
140 apply (erule path_by_shm.induct) |
|
141 apply simp |
|
142 apply clarify |
|
143 apply (case_tac "pb = p'", simp) |
|
144 apply (rule_tac x = path in exI, simp) |
|
145 apply (erule one_step_path, simp) |
|
146 apply (erule_tac x = pb in ballE, simp_all, clarsimp) |
|
147 apply (rule_tac x = pathab in exI, simp) |
|
148 apply (erule pbs2, auto) |
|
149 done |
|
150 |
|
151 lemma pbs_prop6: |
|
152 "\<lbrakk>path_by_shm s pa pathac pc; pb \<in> set (map Fst pathac); valid s\<rbrakk> |
|
153 \<Longrightarrow> \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab" |
|
154 by (drule pbs_prop6_aux, auto) |
|
155 |
|
156 lemma pbs_prop7_aux: |
|
157 "path_by_shm s pa pathac pc \<Longrightarrow> valid s \<longrightarrow> (\<forall> pb \<in> set (map Trd pathac). \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab)" |
|
158 apply (erule path_by_shm.induct) |
|
159 apply simp |
|
160 apply clarify |
|
161 apply (case_tac "pb = p''", simp) |
|
162 apply (rule_tac x = "(p',h,p'') # path" in exI, simp) |
|
163 apply (rule conjI, erule pbs2, simp+) |
|
164 apply (rule pbs1, clarsimp simp:one_flow_shm_def procs_of_shm_prop2) |
|
165 apply (erule_tac x = pb in ballE, simp_all, clarsimp) |
|
166 apply (rule_tac x = pathab in exI, simp) |
|
167 apply (erule pbs2, auto) |
|
168 done |
|
169 |
|
170 lemma pbs_prop7: |
|
171 "\<lbrakk>path_by_shm s pa pathac pc; pb \<in> set (map Trd pathac); valid s\<rbrakk> |
|
172 \<Longrightarrow> \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab" |
|
173 by (drule pbs_prop7_aux, drule mp, simp, erule_tac x = pb in ballE, auto) |
|
174 |
|
175 lemma pbs_prop8: |
|
176 "path_by_shm s p path p' \<Longrightarrow> (set (map Fst path) - {p}) = (set (map Trd path) - {p'})" |
|
177 proof (induct rule:path_by_shm.induct) |
|
178 case (pbs1 p s) |
|
179 thus ?case by simp |
|
180 next |
|
181 case (pbs2 s p path p' h p'') |
|
182 assume p1:"path_by_shm s p path p'" and p2: "set (map Fst path) - {p} = set (map Trd path) - {p'}" |
|
183 and p3: "one_flow_shm s h p' p''" and p4: "p'' \<notin> set (map Fst path)" |
|
184 show "set (map Fst ((p', h, p'') # path)) - {p} = set (map Trd ((p', h, p'') # path)) - {p''}" |
|
185 (is "?left = ?right") |
|
186 proof (cases "path = []") |
|
187 case True |
|
188 with p1 have "p = p'" by (drule_tac pbs_prop2, simp) |
|
189 thus ?thesis using True |
|
190 using p2 by (simp) |
|
191 next |
|
192 case False |
|
193 with p1 have a1: "p \<noteq> p'" by (drule_tac pbs_prop2, simp) |
|
194 from p3 have a2: "p' \<noteq> p''" by (simp add:one_flow_shm_def) |
|
195 from p1 False have a3: "p' \<in> set (map Trd path)" by (drule_tac pbs_prop4, simp+) |
|
196 from p4 p1 False have a4: "p \<noteq> p''" by (drule_tac pbs_prop3, auto) |
|
197 with p2 a2 p4 have a5: "p'' \<notin> set (map Trd path)" by auto |
|
198 |
|
199 have "?left = (set (map Fst path) - {p}) \<union> {p'}" using a1 by auto |
|
200 moreover have "... = (set (map Trd path) - {p'}) \<union> {p'}" |
|
201 using p2 by auto |
|
202 moreover have "... = set (map Trd path)" using a3 by auto |
|
203 moreover have "... = set (map Trd path) - {p''}" using a5 by simp |
|
204 moreover have "... = ?right" by simp |
|
205 ultimately show ?thesis by simp |
|
206 qed |
|
207 qed |
|
208 |
|
209 lemma pbs_prop9_aux[rule_format]: |
|
210 "path_by_shm s p path p' \<Longrightarrow> h \<in> set (map Snd path) \<and> valid s \<longrightarrow> (\<exists> pa pb patha pathb. path_by_shm s p patha pa \<and> path_by_shm s pb pathb p' \<and> one_flow_shm s h pa pb \<and> path = pathb @ [(pa, h, pb)] @ patha \<and> h \<notin> set (map Snd patha))" |
|
211 apply (erule path_by_shm.induct, simp) |
|
212 apply (rule impI, case_tac "h \<in> set (map Snd path)", simp_all) |
|
213 apply (erule exE|erule conjE)+ |
|
214 apply (rule_tac x = pa in exI, rule_tac x = pb in exI, rule_tac x = patha in exI, simp) |
|
215 apply (rule pbs2, auto) |
|
216 apply (rule_tac x = p' in exI, rule_tac x = p'' in exI, rule_tac x = path in exI, simp) |
|
217 apply (rule pbs1, clarsimp simp:one_flow_shm_def procs_of_shm_prop2) |
|
218 done |
|
219 |
|
220 lemma pbs_prop9: |
|
221 "\<lbrakk>h \<in> set (map Snd path); path_by_shm s p path p'; valid s\<rbrakk> |
|
222 \<Longrightarrow> \<exists> pa pb patha pathb. path_by_shm s p patha pa \<and> path_by_shm s pb pathb p' \<and> |
|
223 one_flow_shm s h pa pb \<and> path = pathb @ [(pa, h, pb)] @ patha \<and> h \<notin> set (map Snd patha)" |
|
224 by (rule pbs_prop9_aux, auto) |
|
225 |
|
226 lemma path_by_shm_trans_aux[rule_format]: |
|
