1
+ − 1
theory Dynamic2static
+ − 2
imports Main Flask Static Init_prop Valid_prop
+ − 3
begin
+ − 4
+ − 5
context tainting_s begin
+ − 6
+ − 7
lemma d2s_main:
+ − 8
"valid s \<Longrightarrow> s2ss s \<in> static"
+ − 9
apply (induct s, simp add:s2ss_nil_prop s_init)
+ − 10
apply (frule vd_cons, simp)
+ − 11
apply (case_tac a, simp_all)
+ − 12
(*
+ − 13
apply
+ − 14
induct s, case tac e, every event analysis
+ − 15
*)
+ − 16
sorry
+ − 17
+ − 18
lemma is_file_has_sfile: "is_file s f \<Longrightarrow> \<exists> sf. cf2sfile s f True = Some sf"
+ − 19
sorry
+ − 20
+ − 21
lemma is_dir_has_sfile: "is_dir s f \<Longrightarrow> \<exists> sf. cf2sfile s f False = Some sf"
+ − 22
sorry
+ − 23
+ − 24
lemma is_file_imp_alive: "is_file s f \<Longrightarrow> alive s (O_file f)"
+ − 25
sorry
+ − 26
+ − 27
+ − 28
lemma d2s_main':
+ − 29
"\<lbrakk>alive s obj; co2sobj s obj= Some sobj\<rbrakk> \<Longrightarrow> sobj \<in> (s2ss s)"
+ − 30
apply (induct s)
+ − 31
apply (simp add:s2ss_def)
+ − 32
apply (rule_tac x = obj in exI, simp)
+ − 33
sorry
+ − 34
+ − 35
lemma tainted_prop1:
+ − 36
"obj \<in> tainted s \<Longrightarrow> alive s obj"
+ − 37
sorry
+ − 38
+ − 39
lemma tainted_prop2:
+ − 40
"obj \<in> tainted s \<Longrightarrow> valid s"
+ − 41
sorry
+ − 42
+ − 43
lemma alive_has_sobj:
+ − 44
"\<lbrakk>alive s obj; valid s\<rbrakk> \<Longrightarrow> \<exists> sobj. co2sobj s obj = Some sobj"
+ − 45
sorry
+ − 46
+ − 47
lemma t2ts:
+ − 48
"obj \<in> tainted s \<Longrightarrow> co2sobj s obj = Some sobj \<Longrightarrow> tainted_s (s2ss s) sobj"
+ − 49
apply (frule tainted_prop1, frule tainted_prop2)
+ − 50
apply (simp add:s2ss_def)
+ − 51
apply (case_tac sobj, simp_all)
+ − 52
apply (case_tac [!] obj, simp_all split:option.splits)
+ − 53
apply (rule_tac x = "O_proc nat" in exI, simp)
+ − 54
apply (rule_tac x = "O_file list" in exI, simp)
+ − 55
defer defer defer
+ − 56
apply (case_tac prod1, simp, case_tac prod2, clarsimp)
+ − 57
apply (rule conjI)
+ − 58
apply (rule_tac x = "O_msgq nat1" in exI, simp)
+ − 59
sorry (* doable, need properties about cm2smsg and cq2smsgq *)
+ − 60
+ − 61
lemma delq_imp_delqm:
+ − 62
"deleted (O_msgq q) s \<Longrightarrow> deleted (O_msg q m) s"
+ − 63
apply (induct s, simp)
+ − 64
by (case_tac a, auto)
+ − 65
+ − 66
lemma undel_init_file_remains:
+ − 67
"\<lbrakk>is_init_file f; \<not> deleted (O_file f) s\<rbrakk> \<Longrightarrow> is_file s f"
+ − 68
sorry
+ − 69
+ − 70
+ − 71
theorem static_complete:
+ − 72
assumes undel: "undeletable obj" and tbl: "taintable obj"
+ − 73
shows "taintable_s obj"
+ − 74
proof-
+ − 75
from tbl obtain s where tainted: "obj \<in> tainted s"
+ − 76
by (auto simp:taintable_def)
+ − 77
hence vs: "valid s" by (simp add:tainted_prop2)
+ − 78
hence static: "s2ss s \<in> static" using d2s_main by auto
+ − 79
from tainted have alive: "alive s obj"
+ − 80
using tainted_prop1 by auto
+ − 81
then obtain sobj where sobj: "co2sobj s obj = Some sobj"
+ − 82
using vs alive_has_sobj by blast
+ − 83
from undel vs have "\<not> deleted obj s" and init_alive: "init_alive obj"
+ − 84
by (auto simp:undeletable_def)
+ − 85
with vs sobj have "init_obj_related sobj obj"
+ − 86
apply (case_tac obj, case_tac [!] sobj)
+ − 87
apply (auto split:option.splits if_splits simp:cp2sproc_def ch2sshm_def cq2smsgq_def cm2smsg_def)
+ − 88
apply (frule undel_init_file_remains, simp, drule is_file_has_sfile, erule exE)
+ − 89
apply (rule_tac x = sf in bexI)
+ − 90
apply (case_tac list, auto split:option.splits simp:is_init_file_props)[1]
+ − 91
apply (simp add:same_inode_files_def cfs2sfiles_def)
+ − 92
apply (rule_tac x = list in exI, simp)
+ − 93
apply (case_tac list, auto split:option.splits simp:is_init_dir_props delq_imp_delqm)
+ − 94
done
+ − 95
with tainted t2ts init_alive sobj static
+ − 96
show ?thesis unfolding taintable_s_def
+ − 97
apply (rule_tac x = "s2ss s" in bexI, simp)
+ − 98
apply (rule_tac x = "sobj" in exI, auto)
+ − 99
done
+ − 100
qed
+ − 101
+ − 102
lemma init_deled_imp_deled_s:
+ − 103
"\<lbrakk>deleted obj s; init_alive obj; sobj \<in> (s2ss s); valid s\<rbrakk> \<Longrightarrow> \<not> init_obj_related sobj obj"
