30
|
1 |
theory Info_flow_shm_prop
|
|
2 |
imports Main Flask_type Flask My_list_prefix Init_prop Valid_prop Delete_prop Current_prop
|
|
3 |
begin
|
|
4 |
|
|
5 |
context flask begin
|
|
6 |
|
|
7 |
(*********** simpset for one_flow_shm **************)
|
|
8 |
|
|
9 |
lemma one_flow_not_self:
|
|
10 |
"one_flow_shm s h p p \<Longrightarrow> False"
|
|
11 |
by (simp add:one_flow_shm_def)
|
|
12 |
|
|
13 |
lemma one_flow_shm_attach:
|
|
14 |
"valid (Attach p h flag # s) \<Longrightarrow> one_flow_shm (Attach p h flag # s) = (\<lambda> h' pa pb.
|
|
15 |
if (h' = h)
|
|
16 |
then (pa = p \<and> pb \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pb, flagb) \<in> procs_of_shm s h)) \<or>
|
|
17 |
(pb = p \<and> pa \<noteq> p \<and> (pa, SHM_RDWR) \<in> procs_of_shm s h) \<or>
|
|
18 |
(one_flow_shm s h pa pb)
|
|
19 |
else one_flow_shm s h' pa pb )"
|
|
20 |
apply (rule ext, rule ext, rule ext, frule vd_cons, frule vt_grant_os)
|
|
21 |
by (auto simp add: one_flow_shm_def)
|
|
22 |
|
|
23 |
lemma one_flow_shm_detach:
|
|
24 |
"valid (Detach p h # s) \<Longrightarrow> one_flow_shm (Detach p h # s) = (\<lambda> h' pa pb.
|
|
25 |
if (h' = h)
|
|
26 |
then (pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h' pa pb)
|
|
27 |
else one_flow_shm s h' pa pb)"
|
|
28 |
apply (rule ext, rule ext, rule ext, frule vt_grant_os)
|
|
29 |
by (auto simp:one_flow_shm_def)
|
|
30 |
|
|
31 |
lemma one_flow_shm_deleteshm:
|
|
32 |
"valid (DeleteShM p h # s) \<Longrightarrow> one_flow_shm (DeleteShM p h # s) = (\<lambda> h' pa pb.
|
|
33 |
if (h' = h)
|
|
34 |
then False
|
|
35 |
else one_flow_shm s h' pa pb)"
|
|
36 |
apply (rule ext, rule ext, rule ext, frule vt_grant_os)
|
|
37 |
by (auto simp: one_flow_shm_def)
|
|
38 |
|
|
39 |
lemma one_flow_shm_clone:
|
|
40 |
"valid (Clone p p' fds shms # s) \<Longrightarrow> one_flow_shm (Clone p p' fds shms # s) = (\<lambda> h pa pb.
|
|
41 |
if (pa = p' \<and> pb \<noteq> p' \<and> h \<in> shms)
|
|
42 |
then (if (pb = p) then (flag_of_proc_shm s p h = Some SHM_RDWR) else one_flow_shm s h p pb)
|
|
43 |
else if (pb = p' \<and> pa \<noteq> p' \<and> h \<in> shms)
|
|
44 |
then (if (pa = p) then (flag_of_proc_shm s p h = Some SHM_RDWR) else one_flow_shm s h pa p)
|
|
45 |
else one_flow_shm s h pa pb)"
|
|
46 |
apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons, clarsimp)
|
|
47 |
apply (frule_tac p = p' in procs_of_shm_prop2', simp)
|
|
48 |
apply (auto simp:one_flow_shm_def intro:procs_of_shm_prop4 flag_of_proc_shm_prop1)
|
|
49 |
done
|
|
50 |
|
|
51 |
lemma one_flow_shm_execve:
|
|
52 |
"valid (Execve p f fds # s) \<Longrightarrow> one_flow_shm (Execve p f fds # s) = (\<lambda> h pa pb.
|
|
53 |
pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h pa pb )"
|
|
54 |
apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons)
|
|
55 |
by (auto simp:one_flow_shm_def)
|
|
56 |
|
|
57 |
lemma one_flow_shm_kill:
|
|
58 |
"valid (Kill p p' # s) \<Longrightarrow> one_flow_shm (Kill p p' # s) = (\<lambda> h pa pb.
|
|
59 |
pa \<noteq> p' \<and> pb \<noteq> p' \<and> one_flow_shm s h pa pb )"
|
|
60 |
apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons)
|
|
61 |
by (auto simp:one_flow_shm_def)
|
|
62 |
|
|
63 |
lemma one_flow_shm_exit:
|
|
64 |
"valid (Exit p # s) \<Longrightarrow> one_flow_shm (Exit p # s) = (\<lambda> h pa pb.
|
|
65 |
pa \<noteq> p \<and> pb \<noteq> p \<and> one_flow_shm s h pa pb )"
|
|
66 |
apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons)
|
|
67 |
by (auto simp:one_flow_shm_def)
|
|
68 |
|
|
69 |
lemma one_flow_shm_other:
|
|
70 |
"\<lbrakk>valid (e # s);
|
|
71 |
\<forall> p h flag. e \<noteq> Attach p h flag;
|
|
72 |
\<forall> p h. e \<noteq> Detach p h;
|
|
73 |
\<forall> p h. e \<noteq> DeleteShM p h;
|
|
74 |
\<forall> p p' fds shms. e \<noteq> Clone p p' fds shms;
|
|
75 |
\<forall> p f fds. e \<noteq> Execve p f fds;
|
|
76 |
\<forall> p p'. e \<noteq> Kill p p';
|
|
77 |
\<forall> p. e \<noteq> Exit p
|
|
78 |
\<rbrakk> \<Longrightarrow> one_flow_shm (e # s) = one_flow_shm s"
|
|
79 |
apply (rule ext, rule ext, rule ext, frule vt_grant_os, frule vd_cons)
|
|
80 |
apply (case_tac e, auto simp:one_flow_shm_def dest:procs_of_shm_prop2)
|
|
81 |
apply (drule procs_of_shm_prop1, auto)
|
|
82 |
done
|
|
83 |
|
|
84 |
lemmas one_flow_shm_simps = one_flow_shm_other one_flow_shm_attach one_flow_shm_detach one_flow_shm_deleteshm
|
|
85 |
one_flow_shm_clone one_flow_shm_execve one_flow_shm_kill one_flow_shm_exit
|
|
86 |
|
|
87 |
type_synonym t_edge_shm = "t_process \<times> t_shm \<times> t_process"
|
|
88 |
fun Fst:: "t_edge_shm \<Rightarrow> t_process" where "Fst (a, b, c) = a"
|
|
89 |
fun Snd:: "t_edge_shm \<Rightarrow> t_shm" where "Snd (a, b, c) = b"
|
|
90 |
fun Trd:: "t_edge_shm \<Rightarrow> t_process" where "Trd (a, b, c) = c"
|
|
91 |
|
|
92 |
fun edge_related:: "t_edge_shm list \<Rightarrow> t_process \<Rightarrow> t_shm \<Rightarrow> bool"
|
|
93 |
where
|
|
94 |
"edge_related [] p h = False"
|
|
95 |
| "edge_related ((from, shm, to) # path) p h =
|
|
96 |
(if (((p = from) \<or> (p = to)) \<and> (h = shm)) then True
|
|
97 |
else edge_related path p h)"
|
|
98 |
|
|
99 |
inductive path_by_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_edge_shm list \<Rightarrow> t_process \<Rightarrow> bool"
|
|
100 |
where
|
|
101 |