227 "path_by_shm s p' path' p'' \<Longrightarrow> valid s \<longrightarrow> (\<forall> p path. path_by_shm s p path p' \<longrightarrow> (\<exists> path''. path_by_shm s p path'' p''))" |
|
228 proof (induct rule:path_by_shm.induct) |
|
229 case (pbs1 p s) |
|
230 thus ?case |
|
231 by (clarify, rule_tac x = path in exI, simp) |
|
232 next |
|
233 case (pbs2 s p path p' h p'') |
|
234 hence p1: "path_by_shm s p path p'" and p2: "one_flow_shm s h p' p''" |
|
235 and p3: "valid s \<longrightarrow> (\<forall>pa path. path_by_shm s pa path p \<longrightarrow> (\<exists>path''. path_by_shm s pa path'' p'))" |
|
236 and p4: "p'' \<notin> set (map Fst path)" by auto |
|
237 show ?case |
|
238 proof clarify |
|
239 fix pa path' |
|
240 assume p5: "path_by_shm s pa path' p" and p6: "valid s" |
|
241 with p3 obtain path'' where a1: "path_by_shm s pa path'' p'" by auto |
|
242 have p3': "\<forall>pa path. path_by_shm s pa path p \<longrightarrow> (\<exists>path''. path_by_shm s pa path'' p')" |
|
243 using p3 p6 by simp |
|
244 show "\<exists>path''. path_by_shm s pa path'' p''" |
|
245 proof (cases "p'' \<in> set (map Fst path'')") |
|
246 case True |
|
247 then obtain res where "path_by_shm s pa res p''" using a1 pbs_prop6 p6 by blast |
|
248 thus ?thesis by auto |
|
249 next |
|
250 case False |
|
251 with p2 a1 show ?thesis |
|
252 apply (rule_tac x = "(p', h, p'') # path''" in exI) |
|
253 apply (rule path_by_shm.intros(2), auto) |
|
254 done |
|
255 qed |
|
256 qed |
|
257 qed |
|
258 |
|
259 lemma path_by_shm_trans: |
|
260 "\<lbrakk>path_by_shm s p path p'; path_by_shm s p' path' p''; valid s\<rbrakk> \<Longrightarrow> \<exists> path''. path_by_shm s p path'' p''" |
|
261 by (drule_tac p' = p' and p'' = p'' in path_by_shm_trans_aux, auto) |
|
262 |
|
263 lemma path_by_shm_intro1_prop: |
|
264 "\<not> path_by_shm s p [] p \<Longrightarrow> p \<notin> current_procs s" |
|
265 by (auto dest:path_by_shm.intros(1)) |
|
266 |
|
267 lemma path_by_shm_intro3: |
|
268 "\<lbrakk>path_by_shm s p path from; (from, SHM_RDWR) \<in> procs_of_shm s h; (to, flag) \<in> procs_of_shm s h; |
|
269 to \<notin> set (map Fst path); from \<noteq> to\<rbrakk> |
|
270 \<Longrightarrow> path_by_shm s p ((from, h, to)#path) to" |
|
271 apply (rule path_by_shm.intros(2), simp_all) |
|
272 by (auto simp:one_flow_shm_def) |
|
273 |
|
274 lemma path_by_shm_intro4: |
|
275 "\<lbrakk>(p, flag) \<in> procs_of_shm s h; valid s\<rbrakk> \<Longrightarrow> path_by_shm s p [] p" |
|
276 by (drule procs_of_shm_prop2, simp, simp add:path_by_shm.intros(1)) |
|
277 |
|
278 lemma path_by_shm_intro5: |
|
279 "\<lbrakk>(from, SHM_RDWR) \<in> procs_of_shm s h; (to,flag) \<in> procs_of_shm s h; valid s; from \<noteq> to\<rbrakk> |
|
280 \<Longrightarrow> path_by_shm s from [(from, h, to)] to" |
|
281 apply (rule_tac p' = "from" and h = h in path_by_shm.intros(2)) |
|
282 apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2) |
|
283 apply (simp add:one_flow_shm_def, rule_tac x = flag in exI, auto) |
|
284 done |
|
285 |
|
286 (* p'' \<notin> set (map Fst path): not duplicated target process; |
|
287 * p1 - ha \<rightarrow> p2; p2 - hb \<rightarrow> p3; p3 - ha \<rightarrow> p4; so path_by_shm p1 [(p3,ha,p4), (p2,hb,p3),(p1,ha,p2)] p4, |
|
288 * but this could be also path_by_shm p1 [(p1,ha,p4)] p4, so the former one is redundant! *) |
|
289 |
|
290 inductive path_by_shm':: "t_state \<Rightarrow> t_process \<Rightarrow> t_edge_shm list \<Rightarrow> t_process \<Rightarrow> bool" |
|
291 where |
|
292 pbs1': "p \<in> current_procs s \<Longrightarrow> path_by_shm' s p [] p" |
|
293 | pbs2': "\<lbrakk>path_by_shm' s p path p'; one_flow_shm s h p' p''; p'' \<notin> set (map Fst path); |
|
294 h \<notin> set (map Snd path)\<rbrakk> |
|
295 \<Longrightarrow> path_by_shm' s p ((p', h, p'')# path) p''" |
|
296 |
|
297 lemma pbs_prop10: |
|
298 "\<lbrakk>path_by_shm s p path p'; one_flow_shm s h p' p''; valid s\<rbrakk> \<Longrightarrow> \<exists>path'. path_by_shm s p path' p''" |
|
299 apply (case_tac "p'' \<in> set (map Fst path)") |
|
300 apply (drule_tac pb = p'' in pbs_prop6, simp+) |
|
301 apply ((erule exE|erule conjE)+, rule_tac x = pathab in exI, simp) |
|
302 apply (rule_tac x = "(p', h, p'') # path" in exI) |
|
303 apply (erule pbs2, simp+) |
|
304 done |
|
305 |
|
306 lemma pbs'_imp_pbs[rule_format]: |
|
307 "path_by_shm' s p path p' \<Longrightarrow> valid s \<longrightarrow> (\<exists> path'. path_by_shm s p path' p')" |
|
308 apply (erule path_by_shm'.induct) |
|
309 apply (rule impI, rule_tac x = "[]" in exI, simp add:pbs1) |
|
