| 1 |      1 | theory Dynamic2static
 | 
|  |      2 | imports Main Flask Static Init_prop Valid_prop
 | 
|  |      3 | begin
 | 
|  |      4 | 
 | 
|  |      5 | context tainting_s begin
 | 
|  |      6 | 
 | 
|  |      7 | lemma d2s_main:
 | 
|  |      8 |   "valid s \<Longrightarrow> s2ss s \<in> static"
 | 
|  |      9 | apply (induct s, simp add:s2ss_nil_prop s_init)
 | 
|  |     10 | apply (frule vd_cons, simp)
 | 
|  |     11 | apply (case_tac a, simp_all) 
 | 
|  |     12 | (*
 | 
|  |     13 | apply 
 | 
|  |     14 | induct s, case tac e, every event analysis
 | 
|  |     15 | *)
 | 
|  |     16 | sorry
 | 
|  |     17 | 
 | 
|  |     18 | lemma is_file_has_sfile: "is_file s f \<Longrightarrow> \<exists> sf. cf2sfile s f True = Some sf"
 | 
|  |     19 | sorry
 | 
|  |     20 | 
 | 
|  |     21 | lemma is_dir_has_sfile: "is_dir s f \<Longrightarrow> \<exists> sf. cf2sfile s f False = Some sf"
 | 
|  |     22 | sorry
 | 
|  |     23 | 
 | 
|  |     24 | lemma is_file_imp_alive: "is_file s f \<Longrightarrow> alive s (O_file f)"
 | 
|  |     25 | sorry
 | 
|  |     26 | 
 | 
|  |     27 | 
 | 
|  |     28 | lemma d2s_main':
 | 
|  |     29 |   "\<lbrakk>alive s obj; co2sobj s obj= Some sobj\<rbrakk> \<Longrightarrow> sobj \<in> (s2ss s)"
 | 
|  |     30 | apply (induct s)
 | 
|  |     31 | apply (simp add:s2ss_def)
 | 
|  |     32 | apply (rule_tac x = obj in exI, simp)
 | 
|  |     33 | sorry
 | 
|  |     34 | 
 | 
|  |     35 | lemma tainted_prop1:
 | 
|  |     36 |   "obj \<in> tainted s \<Longrightarrow> alive s obj"
 | 
|  |     37 | sorry
 | 
|  |     38 | 
 | 
|  |     39 | lemma tainted_prop2:
 | 
|  |     40 |   "obj \<in> tainted s \<Longrightarrow> valid s"
 | 
|  |     41 | sorry
 | 
|  |     42 | 
 | 
|  |     43 | lemma alive_has_sobj:
 | 
|  |     44 |   "\<lbrakk>alive s obj; valid s\<rbrakk> \<Longrightarrow> \<exists> sobj. co2sobj s obj = Some sobj"
 | 
|  |     45 | sorry
 | 
|  |     46 | 
 | 
|  |     47 | lemma t2ts:
 | 
|  |     48 |   "obj \<in> tainted s \<Longrightarrow> co2sobj s obj = Some sobj \<Longrightarrow> tainted_s (s2ss s) sobj"
 | 
|  |     49 | apply (frule tainted_prop1, frule tainted_prop2)
 | 
|  |     50 | apply (simp add:s2ss_def)
 | 
|  |     51 | apply (case_tac sobj, simp_all)
 | 
|  |     52 | apply (case_tac [!] obj, simp_all split:option.splits)
 | 
|  |     53 | apply (rule_tac x = "O_proc nat" in exI, simp)
 | 
|  |     54 | apply (rule_tac x = "O_file list" in exI, simp)
 | 
|  |     55 | defer defer defer
 | 
|  |     56 | apply (case_tac prod1, simp, case_tac prod2, clarsimp)
 | 
|  |     57 | apply (rule conjI)
 | 
|  |     58 | apply (rule_tac x = "O_msgq nat1" in exI, simp)
 | 
|  |     59 | sorry (* doable, need properties about cm2smsg and cq2smsgq *)
 | 
|  |     60 | 
 | 
|  |     61 | lemma delq_imp_delqm:
 | 
|  |     62 |   "deleted (O_msgq q) s \<Longrightarrow> deleted (O_msg q m) s"
 | 
|  |     63 | apply (induct s, simp)
 | 
|  |     64 | by (case_tac a, auto)
 | 
|  |     65 | 
 | 
|  |     66 | lemma undel_init_file_remains:
 | 
|  |     67 |   "\<lbrakk>is_init_file f; \<not> deleted (O_file f) s\<rbrakk> \<Longrightarrow> is_file s f"
 | 
|  |     68 | sorry
 | 
|  |     69 | 
 | 
|  |     70 | 
 | 
|  |     71 | theorem static_complete: 
 | 
|  |     72 |   assumes undel: "undeletable obj" and tbl: "taintable obj"
 | 
|  |     73 |   shows "taintable_s obj"
 | 
|  |     74 | proof-
 | 
|  |     75 |   from tbl obtain s where tainted: "obj \<in> tainted s"
 | 
|  |     76 |     by (auto simp:taintable_def)
 | 
|  |     77 |   hence vs: "valid s" by (simp add:tainted_prop2)
 | 
|  |     78 |   hence static: "s2ss s \<in> static" using d2s_main by auto
 | 