pbs1: "p \<in> current_procs s \<Longrightarrow> path_by_shm s p [] p"
|
|
102 |
| pbs2: "\<lbrakk>path_by_shm s p path p'; one_flow_shm s h p' p''; p'' \<notin> set (map Fst path)\<rbrakk>
|
|
103 |
\<Longrightarrow> path_by_shm s p ((p', h, p'')# path) p''"
|
|
104 |
|
|
105 |
|
|
106 |
lemma one_step_path: "\<lbrakk>one_flow_shm s h p p'; valid s\<rbrakk> \<Longrightarrow> path_by_shm s p [(p, h, p')] p'"
|
|
107 |
apply (rule_tac path = "[]" and p = p in path_by_shm.intros(2))
|
|
108 |
apply (rule path_by_shm.intros(1))
|
|
109 |
apply (auto intro:procs_of_shm_prop2 simp:one_flow_shm_def)
|
|
110 |
done
|
|
111 |
|
|
112 |
lemma pbs_prop1:
|
|
113 |
"path_by_shm s p path p' \<Longrightarrow> ((path = []) = (p = p')) \<and> (path \<noteq> [] \<longrightarrow> p \<in> set (map Fst path))"
|
|
114 |
apply (erule path_by_shm.induct, simp)
|
|
115 |
apply (auto simp:one_flow_shm_def)
|
|
116 |
done
|
|
117 |
|
|
118 |
lemma pbs_prop2:
|
|
119 |
"path_by_shm s p path p' \<Longrightarrow> (path = []) = (p = p')"
|
|
120 |
by (simp add:pbs_prop1)
|
|
121 |
|
|
122 |
lemma pbs_prop2':
|
|
123 |
"path_by_shm s p path p \<Longrightarrow> path = []"
|
|
124 |
by (simp add:pbs_prop2)
|
|
125 |
|
|
126 |
lemma pbs_prop3:
|
|
127 |
"\<lbrakk>path_by_shm s p path p'; path \<noteq> []\<rbrakk> \<Longrightarrow> p \<in> set (map Fst path)"
|
|
128 |
by (drule pbs_prop1, auto)
|
|
129 |
|
|
130 |
lemma pbs_prop4[rule_format]:
|
|
131 |
"path_by_shm s p path p'\<Longrightarrow> path \<noteq> [] \<longrightarrow> p' \<in> set (map Trd path)"
|
|
132 |
by (erule path_by_shm.induct, auto)
|
|
133 |
|
|
134 |
lemma pbs_prop5[rule_format]:
|
|
135 |
"path_by_shm s p path p' \<Longrightarrow> path \<noteq> [] \<longrightarrow> p' \<notin> set (map Fst path)"
|
|
136 |
by (erule path_by_shm.induct, auto simp:one_flow_shm_def)
|
|
137 |
|
|
138 |
lemma pbs_prop6_aux:
|
|
139 |
"path_by_shm s pa pathac pc \<Longrightarrow> valid s \<longrightarrow> (\<forall> pb \<in> set (map Fst pathac). \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab)"
|
|
140 |
apply (erule path_by_shm.induct)
|
|
141 |
apply simp
|
|
142 |
apply clarify
|
|
143 |
apply (case_tac "pb = p'", simp)
|
|
144 |
apply (rule_tac x = path in exI, simp)
|
|
145 |
apply (erule one_step_path, simp)
|
|
146 |
apply (erule_tac x = pb in ballE, simp_all, clarsimp)
|
|
147 |
apply (rule_tac x = pathab in exI, simp)
|
|
148 |
apply (erule pbs2, auto)
|
|
149 |
done
|
|
150 |
|
|
151 |
lemma pbs_prop6:
|
|
152 |
"\<lbrakk>path_by_shm s pa pathac pc; pb \<in> set (map Fst pathac); valid s\<rbrakk>
|
|
153 |
\<Longrightarrow> \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab"
|
|
154 |
by (drule pbs_prop6_aux, auto)
|
|
155 |
|
|
156 |
lemma pbs_prop7_aux:
|
|
157 |
"path_by_shm s pa pathac pc \<Longrightarrow> valid s \<longrightarrow> (\<forall> pb \<in> set (map Trd pathac). \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab)"
|
|
158 |
apply (erule path_by_shm.induct)
|
|
159 |
apply simp
|
|
160 |
apply clarify
|
|
161 |
apply (case_tac "pb = p''", simp)
|
|
162 |
apply (rule_tac x = "(p',h,p'') # path" in exI, simp)
|
|
163 |
apply (rule conjI, erule pbs2, simp+)
|
|
164 |
apply (rule pbs1, clarsimp simp:one_flow_shm_def procs_of_shm_prop2)
|
|
165 |
apply (erule_tac x = pb in ballE, simp_all, clarsimp)
|
|
166 |
apply (rule_tac x = pathab in exI, simp)
|
|
167 |
apply (erule pbs2, auto)
|
|
168 |
done
|
|
169 |
|
|
170 |
lemma pbs_prop7:
|
|
171 |
"\<lbrakk>path_by_shm s pa pathac pc; pb \<in> set (map Trd pathac); valid s\<rbrakk>
|
|
172 |
\<Longrightarrow> \<exists> pathab pathbc. path_by_shm s pa pathab pb \<and> path_by_shm s pb pathbc pc \<and> pathac = pathbc @ pathab"
|
|
173 |
by (drule pbs_prop7_aux, drule mp, simp, erule_tac x = pb in ballE, auto)
|
|
174 |
|
|
175 |
lemma pbs_prop8:
|
|
176 |
"path_by_shm s p path p' \<Longrightarrow> (set (map Fst path) - {p}) = (set (map Trd path) - {p'})"
|
|
177 |
proof (induct rule:path_by_shm.induct)
|
|
178 |
case (pbs1 p s)
|
|
179 |
thus ?case by simp
|
|
180 |
next
|
|
181 |
case (pbs2 s p path p' h p'')
|
|
182 |
assume p1:"path_by_shm s p path p'" and p2: "set (map Fst path) - {p} = set (map Trd path) - {p'}"
|
|
183 |
and p3: "one_flow_shm s h p' p''" and p4: "p'' \<notin> set (map Fst path)"
|
|
184 |
show "set (map Fst ((p', h, p'') # path)) - {p} = set (map Trd ((p', h, p'') # path)) - {p''}"
|
|
185 |
(is "?left = ?right")
|
|
186 |
proof (cases "path = []")
|
|
187 |
case True
|
|
188 |
with p1 have "p = p'" by (drule_tac pbs_prop2, simp)
|
|
189 |
thus ?thesis using True
|
|
190 |
using p2 by (simp)
|
|
191 |
next
|
|
192 |
case False
|
|
193 |
with p1 have a1: "p \<noteq> p'" by (drule_tac pbs_prop2, simp)
|
|
194 |
from p3 have a2: "p' \<noteq> p''" by (simp add:one_flow_shm_def)
|
|
195 |
from p1 False have a3: "p' \<in> set (map Trd path)" by (drule_tac pbs_prop4, simp+)
|
|
196 |
from p4 p1 False have a4: "p \<noteq> p''" by (drule_tac pbs_prop3, auto)
|
|
197 |
with p2 a2 p4 have a5: "p'' \<notin> set (map Trd path)" by auto
|
|
198 |
|
|
199 |
have "?left = (set (map Fst path) - {p}) \<union> {p'}" using a1 by auto
|
|
200 |
moreover have "... = (set (map Trd path) - {p'}) \<union> {p'}"
|
|
201 |
using p2 by auto
|
|
202 |
moreover have "... = set (map Trd path)" using a3 by auto
|
|
203 |
moreover have "... = set (map Trd path) - {p''}" using a5 by simp