+ − 104
apply (induct s, simp)
+ − 105
apply (frule vd_cons)
+ − 106
apply (case_tac a, auto)
+ − 107
(* need simpset for s2ss *)
+ − 108
sorry
+ − 109
+ − 110
lemma deleted_imp_deletable_s:
+ − 111
"\<lbrakk>deleted obj s; init_alive obj; valid s\<rbrakk> \<Longrightarrow> deletable_s obj"
+ − 112
apply (simp add:deletable_s_def)
+ − 113
apply (rule_tac x = "s2ss s" in bexI)
+ − 114
apply (clarify, simp add:init_deled_imp_deled_s)
+ − 115
apply (erule d2s_main)
+ − 116
done
+ − 117
+ − 118
theorem undeletable_s_complete:
+ − 119
assumes undel_s: "undeletable_s obj"
+ − 120
shows "undeletable obj"
+ − 121
proof-
+ − 122
from undel_s have init_alive: "init_alive obj"
+ − 123
and alive_s: "\<forall> ss \<in> static. \<exists> sobj \<in> ss. init_obj_related sobj obj"
+ − 124
using undeletable_s_def by auto
+ − 125
have "\<not> (\<exists> s. valid s \<and> deleted obj s)"
+ − 126
proof
+ − 127
assume "\<exists> s. valid s \<and> deleted obj s"
+ − 128
then obtain s where vs: "valid s" and del: "deleted obj s" by auto
+ − 129
from vs have vss: "s2ss s \<in> static" by (rule d2s_main)
+ − 130
with alive_s obtain sobj where in_ss: "sobj \<in> (s2ss s)"
+ − 131
and related: "init_obj_related sobj obj" by auto
+ − 132
from init_alive del vs have "deletable_s obj"
+ − 133
by (auto elim:deleted_imp_deletable_s)
+ − 134
with alive_s
+ − 135
show False by (auto simp:deletable_s_def)
+ − 136
qed
+ − 137
with init_alive show ?thesis
+ − 138
by (simp add:undeletable_def)
+ − 139
qed
+ − 140
+ − 141
theorem final_offer:
+ − 142
"\<lbrakk>undeletable_s obj; \<not> taintable_s obj; init_alive obj\<rbrakk> \<Longrightarrow> \<not> taintable obj"
+ − 143
apply (erule swap)
+ − 144
by (simp add:static_complete undeletable_s_complete)
+ − 145
+ − 146
+ − 147
+ − 148
(************** static \<rightarrow> dynamic ***************)
+ − 149
+ − 150
lemma created_can_have_many:
+ − 151
"\<lbrakk>valid s; alive s obj; \<not> init_alive obj\<rbrakk> \<Longrightarrow> \<exists> s'. valid s' \<and> alive s' obj \<and> alive s' obj' \<and> s2ss s = s2ss s'"
+ − 152
sorry
+ − 153
+ − 154
lemma s2d_main:
+ − 155
"ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss"
+ − 156
apply (erule static.induct)
+ − 157
apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros)
+ − 158
+ − 159
apply (erule exE|erule conjE)+
+ − 160
+ − 161
apply (erule exE, erule conjE)+
+ − 162
+ − 163
sorry
+ − 164
+ − 165
+ − 166
+ − 167
lemma tainted_s_imp_tainted:
+ − 168
"\<lbrakk>tainted_s ss sobj; ss \<in> static\<rbrakk> \<Longrightarrow> \<exists> obj s. s2ss s = ss \<and> valid s \<and> co2sobj s obj = Some sobj \<and> obj \<in> tainted s"
+ − 169
sorry
+ − 170
+ − 171
+ − 172
theorem static_sound:
+ − 173
assumes tbl_s: "taintable_s obj"
+ − 174
shows "taintable obj"
+ − 175
proof-
+ − 176
from tbl_s obtain ss sobj where static: "ss \<in> static"
+ − 177
and sobj: "tainted_s ss sobj" and related: "init_obj_related sobj obj"
+ − 178
and init_alive: "init_alive obj" by (auto simp:taintable_s_def)
+ − 179
from static sobj tainted_s_imp_tainted
+ − 180
obtain s obj' where s2ss: "s2ss s = ss" and co2sobj: "co2sobj s obj' = Some sobj"
+ − 181
and tainted: "obj' \<in> tainted s" and vs: "valid s" by blast
+ − 182
+ − 183
from co2sobj related
+ − 184
have eq:"obj = obj'"
+ − 185
apply (case_tac obj', case_tac [!] obj, case_tac [!] sobj)
+ − 186
apply auto
+ − 187
apply (auto split:option.splits if_splits)
+ − 188
apply (case_tac a, simp+)
+ − 189
apply (simp add:cp2sproc_def split:option.splits if_splits)
+ − 190
apply simp
+ − 191
sorry
+ − 192
with tainted vs init_alive
+ − 193
show ?thesis by (auto simp:taintable_def)
+ − 194
qed
+ − 195
+ − 196
+ − 197
+ − 198
lemma ts2t:
+ − 199
"obj \<in> tainted_s ss \<Longrightarrow> \<exists> s. obj \<in> tainted s"
+ − 200
"obj \<in> tainted_s ss \<Longrightarrow> \<exists> so. so True \<in> ss \<Longrightarrow> so True \<in> ss \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss \<Longrightarrow> so True \<in> s2ss s \<Longrightarrow> tainted s obj. "
+ − 201
+ − 202
+ − 203
+ − 204
+ − 205
end