310 apply (rule impI, clarsimp) |
|
311 apply (erule pbs_prop10, simp+) |
|
312 done |
|
313 |
|
314 lemma pbs_imp_pbs'[rule_format]: |
|
315 "path_by_shm s p path p' \<Longrightarrow> valid s \<longrightarrow> (\<exists> path'. path_by_shm' s p path' p')" |
|
316 apply (erule path_by_shm.induct) |
|
317 apply (rule impI, rule_tac x = "[]" in exI, erule pbs1') |
|
318 apply (rule impI, simp, erule exE) (* |
|
319 apply ( erule exE, case_tac "h \<in> set (map Snd path)") |
|
320 apply (drule_tac s = s and p = p and p' = p' in pbs_prop9, simp+) defer |
|
321 apply (rule_tac x = "(p', h, p'') # path'" in exI) |
|
322 apply (erule pbs2', simp+) |
|
323 apply ((erule exE|erule conjE)+) |
|
324 apply (rule_tac x = "(pa, h, p'') # patha" in exI) |
|
325 apply (erule pbs2', auto simp:one_flow_shm_def) |
|
326 done*) |
|
327 sorry |
|
328 |
|
329 |
|
330 lemma pbs'_eq_pbs: |
|
331 "valid s \<Longrightarrow> (\<exists> path'. path_by_shm' s p path' p') = (\<exists> path. path_by_shm s p path p')" |
|
332 by (rule iffI, auto intro:pbs_imp_pbs' pbs'_imp_pbs) |
|
333 |
|
334 definition flow_by_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool" |
|
335 where |
|
336 "flow_by_shm s p p' \<equiv> \<exists> path. path_by_shm s p path p'" |
|
337 |
|
338 lemma flow_by_shm_intro': |
|
339 "valid s \<Longrightarrow> flow_by_shm s p p' = (\<exists> path. path_by_shm' s p path p')" |
|
340 by (auto simp:flow_by_shm_def pbs'_eq_pbs) |
|
341 |
|
342 lemma one_step_flows: "\<lbrakk>one_flow_shm s h p p'; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p'" |
|
343 by (drule one_step_path, auto simp:flow_by_shm_def) |
|
344 |
|
345 lemma flow_by_shm_trans: |
|
346 "\<lbrakk>flow_by_shm s p p'; flow_by_shm s p' p''; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p''" |
|
347 by (auto simp:flow_by_shm_def intro!:path_by_shm_trans) |
|
348 |
|
349 lemma flow_by_shm_intro1_prop: |
|
350 "\<not> flow_by_shm s p p \<Longrightarrow> p \<notin> current_procs s" |
|
351 by (auto dest:path_by_shm.intros(1) simp:flow_by_shm_def) |
|
352 |
|
353 lemma flow_by_shm_intro1: |
|
354 "p \<in> current_procs s \<Longrightarrow> flow_by_shm s p p" |
|
355 by (auto dest:path_by_shm.intros(1) simp:flow_by_shm_def) |
|
356 |
|
357 lemma flow_by_shm_intro2: |
|
358 "\<lbrakk>flow_by_shm s p p'; one_flow_shm s h p' p''; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p''" |
|
359 by (auto intro:flow_by_shm_trans dest:one_step_flows) |
|
360 |
|
361 lemma flow_by_shm_intro3: |
|
362 "\<lbrakk>flow_by_shm s p from; (from, SHM_RDWR) \<in> procs_of_shm s h; (to, flag) \<in> procs_of_shm s h; from \<noteq> to; valid s\<rbrakk> |
|
363 \<Longrightarrow> flow_by_shm s p to" |
|
364 apply (rule flow_by_shm_intro2) |
|
365 by (auto simp:one_flow_shm_def) |
|
366 |
|
367 lemma flow_by_shm_intro4: |
|
368 "\<lbrakk>(p, flag) \<in> procs_of_shm s h; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p" |
|
369 by (drule procs_of_shm_prop2, simp, simp add:flow_by_shm_intro1) |
|
370 |
|
371 lemma flow_by_shm_intro5: |
|
372 "\<lbrakk>(from, SHM_RDWR) \<in> procs_of_shm s h; (to,flag) \<in> procs_of_shm s h; valid s; from \<noteq> to\<rbrakk> |
|
373 \<Longrightarrow> flow_by_shm s from to" |
|
374 apply (rule_tac p' = "from" and h = h in flow_by_shm_intro2) |
|
375 apply (rule flow_by_shm_intro1, simp add:procs_of_shm_prop2) |
|
376 apply (simp add:one_flow_shm_def, rule_tac x = flag in exI, auto) |
|
377 done |
|
378 |
|
379 lemma flow_by_shm_intro6: |
|
380 "path_by_shm s p path p' \<Longrightarrow> flow_by_shm s p p'" |
|
381 by (auto simp:flow_by_shm_def) |
|
382 |
|
383 (********* simpset for inductive Info_flow_shm **********) |
|
384 lemma path_by_shm_detach1_aux: |
|
385 "path_by_shm s' pa path pb \<Longrightarrow> valid (Detach p h # s) \<and> (s' = Detach p h # s) |
|
386 \<longrightarrow> \<not> edge_related path p h \<and> path_by_shm s pa path pb" |
|
387 apply (erule path_by_shm.induct, simp) |
|
388 apply (rule impI, rule path_by_shm.intros(1), simp+) |
|
389 by (auto simp:one_flow_shm_def split:if_splits intro:path_by_shm_intro3) |
|
390 |
|
391 lemma path_by_shm_detach1: |
|
392 "\<lbrakk>path_by_shm (Detach p h # s) pa path pb; valid (Detach p h # s)\<rbrakk> |
|
393 \<Longrightarrow> \<not> edge_related path p h \<and> path_by_shm s pa path pb" |
|
394 by (auto dest:path_by_shm_detach1_aux) |
|
395 |
|
396 lemma path_by_shm_detach2_aux[rule_format]: |
|
397 "path_by_shm s pa path pb \<Longrightarrow> valid (Detach p h # s) \<and> \<not> edge_related path p h |
|
398 \<longrightarrow> path_by_shm (Detach p h # s) pa path pb" |