|
|
204 |
moreover have "... = ?right" by simp
|
|
205 |
ultimately show ?thesis by simp
|
|
206 |
qed
|
|
207 |
qed
|
|
208 |
|
|
209 |
lemma pbs_prop9_aux[rule_format]:
|
|
210 |
"path_by_shm s p path p' \<Longrightarrow> h \<in> set (map Snd path) \<and> valid s \<longrightarrow> (\<exists> pa pb patha pathb. path_by_shm s p patha pa \<and> path_by_shm s pb pathb p' \<and> one_flow_shm s h pa pb \<and> path = pathb @ [(pa, h, pb)] @ patha \<and> h \<notin> set (map Snd patha))"
|
|
211 |
apply (erule path_by_shm.induct, simp)
|
|
212 |
apply (rule impI, case_tac "h \<in> set (map Snd path)", simp_all)
|
|
213 |
apply (erule exE|erule conjE)+
|
|
214 |
apply (rule_tac x = pa in exI, rule_tac x = pb in exI, rule_tac x = patha in exI, simp)
|
|
215 |
apply (rule pbs2, auto)
|
|
216 |
apply (rule_tac x = p' in exI, rule_tac x = p'' in exI, rule_tac x = path in exI, simp)
|
|
217 |
apply (rule pbs1, clarsimp simp:one_flow_shm_def procs_of_shm_prop2)
|
|
218 |
done
|
|
219 |
|
|
220 |
lemma pbs_prop9:
|
|
221 |
"\<lbrakk>h \<in> set (map Snd path); path_by_shm s p path p'; valid s\<rbrakk>
|
|
222 |
\<Longrightarrow> \<exists> pa pb patha pathb. path_by_shm s p patha pa \<and> path_by_shm s pb pathb p' \<and>
|
|
223 |
one_flow_shm s h pa pb \<and> path = pathb @ [(pa, h, pb)] @ patha \<and> h \<notin> set (map Snd patha)"
|
|
224 |
by (rule pbs_prop9_aux, auto)
|
|
225 |
|
|
226 |
lemma path_by_shm_trans_aux[rule_format]:
|
|
227 |
"path_by_shm s p' path' p'' \<Longrightarrow> valid s \<longrightarrow> (\<forall> p path. path_by_shm s p path p' \<longrightarrow> (\<exists> path''. path_by_shm s p path'' p''))"
|
|
228 |
proof (induct rule:path_by_shm.induct)
|
|
229 |
case (pbs1 p s)
|
|
230 |
thus ?case
|
|
231 |
by (clarify, rule_tac x = path in exI, simp)
|
|
232 |
next
|
|
233 |
case (pbs2 s p path p' h p'')
|
|
234 |
hence p1: "path_by_shm s p path p'" and p2: "one_flow_shm s h p' p''"
|
|
235 |
and p3: "valid s \<longrightarrow> (\<forall>pa path. path_by_shm s pa path p \<longrightarrow> (\<exists>path''. path_by_shm s pa path'' p'))"
|
|
236 |
and p4: "p'' \<notin> set (map Fst path)" by auto
|
|
237 |
show ?case
|
|
238 |
proof clarify
|
|
239 |
fix pa path'
|
|
240 |
assume p5: "path_by_shm s pa path' p" and p6: "valid s"
|
|
241 |
with p3 obtain path'' where a1: "path_by_shm s pa path'' p'" by auto
|
|
242 |
have p3': "\<forall>pa path. path_by_shm s pa path p \<longrightarrow> (\<exists>path''. path_by_shm s pa path'' p')"
|
|
243 |
using p3 p6 by simp
|
|
244 |
show "\<exists>path''. path_by_shm s pa path'' p''"
|
|
245 |
proof (cases "p'' \<in> set (map Fst path'')")
|
|
246 |
case True
|
|
247 |
then obtain res where "path_by_shm s pa res p''" using a1 pbs_prop6 p6 by blast
|
|
248 |
thus ?thesis by auto
|
|
249 |
next
|
|
250 |
case False
|
|
251 |
with p2 a1 show ?thesis
|
|
252 |
apply (rule_tac x = "(p', h, p'') # path''" in exI)
|
|
253 |
apply (rule path_by_shm.intros(2), auto)
|
|
254 |
done
|
|
255 |
qed
|
|
256 |
qed
|
|
257 |
qed
|
|
258 |
|
|
259 |
lemma path_by_shm_trans:
|
|
260 |
"\<lbrakk>path_by_shm s p path p'; path_by_shm s p' path' p''; valid s\<rbrakk> \<Longrightarrow> \<exists> path''. path_by_shm s p path'' p''"
|
|
261 |
by (drule_tac p' = p' and p'' = p'' in path_by_shm_trans_aux, auto)
|
|
262 |
|
|
263 |
lemma path_by_shm_intro1_prop:
|
|
264 |
"\<not> path_by_shm s p [] p \<Longrightarrow> p \<notin> current_procs s"
|
|
265 |
by (auto dest:path_by_shm.intros(1))
|
|
266 |
|
|
267 |
lemma path_by_shm_intro3:
|
|
268 |
"\<lbrakk>path_by_shm s p path from; (from, SHM_RDWR) \<in> procs_of_shm s h; (to, flag) \<in> procs_of_shm s h;
|
|
269 |
to \<notin> set (map Fst path); from \<noteq> to\<rbrakk>
|
|
270 |
\<Longrightarrow> path_by_shm s p ((from, h, to)#path) to"
|
|
271 |
apply (rule path_by_shm.intros(2), simp_all)
|
|
272 |
by (auto simp:one_flow_shm_def)
|
|
273 |
|
|
274 |
lemma path_by_shm_intro4:
|
|
275 |
"\<lbrakk>(p, flag) \<in> procs_of_shm s h; valid s\<rbrakk> \<Longrightarrow> path_by_shm s p [] p"
|
|
276 |
by (drule procs_of_shm_prop2, simp, simp add:path_by_shm.intros(1))
|
|
277 |
|
|
278 |
lemma path_by_shm_intro5:
|
|
279 |
"\<lbrakk>(from, SHM_RDWR) \<in> procs_of_shm s h; (to,flag) \<in> procs_of_shm s h; valid s; from \<noteq> to\<rbrakk>
|
|
280 |
\<Longrightarrow> path_by_shm s from [(from, h, to)] to"
|
|
281 |
apply (rule_tac p' = "from" and h = h in path_by_shm.intros(2))
|
|
282 |
apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2)
|
|
283 |
apply (simp add:one_flow_shm_def, rule_tac x = flag in exI, auto)
|
|
284 |
done
|
|
285 |
|
|
286 |
(* p'' \<notin> set (map Fst path): not duplicated target process;
|
|
287 |
* p1 - ha \<rightarrow> p2; p2 - hb \<rightarrow> p3; p3 - ha \<rightarrow> p4; so path_by_shm p1 [(p3,ha,p4), (p2,hb,p3),(p1,ha,p2)] p4,
|
|
288 |
* but this could be also path_by_shm p1 [(p1,ha,p4)] p4, so the former one is redundant! *)
|
|
289 |
|
|
290 |
inductive path_by_shm':: "t_state \<Rightarrow> t_process \<Rightarrow> t_edge_shm list \<Rightarrow> t_process \<Rightarrow> bool"
|
|
291 |
where
|
|
292 |
pbs1': "p \<in> current_procs s \<Longrightarrow> path_by_shm' s p [] p"
|
|
293 |
| pbs2': "\<lbrakk>path_by_shm' s p path p'; one_flow_shm s h p' p''; p'' \<notin> set (map Fst path);
|
|
294 |
h \<notin> set (map Snd path)\<rbrakk>
|
|
295 |
\<Longrightarrow> path_by_shm' s p ((p', h, p'')# path) p''"
|
|
296 |
|
|
297 |
lemma pbs_prop10:
|
|
298 |
"\<lbrakk>path_by_shm s p path p'; one_flow_shm s h p' p''; valid s\<rbrakk> \<Longrightarrow> \<exists>path'. path_by_shm s p path' p''"
|
|
299 |
apply (case_tac "p'' \<in> set (map Fst path)")
|
|
300 |
apply (drule_tac pb = p'' in pbs_prop6, simp+)
|
|
301 |
apply ((erule exE|erule conjE)+, rule_tac x = pathab in exI, simp)
|
|
302 |
apply (rule_tac x = "(p', h, p'') # path" in exI)
|
|
303 |
apply (erule pbs2, simp+)
|
|
304 |
done
|
|
305 |
|
|
306 |
lemma pbs'_imp_pbs[rule_format]:
|
|
307 |
"path_by_shm' s p path p' \<Longrightarrow> valid s \<longrightarrow> (\<exists> path'. path_by_shm s p path' p')"
|
|
308 |
apply (erule path_by_shm'.induct)
|
|
309 |
apply (rule impI, rule_tac x = "[]" in exI, simp add:pbs1)
|
|
310 |
apply (rule impI, clarsimp)
|
|
311 |
apply (erule pbs_prop10, simp+)
|
|
312 |
done
|
|
313 |
|
|
314 |
lemma pbs_imp_pbs'[rule_format]:
|
|
315 |
"path_by_shm s p path p' \<Longrightarrow> valid s \<longrightarrow> (\<exists> path'. path_by_shm' s p path' p')"
|
|
316 |
apply (erule path_by_shm.induct)
|
|
317 |
apply (rule impI, rule_tac x = "[]" in exI, erule pbs1')
|
|
318 |
apply (rule impI, simp, erule exE) (*
|
|
319 |
apply ( erule exE, case_tac "h \<in> set (map Snd path)")
|
|
320 |
apply (drule_tac s = s and p = p and p' = p' in pbs_prop9, simp+) defer
|
|
321 |
apply (rule_tac x = "(p', h, p'') # path'" in exI)
|
|
322 |
apply (erule pbs2', simp+)
|
|
323 |
apply ((erule exE|erule conjE)+)
|
|
324 |
apply (rule_tac x = "(pa, h, p'') # patha" in exI)
|
|
325 |
apply (erule pbs2', auto simp:one_flow_shm_def)
|
|
326 |
done*)
|
|
327 |
sorry
|
|
328 |
|
|
329 |
|
|
330 |
lemma pbs'_eq_pbs:
|
|
331 |
"valid s \<Longrightarrow> (\<exists> path'. path_by_shm' s p path' p') = (\<exists> path. path_by_shm s p path p')"
|
|
332 |
by (rule iffI, auto intro:pbs_imp_pbs' pbs'_imp_pbs)
|
|
333 |
|
|
334 |
definition flow_by_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool"
|
|
335 |
where
|
|
336 |
"flow_by_shm s p p' \<equiv> \<exists> path. path_by_shm s p path p'"
|
|
337 |
|
|
338 |
lemma flow_by_shm_intro':
|
|
339 |
"valid s \<Longrightarrow> flow_by_shm s p p' = (\<exists> path. path_by_shm' s p path p')"
|
|
340 |
by (auto simp:flow_by_shm_def pbs'_eq_pbs)
|
|
341 |
|
|
342 |
lemma one_step_flows: "\<lbrakk>one_flow_shm s h p p'; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p'"
|
|
343 |
by (drule one_step_path, auto simp:flow_by_shm_def)
|
|
344 |
|
|
345 |
lemma flow_by_shm_trans:
|
|
346 |
"\<lbrakk>flow_by_shm s p p'; flow_by_shm s p' p''; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p''"
|
|
347 |
by (auto simp:flow_by_shm_def intro!:path_by_shm_trans)
|
|
348 |
|
|
349 |
lemma flow_by_shm_intro1_prop:
|
|
350 |
"\<not> flow_by_shm s p p \<Longrightarrow> p \<notin> current_procs s"
|
|
351 |
by (auto dest:path_by_shm.intros(1) simp:flow_by_shm_def)
|
|
352 |
|
|
353 |
lemma flow_by_shm_intro1:
|
|
354 |
"p \<in> current_procs s \<Longrightarrow> flow_by_shm s p p"
|
|
355 |
by (auto dest:path_by_shm.intros(1) simp:flow_by_shm_def)
|
|
356 |
|
|
357 |
lemma flow_by_shm_intro2:
|
|
358 |
"\<lbrakk>flow_by_shm s p p'; one_flow_shm s h p' p''; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p''"
|
|
359 |
by (auto intro:flow_by_shm_trans dest:one_step_flows)
|
|
360 |
|
|
361 |
lemma flow_by_shm_intro3:
|
|
362 |
"\<lbrakk>flow_by_shm s p from; (from, SHM_RDWR) \<in> procs_of_shm s h; (to, flag) \<in> procs_of_shm s h; from \<noteq> to; valid s\<rbrakk>
|
|
363 |
\<Longrightarrow> flow_by_shm s p to"
|
|
364 |
apply (rule flow_by_shm_intro2)
|
|
365 |
by (auto simp:one_flow_shm_def)
|
|
366 |
|
|
367 |
lemma flow_by_shm_intro4:
|
|
368 |
"\<lbrakk>(p, flag) \<in> procs_of_shm s h; valid s\<rbrakk> \<Longrightarrow> flow_by_shm s p p"
|
|
369 |
by (drule procs_of_shm_prop2, simp, simp add:flow_by_shm_intro1)
|
|
370 |
|
|
371 |
lemma flow_by_shm_intro5:
|
|
372 |
"\<lbrakk>(from, SHM_RDWR) \<in> procs_of_shm s h; (to,flag) \<in> procs_of_shm s h; valid s; from \<noteq> to\<rbrakk>
|
|
373 |
\<Longrightarrow> flow_by_shm s from to"
|
|
374 |
apply (rule_tac p' = "from" and h = h in flow_by_shm_intro2)
|
|
375 |
apply (rule flow_by_shm_intro1, simp add:procs_of_shm_prop2)
|
|
376 |
apply (simp add:one_flow_shm_def, rule_tac x = flag in exI, auto)
|
|
377 |
done
|
|
378 |
|
|
379 |
lemma flow_by_shm_intro6:
|
|
380 |
"path_by_shm s p path p' \<Longrightarrow> flow_by_shm s p p'"
|
|
381 |
by (auto simp:flow_by_shm_def)
|
|
382 |
|
|
383 |
(********* simpset for inductive Info_flow_shm **********)
|
|
384 |
lemma path_by_shm_detach1_aux:
|
|
385 |
"path_by_shm s' pa path pb \<Longrightarrow> valid (Detach p h # s) \<and> (s' = Detach p h # s)
|
|
386 |
\<longrightarrow> \<not> edge_related path p h \<and> path_by_shm s pa path pb"
|
|
387 |
apply (erule path_by_shm.induct, simp)
|
|
388 |
apply (rule impI, rule path_by_shm.intros(1), simp+)
|
|
389 |
by (auto simp:one_flow_shm_def split:if_splits intro:path_by_shm_intro3)
|
|
390 |
|
|
391 |
lemma path_by_shm_detach1:
|
|
392 |
"\<lbrakk>path_by_shm (Detach p h # s) pa path pb; valid (Detach p h # s)\<rbrakk>
|
|
393 |
\<Longrightarrow> \<not> edge_related path p h \<and> path_by_shm s pa path pb"