|
399 apply (induct rule:path_by_shm.induct) |
|
400 apply (rule impI, rule path_by_shm.intros(1), simp) |
|
401 apply (rule impI, erule conjE, simp split:if_splits) |
|
402 apply (rule path_by_shm.intros(2), simp) |
|
403 apply (simp add:one_flow_shm_detach) |
|
404 apply (rule impI, simp+) |
|
405 done |
|
406 |
|
407 lemma path_by_shm_detach2: |
|
408 "\<lbrakk>valid (Detach p h # s); \<not> edge_related path p h; path_by_shm s pa path pb\<rbrakk> |
|
409 \<Longrightarrow> path_by_shm (Detach p h # s) pa path pb" |
|
410 by (auto intro!:path_by_shm_detach2_aux) |
|
411 |
|
412 lemma path_by_shm_detach: |
|
413 "valid (Detach p h # s) \<Longrightarrow> |
|
414 path_by_shm (Detach p h # s) pa path pb = (\<not> edge_related path p h \<and> path_by_shm s pa path pb)" |
|
415 by (auto dest:path_by_shm_detach1 path_by_shm_detach2) |
|
416 |
|
417 lemma flow_by_shm_detach: |
|
418 "valid (Detach p h # s) \<Longrightarrow> |
|
419 flow_by_shm (Detach p h # s) pa pb = (\<exists> path. \<not> edge_related path p h \<and> path_by_shm s pa path pb)" |
|
420 by (auto dest:path_by_shm_detach simp:flow_by_shm_def) |
|
421 |
|
422 lemma path_by_shm'_attach1_aux: |
|
423 "path_by_shm' s' pa path pb \<Longrightarrow> valid s' \<and> (s' = Attach p h flag # s) \<longrightarrow> |
|
424 (path_by_shm' s pa path pb) \<or> |
|
425 (\<exists> path1 path2 p'. path_by_shm' s pa path1 p' \<and> path_by_shm' s p path2 pb \<and> |
|
426 (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path = path2 @ [(p', h, p)] @ path1 ) \<or> |
|
427 (\<exists> path1 path2 p' flag'. path_by_shm' s pa path1 p \<and> path_by_shm' s p' path2 pb \<and> |
|
428 (p', flag') \<in> procs_of_shm s h \<and> path = path2 @ [(p, h, p')] @ path1 \<and> flag = SHM_RDWR)" |
|
429 apply (erule path_by_shm'.induct) |
|
430 apply (simp, rule impI, rule pbs1', simp) |
|
431 apply (rule impI, erule impE, clarsimp) |
|
432 apply (erule disjE) |
|
433 apply (clarsimp simp:one_flow_shm_attach split:if_splits) |
|
434 apply (erule disjE, clarsimp) |
|
435 apply (erule_tac x = path in allE, clarsimp) |
|
436 apply (erule impE, rule pbs1', erule procs_of_shm_prop2, erule vd_cons, simp) |
|
437 apply (erule disjE, clarsimp) |
|
438 apply (rule_tac x = path in exI, rule_tac x = "[]" in exI, rule_tac x = p' in exI, simp) |
|
439 apply (rule pbs1', drule vt_grant_os, clarsimp) |
|
440 apply (drule_tac p = pa and p' = p' and p'' = p'' in pbs2', simp+) |
|
441 apply (drule_tac p = pa and p' = p' and p'' = p'' in pbs2', simp+) |
|
442 |
|
443 apply (erule disjE) |
|
444 apply ((erule exE|erule conjE)+, clarsimp split:if_splits simp:one_flow_shm_attach) |
|
445 apply (clarsimp simp:one_flow_shm_attach split:if_splits) |
|
446 apply (erule disjE, clarsimp) |
|
447 apply (clarsimp) |
|
448 |
|
449 |
|
450 apply (erule conjE)+ |
|
451 |
|
452 |
|
453 |
|
454 apply (erule conjE, clarsimp simp only:one_flow_shm_attach split:if_splits) |
|
455 apply simp |
|
456 |
|
457 |
|
458 |
|
459 lemma path_by_shm_attach1_aux: |
|
460 "path_by_shm s' pa path pb \<Longrightarrow> valid s' \<and> (s' = Attach p h flag # s) \<longrightarrow> |
|
461 path_by_shm s pa path pb \<or> |
|
462 (if (pa = p \<and> flag = SHM_RDWR) |
|
463 then \<exists> p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> |
|
464 path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')] |
|
465 else if (pb = p) |
|
466 then \<exists> p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and> |
|
467 (p', SHM_RDWR) \<in> procs_of_shm s h |
|
468 else (\<exists> p' flag' patha pathb. path_by_shm s pa patha p \<and> flag = SHM_RDWR \<and> |
|
469 (p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and> |
|
470 path = pathb @ [(p, h, p')] @ patha) \<or> |
|
471 (\<exists> p' patha pathb. path_by_shm s pa patha p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> |
|
472 path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ patha))" |
|
473 proof (induct rule:path_by_shm.induct) |
|
474 case (pbs1 proc \<tau>) |
|
475 show ?case |
|
476 proof (rule impI) |
|
477 assume pre: "valid \<tau> \<and> \<tau> = Attach p h flag # s" |
|
478 from pbs1 pre have "proc \<in> current_procs s" by simp |
|
479 thus "path_by_shm s proc [] proc \<or> |
|
480 (if proc = p \<and> flag = SHM_RDWR |
|
481 then \<exists>p' flagb path'. |
|
482 (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' proc \<and> [] = path' @ [(p, h, p')] |
|
483 else if proc = p |
|
484 then \<exists>p' path'. |
|
485 path_by_shm s proc path' p' \<and> [] = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h |