|
|
394 |
by (auto dest:path_by_shm_detach1_aux)
|
|
395 |
|
|
396 |
lemma path_by_shm_detach2_aux[rule_format]:
|
|
397 |
"path_by_shm s pa path pb \<Longrightarrow> valid (Detach p h # s) \<and> \<not> edge_related path p h
|
|
398 |
\<longrightarrow> path_by_shm (Detach p h # s) pa path pb"
|
|
399 |
apply (induct rule:path_by_shm.induct)
|
|
400 |
apply (rule impI, rule path_by_shm.intros(1), simp)
|
|
401 |
apply (rule impI, erule conjE, simp split:if_splits)
|
|
402 |
apply (rule path_by_shm.intros(2), simp)
|
|
403 |
apply (simp add:one_flow_shm_detach)
|
|
404 |
apply (rule impI, simp+)
|
|
405 |
done
|
|
406 |
|
|
407 |
lemma path_by_shm_detach2:
|
|
408 |
"\<lbrakk>valid (Detach p h # s); \<not> edge_related path p h; path_by_shm s pa path pb\<rbrakk>
|
|
409 |
\<Longrightarrow> path_by_shm (Detach p h # s) pa path pb"
|
|
410 |
by (auto intro!:path_by_shm_detach2_aux)
|
|
411 |
|
|
412 |
lemma path_by_shm_detach:
|
|
413 |
"valid (Detach p h # s) \<Longrightarrow>
|
|
414 |
path_by_shm (Detach p h # s) pa path pb = (\<not> edge_related path p h \<and> path_by_shm s pa path pb)"
|
|
415 |
by (auto dest:path_by_shm_detach1 path_by_shm_detach2)
|
|
416 |
|
|
417 |
lemma flow_by_shm_detach:
|
|
418 |
"valid (Detach p h # s) \<Longrightarrow>
|
|
419 |
flow_by_shm (Detach p h # s) pa pb = (\<exists> path. \<not> edge_related path p h \<and> path_by_shm s pa path pb)"
|
|
420 |
by (auto dest:path_by_shm_detach simp:flow_by_shm_def)
|
|
421 |
|
|
422 |
lemma path_by_shm'_attach1_aux:
|
|
423 |
"path_by_shm' s' pa path pb \<Longrightarrow> valid s' \<and> (s' = Attach p h flag # s) \<longrightarrow>
|
|
424 |
(path_by_shm' s pa path pb) \<or>
|
|
425 |
(\<exists> path1 path2 p'. path_by_shm' s pa path1 p' \<and> path_by_shm' s p path2 pb \<and>
|
|
426 |
(p', SHM_RDWR) \<in> procs_of_shm s h \<and> path = path2 @ [(p', h, p)] @ path1 ) \<or>
|
|
427 |
(\<exists> path1 path2 p' flag'. path_by_shm' s pa path1 p \<and> path_by_shm' s p' path2 pb \<and>
|
|
428 |
(p', flag') \<in> procs_of_shm s h \<and> path = path2 @ [(p, h, p')] @ path1 \<and> flag = SHM_RDWR)"
|
|
429 |
apply (erule path_by_shm'.induct)
|
|
430 |
apply (simp, rule impI, rule pbs1', simp)
|
|
431 |
apply (rule impI, erule impE, clarsimp)
|
|
432 |
apply (erule disjE)
|
|
433 |
apply (clarsimp simp:one_flow_shm_attach split:if_splits)
|
|
434 |
apply (erule disjE, clarsimp)
|
|
435 |
apply (erule_tac x = path in allE, clarsimp)
|
|
436 |
apply (erule impE, rule pbs1', erule procs_of_shm_prop2, erule vd_cons, simp)
|
|
437 |
apply (erule disjE, clarsimp)
|
|
438 |
apply (rule_tac x = path in exI, rule_tac x = "[]" in exI, rule_tac x = p' in exI, simp)
|
|
439 |
apply (rule pbs1', drule vt_grant_os, clarsimp)
|
|
440 |
apply (drule_tac p = pa and p' = p' and p'' = p'' in pbs2', simp+)
|
|
441 |
apply (drule_tac p = pa and p' = p' and p'' = p'' in pbs2', simp+)
|
|
442 |
|
|
443 |
apply (erule disjE)
|
|
444 |
apply ((erule exE|erule conjE)+, clarsimp split:if_splits simp:one_flow_shm_attach)
|
|
445 |
apply (clarsimp simp:one_flow_shm_attach split:if_splits)
|
|
446 |
apply (erule disjE, clarsimp)
|
|
447 |
apply (clarsimp)
|
|
448 |
|
|
449 |
|
|
450 |
apply (erule conjE)+
|
|
451 |
|
|
452 |
|
|
453 |
|
|
454 |
apply (erule conjE, clarsimp simp only:one_flow_shm_attach split:if_splits)
|
|
455 |
apply simp
|
|
456 |
|
|
457 |
|
|
458 |
|
|
459 |
lemma path_by_shm_attach1_aux:
|
|
460 |
"path_by_shm s' pa path pb \<Longrightarrow> valid s' \<and> (s' = Attach p h flag # s) \<longrightarrow>
|
|
461 |
path_by_shm s pa path pb \<or>
|
|
462 |
(if (pa = p \<and> flag = SHM_RDWR)
|
|
463 |
then \<exists> p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and>
|
|
464 |
path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]
|
|
465 |
else if (pb = p)
|
|
466 |
then \<exists> p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and>
|
|
467 |
(p', SHM_RDWR) \<in> procs_of_shm s h
|
|
468 |
else (\<exists> p' flag' patha pathb. path_by_shm s pa patha p \<and> flag = SHM_RDWR \<and>
|
|
469 |
(p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and>
|
|
470 |
path = pathb @ [(p, h, p')] @ patha) \<or>
|
|
471 |
(\<exists> p' patha pathb. path_by_shm s pa patha p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>
|
|
472 |
path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ patha))"
|
|
473 |
proof (induct rule:path_by_shm.induct)
|
|
474 |
case (pbs1 proc \<tau>)
|
|
475 |
show ?case
|
|
476 |
proof (rule impI)
|
|
477 |
assume pre: "valid \<tau> \<and> \<tau> = Attach p h flag # s"
|
|
478 |
from pbs1 pre have "proc \<in> current_procs s" by simp
|
|
479 |
thus "path_by_shm s proc [] proc \<or>
|
|
480 |
(if proc = p \<and> flag = SHM_RDWR
|
|
481 |
then \<exists>p' flagb path'.
|
|
482 |
(p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' proc \<and> [] = path' @ [(p, h, p')]
|
|
483 |
else if proc = p
|
|
484 |
then \<exists>p' path'.
|
|
485 |
path_by_shm s proc path' p' \<and> [] = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h
|
|
486 |
else (\<exists>p' flag' patha pathb.
|
|
487 |
path_by_shm s proc patha p \<and>
|
|
488 |
flag = SHM_RDWR \<and>
|
|
489 |
(p', flag') \<in> procs_of_shm s h \<and>
|
|
490 |
path_by_shm s p' pathb proc \<and> [] = pathb @ [(p, h, p')] @ patha) \<or>
|
|
491 |
(\<exists>p' patha pathb.
|
|
492 |
path_by_shm s proc patha p' \<and>
|
|
493 |
(p', SHM_RDWR) \<in> procs_of_shm s h \<and>
|
|
494 |
path_by_shm s p pathb proc \<and> [] = pathb @ [(p', h, p)] @ patha))"
|
|
495 |
by (auto intro:path_by_shm.intros)
|
|
496 |
qed
|
|
497 |
next
|
|
498 |
case (pbs2 \<tau> pa path pb h' pc)
|
|
499 |
thus ?case
|
|
500 |
proof (rule_tac impI)
|
|
501 |
assume p1:"path_by_shm \<tau> pa path pb" and p2: "valid \<tau> \<and> \<tau> = Attach p h flag # s \<longrightarrow>
|
|
502 |
path_by_shm s pa path pb \<or>
|
|
503 |
(if pa = p \<and> flag = SHM_RDWR
|
|
504 |
then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]
|
|
505 |
else if pb = p
|
|
506 |
then \<exists>p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h
|
|
507 |
else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and>
|
|
508 |
(p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and>
|
|
509 |
path = pathb @ [(p, h, p')] @ pathaa) \<or>
|
|
510 |
(\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>
|
|
511 |
path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ pathaa))"
|
|
512 |
and p3: "one_flow_shm \<tau> h' pb pc" and p4: "valid \<tau> \<and> \<tau> = Attach p h flag # s"
|
|
513 |
|
|
514 |
from p2 and p4 have p2': "
|
|
515 |
path_by_shm s pa path pb \<or>
|
|
516 |
(if pa = p \<and> flag = SHM_RDWR
|
|
517 |
then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]
|
|
518 |
else if pb = p
|
|
519 |
then \<exists>p' path'. path_by_shm s pa path' p' \<and> path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h
|
|
520 |
else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and>
|
|
521 |
(p', flag') \<in> procs_of_shm s h \<and> path_by_shm s p' pathb pb \<and>
|
|
522 |
path = pathb @ [(p, h, p')] @ pathaa) \<or>
|
|
523 |
(\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>
|
|
524 |
path_by_shm s p pathb pb \<and> path = pathb @ [(p', h, p)] @ pathaa))"
|
|
525 |
by (erule_tac impE, simp)
|
|
526 |
from p4 have p5: "valid s" and p6: "os_grant s (Attach p h flag)" by (auto intro:vd_cons dest:vt_grant_os)
|
|
527 |
from p6 have "p \<in> current_procs s" by simp hence p7:"path_by_shm s p [] p" by (erule_tac path_by_shm.intros)
|
|
528 |
from p3 p4 have p8: "if (h' = h)
|
|
529 |
then (pb = p \<and> pc \<noteq> p \<and> flag = SHM_RDWR \<and> (\<exists> flagb. (pc, flagb) \<in> procs_of_shm s h)) \<or>
|
|
530 |
(pc = p \<and> pb \<noteq> p \<and> (pb, SHM_RDWR) \<in> procs_of_shm s h) \<or>
|
|
531 |
(one_flow_shm s h pb pc)
|
|
532 |
else one_flow_shm s h' pb pc" by (auto simp add:one_flow_shm_attach)
|
|
533 |
|
|
534 |
|
|
535 |
(*
|
|
536 |
have "\<And> flagb. (pc, flagb) \<in> procs_of_shm s h
|
|
537 |
\<Longrightarrow> \<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' [] pc"
|
|
538 |
apply (rule_tac x= pc in exI, rule_tac x = flagb in exI, frule procs_of_shm_prop2)
|
|
539 |
by (simp add:p5, simp add:path_by_shm.intros(1))
|
|
540 |
hence p10: "\<not> path_by_shm s p path pc \<Longrightarrow> (\<exists>p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pc) \<or>
|
|
541 |
path_by_shm s pa pc"
|
|
542 |
using p2' p7 p8 p5
|
|
543 |
by (auto split:if_splits dest:path_by_shm.intros(2))
|
|
544 |
(* apply (rule_tac x = pb in exI, simp add:one_flow_flows, rule_tac x = flagb in exI, simp)+ *) *)
|
|
545 |
|
|
546 |
from p1 have a0: "(path = []) = (pa = pb)" using pbs_prop2 by simp
|
|
547 |
have a1:"\<lbrakk>pa = p; flag = SHM_RDWR; \<not> path_by_shm s pa path pb\<rbrakk> \<Longrightarrow>
|
|
548 |
\<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pb \<and> path = path' @ [(p, h, p')]"
|
|
549 |
using p2' by auto
|
|
550 |
have b1: "\<lbrakk>pa = p; flag = SHM_RDWR; \<not> path_by_shm s pa path pc\<rbrakk> \<Longrightarrow>
|
|
551 |
\<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' path' pc \<and>
|
|
552 |
(pb, h', pc) # path = path' @ [(p, h, p')]"
|
|
553 |
|
|
554 |
|
|
555 |
using p8 a1 p7 p5 a0
|
|
556 |
apply (auto split:if_splits elim:path_by_shm_intro4)
|
|
557 |
apply (rule_tac x = pb in exI, rule conjI, rule_tac x = SHM_RDWR in exI, simp)
|
|
558 |
apply (rule_tac x = pc in exI, rule conjI, rule_tac x = flagb in exI, simp)
|
|
559 |
apply (rule_tac x = "[]" in exI, rule conjI)
|
|
560 |
apply (erule path_by_shm_intro4, simp)
|
|
561 |
|
|
562 |
apply (case_tac "path_by_shm s pa path pb", simp) defer
|
|
563 |
apply (drule a1, simp+, clarsimp)
|
|
564 |
apply (rule conjI, rule_tac x = flagb in exI, simp)
|
|
565 |
apply (rule path_by_shm_
|
|
566 |
using p2' p8 p5
|
|
567 |
apply (auto split:if_splits dest!:pbs_prop2' simp:path_by_shm_intro4)
|
|
568 |
apply (drule pbs_prop2', simp)
|
|
569 |
apply (erule_tac x = pc in allE, simp add:path_by_shm_intro4)
|
|
570 |
|
|
571 |
apply (drule_tac x = "pc" in allE)
|
|
572 |
|
|
573 |
apply simp
|
|
574 |
|
|
575 |
sorry
|
|
576 |
moreover have "pc = p \<Longrightarrow> (\<exists>p' path'. path_by_shm s pa path' p' \<and>
|
|
577 |
(pb, h', pc) # path = path' @ [(p', h, p)] \<and> (p', SHM_RDWR) \<in> procs_of_shm s h) \<or>
|
|
578 |
(path_by_shm s pa path pc \<and> \<not> edge_related path p h)"
|
|
579 |
using p2' p7 p8 p5
|
|
580 |
sorry (*
|
|
581 |
apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def) *)
|
|
582 |
moreover have "\<lbrakk>pc \<noteq> p; pa \<noteq> p \<or> flag \<noteq> SHM_RDWR\<rbrakk> \<Longrightarrow>
|
|
583 |
(\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>
|
|
584 |
path_by_shm s p' pathb pc \<and> (pb, h', pc) # path = pathaa @ [(p, h, p')] @ pathb) \<or>
|
|
585 |
(\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>
|
|
586 |
path_by_shm s p pathb pc \<and> (pb, h', pc) # path = pathaa @ [(p', h, p)] @ pathb) \<or>
|
|
587 |
(path_by_shm s pa path pc \<and> \<not> edge_related path p h)"
|
|
588 |
using p2' p7 p8 p5 (*
|
|
589 |
apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def)
|
|
590 |
apply (rule_tac x = pc in exI, simp add:path_by_shm_intro4)
|
|
591 |
apply (rule_tac x = flagb in exI, simp)
|
|
592 |
done *)
|
|
593 |
sorry
|
|
594 |
ultimately
|
|
595 |
show "if (pb, h', pc) # path = [] then pa = pc \<and> pa \<in> current_procs s
|
|
596 |
else path_by_shm s pa ((pb, h', pc) # path) pc \<and> \<not> edge_related ((pb, h', pc) # path) p h \<or>
|
|
597 |
(if pa = p \<and> flag = SHM_RDWR
|
|
598 |
then \<exists>p' flagb path'. (p', flagb) \<in> procs_of_shm s h \<and>
|
|
599 |
path_by_shm s p' path' pc \<and> (pb, h', pc) # path = path' @ [(p, h, p')]
|
|
600 |
else if pc = p
|
|
601 |
then \<exists>p' path'. path_by_shm s pa path' p' \<and>
|
|
602 |
(pb, h', pc) # path = (p', h, p) # path' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h
|
|
603 |
else (\<exists>p' flag' pathaa pathb. path_by_shm s pa pathaa p \<and> flag = SHM_RDWR \<and>
|
|
604 |
(p', flag') \<in> procs_of_shm s h \<and>
|
|
605 |
path_by_shm s p' pathb pc \<and> (pb, h', pc) # path = pathb @ [(p, h, p')] @ pathaa) \<or>