|
486 else (\<exists>p' flag' patha pathb. |
|
487 path_by_shm s proc patha p \<and> |
|
488 flag = SHM_RDWR \<and> |
|
489 (p', flag') \<in> procs_of_shm s h \<and> |
|
490 path_by_shm s p' pathb proc \<and> [] = pathb @ [(p, h, p')] @ patha) \<or> |
|
491 (\<exists>p' patha pathb. |
|
492 path_by_shm s proc patha p' \<and> |
|
493 (p', SHM_RDWR) \<in> procs_of_shm s h \<and> |
|
494 path_by_shm s p pathb proc \<and> [] = pathb @ [(p', h, p)] @ patha))" |
|
495 by (auto intro:path_by_shm.intros) |
|
496 qed |
|
497 next |
|
498 case (pbs2 \<tau> pa path pb h' pc) |
|
499 thus ?case |
|
500 proof (rule_tac impI) |
|
501 assume p1:"path_by_shm \<tau> pa path pb" and p2: "valid \<tau> \<and> \<tau> = Attach p h flag # s \<longrightarrow> |
|
502 path_by_shm s pa path pb \<or> |
|
503 (if pa = p \<and> flag = SHM_RDWR |
|
504 then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')] |
|
505 else if pb = p |
|
506 then \<exists>p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h |
|
507 else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and> |
|
508 (p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and> |
|
509 path = pathb @ [(p, h, p')] @ pathaa) \<or> |
|
510 (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> |
|
511 path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ pathaa))" |
|
512 and p3: "one_flow_shm \<tau> h' pb pc" and p4: "valid \<tau> \<and> \<tau> = Attach p h flag # s" |
|
513 |
|
514 from p2 and p4 have p2': " |
|
515 path_by_shm s pa path pb \<or> |
|
516 (if pa = p \<and> flag = SHM_RDWR |
|
517 then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')] |
|
518 else if pb = p |
|
519 then \<exists>p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h |
|
520 else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and> |
|
521 (p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and> |
|
522 path = pathb @ [(p, h, p')] @ pathaa) \<or> |
|
523 (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> |
|
524 path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ pathaa))" |
|
525 by (erule_tac impE, simp) |
|
526 from p4 have p5: "valid s" and p6: "os_grant s (Attach p h flag)" by (auto intro:vd_cons dest:vt_grant_os) |
|
527 from p6 have "p \<in> current_procs s" by simp hence p7:"path_by_shm s p [] p" by (erule_tac path_by_shm.intros) |
|
528 from p3 p4 have p8: "if (h' = h) |
|
529 then (pb = p \<and> pc \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pc, flagb) \<in> procs_of_shm s h)) \<or> |
|
530 (pc = p \<and> pb \<noteq> p \<and> (pb, SHM_RDWR) \<in> procs_of_shm s h) \<or> |
|
531 (one_flow_shm s h pb pc) |
|
532 else one_flow_shm s h' pb pc" by (auto simp add:one_flow_shm_attach) |
|
533 |
|
534 |
|
535 (* |
|
536 have "\<And> flagb. (pc, flagb) \<in> procs_of_shm s h |
|
537 \<Longrightarrow> \<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' [] pc" |
|
538 apply (rule_tac x= pc in exI, rule_tac x = flagb in exI, frule procs_of_shm_prop2) |
|
539 by (simp add:p5, simp add:path_by_shm.intros(1)) |
|
540 hence p10: "\<not> path_by_shm s p path pc \<Longrightarrow> (\<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pc) \<or> |
|
541 path_by_shm s pa pc" |
|
542 using p2' p7 p8 p5 |
|
543 by (auto split:if_splits dest:path_by_shm.intros(2)) |
|
544 (* apply (rule_tac x = pb in exI, simp add:one_flow_flows, rule_tac x = flagb in exI, simp)+ *) *) |
|
545 |
|
546 from p1 have a0: "(path = []) = (pa = pb)" using pbs_prop2 by simp |
|
547 have a1:"\<lbrakk>pa = p; flag = SHM_RDWR; \<not> path_by_shm s pa path pb\<rbrakk> \<Longrightarrow> |
|
548 \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]" |
|
549 using p2' by auto |
|
550 have b1: "\<lbrakk>pa = p; flag = SHM_RDWR; \<not> path_by_shm s pa path pc\<rbrakk> \<Longrightarrow> |
|
551 \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pc \<and> |
|
552 (pb, h', pc) # path = path' @ [(p, h, p')]" |
|
553 |
|
554 |
|
555 using p8 a1 p7 p5 a0 |
|
556 apply (auto split:if_splits elim:path_by_shm_intro4) |
|
557 apply (rule_tac x = pb in exI, rule conjI, rule_tac x = SHM_RDWR in exI, simp) |
|
558 apply (rule_tac x = pc in exI, rule conjI, rule_tac x = flagb in exI, simp) |
|
559 apply (rule_tac x = "[]" in exI, rule conjI) |
|
560 apply (erule path_by_shm_intro4, simp) |
|
561 |
|
562 apply (case_tac "path_by_shm s pa path pb", simp) defer |
|
563 apply (drule a1, simp+, clarsimp) |
|
564 apply (rule conjI, rule_tac x = flagb in exI, simp) |
|
565 apply (rule path_by_shm_ |
|
566 using p2' p8 p5 |
|