|
|
606 |
(\<exists>p' pathaa pathb. path_by_shm s pa pathaa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and>
|
|
607 |
path_by_shm s p pathb pc \<and> (pb, h', pc) # path = pathb @ [(p', h, p)] @ pathaa))"
|
|
608 |
apply (auto split:if_splits)
|
|
609 |
using p7 by auto
|
|
610 |
qed
|
|
611 |
qed
|
|
612 |
|
|
613 |
lemma path_by_shm_attach1:
|
|
614 |
"\<lbrakk>valid (Attach p h flag # s); path_by_shm (Attach p h flag # s) pa pb\<rbrakk>
|
|
615 |
\<Longrightarrow> (if path_by_shm s pa pb then True else
|
|
616 |
(if (pa = p \<and> flag = SHM_RDWR)
|
|
617 |
then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb)
|
|
618 |
else if (pb = p)
|
|
619 |
then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p')
|
|
620 |
else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>
|
|
621 |
path_by_shm s p' pb) \<or>
|
|
622 |
(\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb)
|
|
623 |
) )"
|
|
624 |
apply (drule_tac p = p and h = h and flag = flag in path_by_shm_attach1_aux)
|
|
625 |
by auto
|
|
626 |
|
|
627 |
lemma path_by_shm_attach_aux[rule_format]:
|
|
628 |
"path_by_shm s pa pb \<Longrightarrow> valid (Attach p h flag # s) \<longrightarrow> path_by_shm (Attach p h flag # s) pa pb"
|
|
629 |
apply (erule path_by_shm.induct)
|
|
630 |
apply (rule impI, rule path_by_shm.intros(1), simp)
|
|
631 |
apply (rule impI, simp, rule_tac h = ha in path_by_shm.intros(2), simp)
|
|
632 |
apply (auto simp add:one_flow_shm_simps)
|
|
633 |
done
|
|
634 |
|
|
635 |
lemma path_by_shm_attach2:
|
|
636 |
"\<lbrakk>valid (Attach p h flag # s); if path_by_shm s pa pb then True else
|
|
637 |
(if (pa = p \<and> flag = SHM_RDWR)
|
|
638 |
then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb)
|
|
639 |
else if (pb = p)
|
|
640 |
then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p')
|
|
641 |
else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>
|
|
642 |
path_by_shm s p' pb) \<or>
|
|
643 |
(\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb))\<rbrakk>
|
|
644 |
\<Longrightarrow> path_by_shm (Attach p h flag # s) pa pb"
|
|
645 |
apply (frule vt_grant_os, frule vd_cons)
|
|
646 |
apply (auto split:if_splits intro:path_by_shm_intro3 simp:one_flow_shm_def intro:path_by_shm_attach_aux)
|
|
647 |
apply (rule_tac p' = p' in Info_flow_trans)
|
|
648 |
apply (rule_tac p' = p and h = h in path_by_shm.intros(2))
|
|
649 |
apply (rule path_by_shm.intros(1), simp)
|
|
650 |
apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)
|
|
651 |
apply (rule conjI, rule notI, simp, rule_tac x = flagb in exI, simp)
|
|
652 |
apply (simp add:path_by_shm_attach_aux)
|
|
653 |
|
|
654 |
apply (rule_tac p' = p' in Info_flow_trans)
|
|
655 |
apply (rule_tac p' = p in Info_flow_trans)
|
|
656 |
apply (simp add:path_by_shm_attach_aux)
|
|
657 |
apply (rule_tac p' = p and h = h in path_by_shm.intros(2))
|
|
658 |
apply (rule path_by_shm.intros(1), simp)
|
|
659 |
apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)
|
|
660 |
apply (rule conjI, rule notI, simp, rule_tac x = flag' in exI, simp)
|
|
661 |
apply (simp add:path_by_shm_attach_aux)
|
|
662 |
|
|
663 |
apply (rule_tac p' = p in Info_flow_trans)
|
|
664 |
apply (rule_tac p' = p' in Info_flow_trans)
|
|
665 |
apply (simp add:path_by_shm_attach_aux)
|
|
666 |
apply (rule_tac p' = p' and h = h in path_by_shm.intros(2))
|
|
667 |
apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2)
|
|
668 |
apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)
|
|
669 |
apply (rule notI, simp)
|
|
670 |
apply (simp add:path_by_shm_attach_aux)
|
|
671 |
|
|
672 |
apply (rule_tac p' = p in Info_flow_trans)
|
|
673 |
apply (rule_tac p' = p' in Info_flow_trans)
|
|
674 |
apply (simp add:path_by_shm_attach_aux)
|
|
675 |
apply (rule_tac p' = p' and h = h in path_by_shm.intros(2))
|
|
676 |
apply (rule path_by_shm.intros(1), simp add:procs_of_shm_prop2)
|
|
677 |
apply (simp add:one_flow_shm_simps, simp add:one_flow_shm_def)
|
|
678 |
apply (rule notI, simp)
|
|
679 |
apply (simp add:path_by_shm_attach_aux)
|
|
680 |
done
|
|
681 |
|
|
682 |
lemma path_by_shm_attach:
|
|
683 |
"valid (Attach p h flag # s) \<Longrightarrow> path_by_shm (Attach p h flag # s) = (\<lambda> pa pb.
|
|
684 |
path_by_shm s pa pb \<or>
|
|
685 |
(if (pa = p \<and> flag = SHM_RDWR)
|
|
686 |
then (\<exists> p' flagb. (p', flagb) \<in> procs_of_shm s h \<and> path_by_shm s p' pb)
|
|
687 |
else if (pb = p)
|
|
688 |
then (\<exists> p'. (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s pa p')
|
|
689 |
else (\<exists> p' flag'. path_by_shm s pa p \<and> flag = SHM_RDWR \<and> (p', flag') \<in> procs_of_shm s h \<and>
|
|
690 |
path_by_shm s p' pb) \<or>
|
|
691 |
(\<exists> p'. path_by_shm s pa p' \<and> (p', SHM_RDWR) \<in> procs_of_shm s h \<and> path_by_shm s p pb)
|
|
692 |
) )"
|
|
693 |
apply (rule ext, rule ext, rule iffI)
|
|
694 |
apply (drule_tac pa = pa and pb = pb in path_by_shm_attach1, simp)
|
|
695 |
apply (auto split:if_splits)[1]
|
|
696 |
apply (drule_tac pa = pa and pb = pb in path_by_shm_attach2)
|
|
697 |
apply (auto split:if_splits)
|
|
698 |
done
|
|
699 |
|
|
700 |
|
|
701 |
|
|
702 |
lemma info_flow_shm_detach:
|
|
703 |
"valid (Detach p h # s) \<Longrightarrow> info_flow_shm (Detach p h # s) = (\<lambda> pa pb.
|
|
704 |
self_shm s pa pb \<or> ((p = pa \<or> p = pb) \<and> (\<exists> h'. h' \<noteq> h \<and> one_flow_shm s h' pa pb)) \<or>
|
|
705 |
(pa \<noteq> p \<and> pb \<noteq> p \<and> info_flow_shm s pa pb) )"
|
|
706 |
apply (rule ext, rule ext, frule vt_grant_os)
|
|
707 |
by (auto simp:info_flow_shm_def one_flow_shm_def)
|
|
708 |
|
|
709 |
lemma info_flow_shm_deleteshm:
|
|
710 |
"valid (DeleteShM p h # s) \<Longrightarrow> info_flow_shm (DeleteShM p h # s) = (\<lambda> pa pb.
|
|
711 |
self_shm s pa pb \<or> (\<exists> h'. h' \<noteq> h \<and> one_flow_shm s h' pa pb) )"
|
|
712 |
apply (rule ext, rule ext, frule vt_grant_os)
|
|
713 |
by (auto simp:info_flow_shm_def one_flow_shm_def)
|
|
714 |
|
|
715 |
lemma info_flow_shm_clone:
|
|
716 |
"valid (Clone p p' fds shms # s) \<Longrightarrow> info_flow_shm (Clone p p' fds shms # s) = (\<lambda> pa pb.
|
|
717 |
(pa = p' \<and> pb = p') \<or> (pa = p' \<and> pb \<noteq> p' \<and> (\<exists> h \<in> shms. one_flow_shm s h p pb)) \<or>
|
|
718 |
(pb = p' \<and> pa \<noteq> p' \<and> (\<exists> h \<in> shms. one_flow_shm s h pa p)) \<or>
|
|
719 |
(pa \<noteq> p' \<and> pb \<noteq> p' \<and> info_flow_shm s pa pb))"
|
|
720 |
apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons, clarsimp)
|
|
721 |
apply (frule_tac p = p' in procs_of_shm_prop2', simp)
|
|
722 |
sorry (*
|
|
723 |
apply (auto simp:info_flow_shm_def one_flow_shm_def)
|
|
724 |
done *)
|
|
725 |
|
|
726 |
lemma info_flow_shm_execve:
|
|
727 |
"valid (Execve p f fds # s) \<Longrightarrow> info_flow_shm (Execve p f fds # s) = (\<lambda> pa pb.