567 apply (auto split:if_splits dest!:pbs_prop2' simp:path_by_shm_intro4) |
|
568 apply (drule pbs_prop2', simp) |
|
569 apply (erule_tac x = pc in allE, simp add:path_by_shm_intro4) |
|
570 |
|
571 apply (drule_tac x = "pc" in allE) |
|
572 |
|
573 apply simp |
|
574 |
|
575 sorry |
|
576 moreover have "pc = p \<Longrightarrow> (\<exists>p' path'. path_by_shm s pa path' p' \<and> |
|
577 (pb, h', pc) # path = path' @ [(p', h, p)] \<and> (p', SHM_RDWR) \<in> procs_of_shm s h) \<or> |
|
578 (path_by_shm s pa path pc \<and> \<not> edge_related path p h)" |
|
579 using p2' p7 p8 p5 |
|
580 sorry (* |
|
581 apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def) *) |
|
582 moreover have "\<lbrakk>pc \<noteq> p; pa \<noteq> p \<or> flag \<noteq> SHM_RDWR\<rbrakk> \<Longrightarrow> |
|
583 (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> |
|
584 path_by_shm s p' pathb pc \<and> (pb, h', pc) # path = pathaa @ [(p, h, p')] @ pathb) \<or> |
|
585 (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> |
|
586 path_by_shm s p pathb pc \<and> (pb, h', pc) # path = pathaa @ [(p', h, p)] @ pathb) \<or> |
|
587 (path_by_shm s pa path pc \<and> \<not> edge_related path p h)" |
|
588 using p2' p7 p8 p5 (* |
|
589 apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def) |
|
590 apply (rule_tac x = pc in exI, simp add:path_by_shm_intro4) |
|
591 apply (rule_tac x = flagb in exI, simp) |
|
592 done *) |
|
593 sorry |
|
594 ultimately |
|
595 show "if (pb, h', pc) # path = [] then pa = pc \<and> pa \<in> current_procs s |
|
596 else path_by_shm s pa ((pb, h', pc) # path) pc \<and> \<not> edge_related ((pb, h', pc) # path) p h \<or> |
|
597 (if pa = p \<and> flag = SHM_RDWR |
|
598 then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> |
|
599 path_by_shm s p' path' pc \<and> (pb, h', pc) # path = path' @ [(p, h, p')] |
|
600 else if pc = p |
|
601 then \<exists>p' path'. path_by_shm s pa path' p' \<and> |
|
602 (pb, h', pc) # path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h |
|
603 else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and> |
|
604 (p', flag') \<in> procs_of_shm s h \<and> |
|
605 path_by_shm s p' pathb pc \<and> (pb, h', pc) # path = pathb @ [(p, h, p')] @ pathaa) \<or> |
|
606 (\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> |
|
607 path_by_shm s p pathb pc \<and> (pb, h', pc) # path = pathb @ [(p', h, p)] @ pathaa))" |
|
608 apply (auto split:if_splits) |
|
609 using p7 by auto |
|
610 qed |
|
611 qed |
|
612 |
|
613 lemma path_by_shm_attach1: |
|
614 "\<lbrakk>valid (Attach p h flag # s); path_by_shm (Attach p h flag # s) pa pb\<rbrakk> |
|
615 \<Longrightarrow> (if path_by_shm s pa pb then True else |
|
616 (if (pa = p \<and> flag = SHM_RDWR) |
|
617 then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb) |
|
618 else if (pb = p) |
|
619 then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p') |
|
620 else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> |
|
621 path_by_shm s p' pb) \<or> |
|
622 (\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb) |
|
623 ) )" |
|
624 apply (drule_tac p = p and h = h and flag = flag in path_by_shm_attach1_aux) |
|
625 by auto |
|
626 |
|
627 lemma path_by_shm_attach_aux[rule_format]: |
|
628 "path_by_shm s pa pb \<Longrightarrow> valid (Attach p h flag # s) \<longrightarrow> path_by_shm (Attach p h flag # s) pa pb" |
|
629 apply (erule path_by_shm.induct) |
|
630 apply (rule impI, rule path_by_shm.intros(1), simp) |
|
631 apply (rule impI, simp, rule_tac h = ha in path_by_shm.intros(2), simp) |
|
632 apply (auto simp add:one_flow_shm_simps) |
|
633 done |
|
634 |
|
635 lemma path_by_shm_attach2: |
|
636 "\<lbrakk>valid (Attach p h flag # s); if path_by_shm s pa pb then True else |
|
637 (if (pa = p \<and> flag = SHM_RDWR) |
|
638 then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb) |
|
639 else if (pb = p) |
|
640 then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p') |
|
641 else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> |
|
642 path_by_shm s p' pb) \<or> |
|
643 (\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb))\<rbrakk> |
|
644 \<Longrightarrow> path_by_shm (Attach p h flag # s) pa pb" |
|
645 apply (frule vt_grant_os, frule vd_cons) |
|
646 apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def intro:path_by_shm_attach_aux) |
|
647 apply (rule_tac p' = p' in Info_flow_trans) |
|
648 apply (rule_tac p' = p and h = h in path_by_shm.intros(2)) |
|
649 apply (rule path_by_shm.intros(1), simp) |
|
650 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def) |