|
|
728 |
(pa = p \<and> pb = p) \<or> (pa \<noteq> p \<and> pb \<noteq> p \<and> info_flow_shm s pa pb) )"
|
|
729 |
apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons)
|
|
730 |
by (auto simp:info_flow_shm_def one_flow_shm_def)
|
|
731 |
|
|
732 |
lemma info_flow_shm_kill:
|
|
733 |
"valid (Kill p p' # s) \<Longrightarrow> info_flow_shm (Kill p p' # s) = (\<lambda> pa pb.
|
|
734 |
pa \<noteq> p' \<and> pb \<noteq> p' \<and> info_flow_shm s pa pb )"
|
|
735 |
apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons)
|
|
736 |
by (auto simp:info_flow_shm_def one_flow_shm_def)
|
|
737 |
|
|
738 |
lemma info_flow_shm_exit:
|
|
739 |
"valid (Exit p # s) \<Longrightarrow> info_flow_shm (Exit p # s) = (\<lambda> pa pb.
|
|
740 |
pa \<noteq> p \<and> pb \<noteq> p \<and> info_flow_shm s pa pb )"
|
|
741 |
apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons)
|
|
742 |
by (auto simp:info_flow_shm_def one_flow_shm_def)
|
|
743 |
|
|
744 |
lemma info_flow_shm_other:
|
|
745 |
"\<lbrakk>valid (e # s);
|
|
746 |
\<forall> p h flag. e \<noteq> Attach p h flag;
|
|
747 |
\<forall> p h. e \<noteq> Detach p h;
|
|
748 |
\<forall> p h. e \<noteq> DeleteShM p h;
|
|
749 |
\<forall> p p' fds shms. e \<noteq> Clone p p' fds shms;
|
|
750 |
\<forall> p f fds. e \<noteq> Execve p f fds;
|
|
751 |
\<forall> p p'. e \<noteq> Kill p p';
|
|
752 |
\<forall> p. e \<noteq> Exit p
|
|
753 |
\<rbrakk> \<Longrightarrow> info_flow_shm (e # s) = info_flow_shm s"
|
|
754 |
apply (rule ext, rule ext, frule vt_grant_os, frule vd_cons)
|
|
755 |
apply (case_tac e, auto simp:info_flow_shm_def one_flow_shm_def dest:procs_of_shm_prop2)
|
|
756 |
apply (erule_tac x = h in allE, simp)
|
|
757 |
apply (drule procs_of_shm_prop1, auto)
|
|
758 |
done
|
|
759 |
|
|
760 |
|
|
761 |
(*
|
|
762 |
lemma info_flow_shm_prop1:
|
|
763 |
"\<lbrakk>info_flow_shm s p p'; p \<noteq> p'; valid s\<rbrakk>
|
|
764 |
\<Longrightarrow> \<exists> h h' flag. (p, SHM_RDWR) \<in> procs_of_shm s h \<and> (p', flag) \<in> procs_of_shm s h'"
|
|
765 |
by (induct rule: info_flow_shm.induct, auto)
|
|
766 |
|
|
767 |
lemma info_flow_shm_cases:
|
|
768 |
"\<lbrakk>info_flow_shm \<tau> pa pb; \<And>p s. \<lbrakk>s = \<tau> ; pa = p; pb = p; p \<in> current_procs s\<rbrakk> \<Longrightarrow> P;
|
|
769 |
\<And>s p p' h p'' flag. \<lbrakk>s = \<tau>; pa = p; pb = p''; info_flow_shm s p p'; (p', SHM_RDWR) \<in> procs_of_shm s h;
|
|
770 |
(p'', flag) \<in> procs_of_shm s h\<rbrakk>\<Longrightarrow> P\<rbrakk>
|
|
771 |
\<Longrightarrow> P"
|
|
772 |
by (erule info_flow_shm.cases, auto)
|
|
773 |
|
|
774 |
definition one_flow_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool"
|
|
775 |
where
|
|
776 |
"one_flow_shm s p p' \<equiv> p \<noteq> p' \<and> (\<exists> h flag. (p, SHM_RDWR) \<in> procs_of_shm s h \<and> (p', flag) \<in> procs_of_shm s h)"
|
|
777 |
|
|
778 |
inductive flows_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process \<Rightarrow> bool"
|
|
779 |
where
|
|
780 |
"p \<in> current_procs s \<Longrightarrow> flows_shm s p p"
|
|
781 |
| "\<lbrakk>flows_shm s p p'; one_flow_shm s p' p''\<rbrakk> \<Longrightarrow> flows_shm s p p''"
|
|
782 |
|
|
783 |
definition attached_procs :: "t_state \<Rightarrow> t_shm \<Rightarrow> t_process set"
|
|
784 |
where
|
|
785 |
"attached_procs s h \<equiv> {p. \<exists> flag. (p, flag) \<in> procs_of_shm s h}"
|
|
786 |
|
|
787 |
definition flowed_procs:: "t_state \<Rightarrow> t_shm \<Rightarrow> t_process set"
|
|
788 |
where
|
|
789 |
"flowed_procs s h \<equiv> {p'. \<exists> p \<in> attached_procs s h. flows_shm s p p'}"
|
|
790 |
|
|
791 |
inductive flowed_shm:: "t_state \<Rightarrow> t_process \<Rightarrow> t_shm set"
|
|
792 |
|
|
793 |
fun Info_flow_shm :: "t_state \<Rightarrow> t_process \<Rightarrow> t_process set"
|
|
794 |
where
|
|
795 |
"Info_flow_shm [] = (\<lambda> p. {p'. flows_shm [] p p'})"
|
|
796 |
| "Info_flow_shm (Attach p h flag # s) = (\<lambda> p'.
|
|
797 |
if (p' = p) then flowed_procs s h
|
|
798 |
else if ()
|
|
799 |
"
|
|
800 |
|
|
801 |
|
|
802 |
lemma info_flow_shm_attach:
|
|
803 |
"valid (Attach p h flag # s) \<Longrightarrow> info_flow_shm (Attach p h flag # s) = (\<lambda> pa pb. (info_flow_shm s pa pb) \<or>
|
|
804 |
(if (pa = p)
|
|
805 |
then (if (flag = SHM_RDWR)
|
|
806 |
then (\<exists> flag. (pb, flag) \<in> procs_of_shm s h)
|
|
807 |
else (pb = p))
|
|
808 |
else (if (pb = p)
|
|
809 |
then (pa, SHM_RDWR) \<in> procs_of_shm s h
|
|
810 |
else info_flow_shm s pa pb)) )"
|
|
811 |
apply (frule vd_cons, frule vt_grant_os, rule ext, rule ext)
|
|
812 |
apply (case_tac "info_flow_shm s pa pb", simp)
|
|
813 |
|
|
814 |
thm info_flow_shm.cases
|
|
815 |
apply (auto split:if_splits intro:info_flow_shm.intros elim:info_flow_shm_cases)
|
|
816 |
apply (erule info_flow_shm_cases, simp, simp split:if_splits)
|
|
817 |
apply (rule_tac p = pa and p' = p' in info_flow_shm.intros(2), simp+)
|
|
818 |
apply (rule notI, erule info_flow_shm.cases, simp+)
|
|
819 |
pr 5
|
|
820 |
*)
|
|
821 |
lemmas info_flow_shm_simps = info_flow_shm_other (* info_flow_shm_attach *) info_flow_shm_detach info_flow_shm_deleteshm
|
|
822 |
info_flow_shm_clone info_flow_shm_execve info_flow_shm_kill info_flow_shm_exit
|
|
823 |
|
|
824 |
|
|
825 |
|
|
826 |
|
|
827 |
|
|
828 |
|
|
829 |
end
|
|
830 |
|
|
831 |
end |