|
651 apply (rule conjI, rule notI, simp, rule_tac x = flagb in exI, simp) |
|
652 apply (simp add:path_by_shm_attach_aux) |
|
653 |
|
654 apply (rule_tac p' = p' in Info_flow_trans) |
|
655 apply (rule_tac p' = p in Info_flow_trans) |
|
656 apply (simp add:path_by_shm_attach_aux) |
|
657 apply (rule_tac p' = p and h = h in path_by_shm.intros(2)) |
|
658 apply (rule path_by_shm.intros(1), simp) |
|
659 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def) |
|
660 apply (rule conjI, rule notI, simp, rule_tac x = flag' in exI, simp) |
|
661 apply (simp add:path_by_shm_attach_aux) |
|
662 |
|
663 apply (rule_tac p' = p in Info_flow_trans) |
|
664 apply (rule_tac p' = p' in Info_flow_trans) |
|
665 apply (simp add:path_by_shm_attach_aux) |
|
666 apply (rule_tac p' = p' and h = h in path_by_shm.intros(2)) |
|
667 apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2) |
|
668 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def) |
|
669 apply (rule notI, simp) |
|
670 apply (simp add:path_by_shm_attach_aux) |
|
671 |
|
672 apply (rule_tac p' = p in Info_flow_trans) |
|
673 apply (rule_tac p' = p' in Info_flow_trans) |
|
674 apply (simp add:path_by_shm_attach_aux) |
|
675 apply (rule_tac p' = p' and h = h in path_by_shm.intros(2)) |
|
676 apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2) |
|
677 apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def) |
|
678 apply (rule notI, simp) |
|
679 apply (simp add:path_by_shm_attach_aux) |
|
680 done |
|
681 |
|
682 lemma path_by_shm_attach: |
|
683 "valid (Attach p h flag # s) \<Longrightarrow> path_by_shm (Attach p h flag # s) = (\<lambda> pa pb. |
|
684 path_by_shm s pa pb \<or> |
|
685 (if (pa = p \<and> flag = SHM_RDWR) |
|
686 then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb) |
|
687 else if (pb = p) |
|
688 then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p') |
|
689 else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and> |
|
690 path_by_shm s p' pb) \<or> |
|
691 (\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb) |
|
692 ) )" |
|
693 apply (rule ext, rule ext, rule iffI) |
|
694 apply (drule_tac pa = pa and pb = pb in path_by_shm_attach1, simp) |
|
695 apply (auto split:if_splits)[1] |
|
696 apply (drule_tac pa = pa and pb = pb in path_by_shm_attach2) |
|
697 apply (auto split:if_splits) |
|
698 done |
|
699 |
|
700 |
|
701 |
|
702 lemma info_flow_shm_detach: |
|
703 "valid (Detach p h # s) \<Longrightarrow> info_flow_shm (Detach p h # s) = (\<lambda> pa pb. |
|
704 self_shm s pa pb \<or> ((p = pa \<or> p = pb) \<and> (\<exists> h'. h' \<noteq> h \<and> one_flow_shm s h' pa pb)) \<or> |
|
705 (pa \<noteq> p \<and> pb \<noteq> p \<and> info_flow_shm s pa pb) )" |
|
706 apply (rule ext, rule ext, frule vt_grant_os) |
|
707 by (auto simp:info_flow_shm_def one_flow_shm_def) |
|
708 |
|
709 lemma info_flow_shm_deleteshm: |
|
710 "valid (DeleteShM p h # s) \<Longrightarrow> info_flow_shm (DeleteShM p h # s) = (\<lambda> pa pb. |
|
711 self_shm s pa pb \<or> (\<exists> h'. h' \<noteq> h \<and> one_flow_shm s h' pa pb) )" |
|
712 apply (rule ext, rule ext, frule vt_grant_os) |
|
713 by (auto simp:info_flow_shm_def one_flow_shm_def) |
|
714 |
|
715 lemma info_flow_shm_clone: |
|
716 "valid (Clone p p' fds shms # s) \<Longrightarrow> info_flow_shm (Clone p p' fds shms # s) = (\<lambda> pa pb. |
|
717 (pa = p' \<and> pb = p') \<or> (pa = p' \<and> pb \<noteq> p' \<and> (\<exists> h \<in> shms. one_flow_shm s h p pb)) \<or> |
|
718 (pb = p' \<and> pa \<noteq> p' \<and> (\<exists> h \<in> shms. one_flow_shm s h pa p)) \<or> |
|
719 (pa \<noteq> p' \<and> pb \<noteq> p' \<and> info_flow_shm s pa pb))" |
|
720 apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons, clarsimp) |
|
721 apply (frule_tac p = p' in procs_of_shm_prop2', simp) |
|
722 sorry (* |
|
723 apply (auto simp:info_flow_shm_def one_flow_shm_def) |
|
724 done *) |
|
725 |
|
726 lemma info_flow_shm_execve: |
|
727 "valid (Execve p f fds # s) \<Longrightarrow> info_flow_shm (Execve p f fds # s) = (\<lambda> pa pb. |
|
728 (pa = p \<and> pb = p) \<or> (pa \<noteq> p \<and> pb \<noteq> p \<and> info_flow_shm s pa pb) )" |
|
729 apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
730 by (auto simp:info_flow_shm_def one_flow_shm_def) |
|
731 |
|
732 lemma info_flow_shm_kill: |
|
733 "valid (Kill p p' # s) \<Longrightarrow> info_flow_shm (Kill p p' # s) = (\<lambda> pa pb. |
|
734 pa \<noteq> p' \<and> pb \<noteq> p' \<and> info_flow_shm s pa pb )" |
|
735 apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
736 by (auto simp:info_flow_shm_def one_flow_shm_def) |
|
737 |
|
738 lemma info_flow_shm_exit: |
|
739 "valid (Exit p # s) \<Longrightarrow> info_flow_shm (Exit p # s) = (\<lambda> pa pb. |
|
740 pa \<noteq> p \<and> pb \<noteq> p \<and> info_flow_shm s pa pb )" |
|
741 apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
742 by (auto simp:info_flow_shm_def one_flow_shm_def) |
|
743 |
|
744 lemma info_flow_shm_other: |
|
745 "\<lbrakk>valid (e # s); |
|
746 \<forall> p h flag. e \<noteq> Attach p h flag; |
|
747 \<forall> p h. e \<noteq> Detach p h; |
|
748 \<forall> p h. e \<noteq> DeleteShM p h; |
|
749 \<forall> p p' fds shms. e \<noteq> Clone p p' fds shms; |
|
750 \<forall> p f fds. e \<noteq> Execve p f fds; |
|
751 \<forall> p p'. e \<noteq> Kill p p'; |
|
752 \<forall> p. e \<noteq> Exit p |
|
753 \<rbrakk> \<Longrightarrow> info_flow_shm (e # s) = info_flow_shm s" |
|
754 apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons) |
|
755 apply (case_tac e, auto simp:info_flow_shm_def one_flow_shm_def dest:procs_of_shm_prop2) |
|
756 apply (erule_tac x = h in allE, simp) |
|
757 apply (drule procs_of_shm_prop1, auto) |
|
758 done |
|
759 |
|
760 |
|
761 (* |
|
762 lemma info_flow_shm_prop1: |
|
763 "\<lbrakk>info_flow_shm s p p'; p \<noteq> p'; valid s\<rbrakk> |
|
764 \<Longrightarrow> \<exists> h h' flag. (p, SHM_RDWR) \<in> procs_of_shm s h \<and> (p', flag) \<in> procs_of_shm s h'" |
|
765 by (induct rule: info_flow_shm.induct, auto) |
|
766 |
|
767 lemma info_flow_shm_cases: |
|
768 "\<lbrakk>info_flow_shm \<tau> pa pb; \<And>p s. \<lbrakk>s = \<tau> ; pa = p; pb = p; p \<in> current_procs s\<rbrakk> \<Longrightarrow> P; |
|
769 \<And>s p p' h p'' flag. \<lbrakk>s = \<tau>; pa = p; pb = p''; info_flow_shm s p p'; (p', SHM_RDWR) \<in> procs_of_shm s h; |
|
770 (p'', flag) \<in> procs_of_shm s h\<rbrakk>\<Longrightarrow> P\<rbrakk> |
|
771 \<Longrightarrow> P" |
|
772 by (erule info_flow_shm.cases, auto) |
|
773 |
|
774 definition one_flow_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool" |
|
775 where |
|
776 "one_flow_shm s p p' \<equiv> p \<noteq> p' \<and> (\<exists> h flag. (p, SHM_RDWR) \<in> procs_of_shm s h \<and> (p', flag) \<in> procs_of_shm s h)" |
|
777 |
|
778 inductive flows_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool" |
|
779 where |
|
780 "p \<in> current_procs s \<Longrightarrow> flows_shm s p p" |
|
781 | "\<lbrakk>flows_shm s p p'; one_flow_shm s p' p''\<rbrakk> \<Longrightarrow> flows_shm s p p''" |
|
782 |
|
783 definition attached_procs :: "t_state \<Rightarrow> t_shm \<Rightarrow> t_process set" |
|
784 where |
|
785 "attached_procs s h \<equiv> {p. \<exists> flag. (p, flag) \<in> procs_of_shm s h}" |
|
786 |
|
787 definition flowed_procs:: "t_state \<Rightarrow> t_shm \<Rightarrow> t_process set" |
|
788 where |
|
789 "flowed_procs s h \<equiv> {p'. \<exists> p \<in> attached_procs s h. flows_shm s p p'}" |
|
790 |
|
791 inductive flowed_shm:: "t_state \<Rightarrow> t_process \<Rightarrow> t_shm set" |
|
792 |
|
793 fun Info_flow_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process set" |
|
794 where |
|
795 "Info_flow_shm [] = (\<lambda> p. {p'. flows_shm [] p p'})" |
|
796 | "Info_flow_shm (Attach p h flag # s) = (\<lambda> p'. |
|
797 if (p' = p) then flowed_procs s h |
|
798 else if () |
|
799 " |
|
800 |
|
801 |
|
802 lemma info_flow_shm_attach: |
|
803 "valid (Attach p h flag # s) \<Longrightarrow> info_flow_shm (Attach p h flag # s) = (\<lambda> pa pb. (info_flow_shm s pa pb) \<or> |
|
804 (if (pa = p) |
|
805 then (if (flag = SHM_RDWR) |
|
806 then (\<exists> flag. (pb, flag) \<in> procs_of_shm s h) |
|
807 else (pb = p)) |
|
808 else (if (pb = p) |
|
809 then (pa, SHM_RDWR) \<in> procs_of_shm s h |
|
810 else info_flow_shm s pa pb)) )" |
|
811 apply (frule vd_cons, frule vt_grant_os, rule ext, rule ext) |
|
812 apply (case_tac "info_flow_shm s pa pb", simp) |
|
813 |
|
814 thm info_flow_shm.cases |
|
815 apply (auto split:if_splits intro:info_flow_shm.intros elim:info_flow_shm_cases) |
|
816 apply (erule info_flow_shm_cases, simp, simp split:if_splits) |
|
817 apply (rule_tac p = pa and p' = p' in info_flow_shm.intros(2), simp+) |
|
818 apply (rule notI, erule info_flow_shm.cases, simp+) |
|
819 pr 5 |
|
820 *) |
|
821 lemmas info_flow_shm_simps = info_flow_shm_other (* info_flow_shm_attach *) info_flow_shm_detach info_flow_shm_deleteshm |
|
822 info_flow_shm_clone info_flow_shm_execve info_flow_shm_kill info_flow_shm_exit |
|
823 |
|
824 |
|
825 |
|
826 |
|
827 |
|
828 |
|
829 end |
|
830 |
|
831 end |