|  |     79 |   from tainted have alive: "alive s obj" 
 | 
|  |     80 |     using tainted_prop1 by auto
 | 
|  |     81 |   then obtain sobj where sobj: "co2sobj s obj = Some sobj"
 | 
|  |     82 |     using vs alive_has_sobj by blast
 | 
|  |     83 |   from undel vs have "\<not> deleted obj s" and init_alive: "init_alive obj" 
 | 
|  |     84 |     by (auto simp:undeletable_def)
 | 
|  |     85 |   with vs sobj have "init_obj_related sobj obj"
 | 
|  |     86 |     apply (case_tac obj, case_tac [!] sobj)
 | 
|  |     87 |     apply (auto split:option.splits if_splits simp:cp2sproc_def ch2sshm_def cq2smsgq_def cm2smsg_def)
 | 
|  |     88 |     apply (frule undel_init_file_remains, simp, drule is_file_has_sfile, erule exE)
 | 
|  |     89 |     apply (rule_tac x = sf in bexI)
 | 
|  |     90 |     apply (case_tac list, auto split:option.splits simp:is_init_file_props)[1]
 | 
|  |     91 |     apply (simp add:same_inode_files_def cfs2sfiles_def)
 | 
|  |     92 |     apply (rule_tac x = list in exI, simp)
 | 
|  |     93 |     apply (case_tac list, auto split:option.splits simp:is_init_dir_props delq_imp_delqm)
 | 
|  |     94 |     done
 | 
|  |     95 |   with tainted t2ts init_alive sobj static
 | 
|  |     96 |   show ?thesis unfolding taintable_s_def
 | 
|  |     97 |     apply (rule_tac x = "s2ss s" in bexI, simp)
 | 
|  |     98 |     apply (rule_tac x = "sobj" in exI, auto)
 | 
|  |     99 |     done
 | 
|  |    100 | qed
 | 
|  |    101 | 
 | 
|  |    102 | lemma init_deled_imp_deled_s: 
 | 
|  |    103 |   "\<lbrakk>deleted obj s; init_alive obj; sobj \<in> (s2ss s); valid s\<rbrakk> \<Longrightarrow> \<not> init_obj_related sobj obj"
 | 
|  |    104 | apply (induct s, simp)
 | 
|  |    105 | apply (frule vd_cons)
 | 
|  |    106 | apply (case_tac a, auto)
 | 
|  |    107 | (* need simpset for s2ss *)
 | 
|  |    108 | sorry
 | 
|  |    109 | 
 | 
|  |    110 | lemma deleted_imp_deletable_s:
 | 
|  |    111 |   "\<lbrakk>deleted obj s; init_alive obj; valid s\<rbrakk> \<Longrightarrow> deletable_s obj"
 | 
|  |    112 | apply (simp add:deletable_s_def)
 | 
|  |    113 | apply (rule_tac x = "s2ss s" in bexI)
 | 
|  |    114 | apply (clarify, simp add:init_deled_imp_deled_s)
 | 
|  |    115 | apply (erule d2s_main)
 | 
|  |    116 | done
 | 
|  |    117 | 
 | 
|  |    118 | theorem undeletable_s_complete:
 | 
|  |    119 |   assumes undel_s: "undeletable_s obj"
 | 
|  |    120 |   shows "undeletable obj"
 | 
|  |    121 | proof-
 | 
|  |    122 |   from undel_s have init_alive: "init_alive obj"
 | 
|  |    123 |     and alive_s: "\<forall> ss \<in> static. \<exists> sobj \<in> ss. init_obj_related sobj obj" 
 | 
|  |    124 |     using undeletable_s_def by auto
 | 
|  |    125 |   have "\<not> (\<exists> s. valid s \<and> deleted obj s)" 
 | 
|  |    126 |   proof
 | 
|  |    127 |     assume "\<exists> s. valid s \<and> deleted obj s"
 | 
|  |    128 |     then obtain s where vs: "valid s" and del: "deleted obj s" by auto
 | 
|  |    129 |     from vs have vss: "s2ss s \<in> static" by (rule d2s_main) 
 | 
|  |    130 |     with alive_s obtain sobj where in_ss: "sobj \<in> (s2ss s)" 
 | 
|  |    131 |       and related: "init_obj_related sobj obj" by auto
 | 
|  |    132 |     from init_alive del vs have "deletable_s obj" 
 | 
|  |    133 |       by (auto elim:deleted_imp_deletable_s)
 | 
|  |    134 |     with alive_s
 | 
|  |    135 |     show False by (auto simp:deletable_s_def)
 | 
|  |    136 |   qed
 | 
|  |    137 |   with init_alive show ?thesis 
 | 
|  |    138 |     by (simp add:undeletable_def)
 | 
|  |    139 | qed
 | 
|  |    140 | 
 | 
|  |    141 | theorem final_offer:
 | 
|  |    142 |   "\<lbrakk>undeletable_s obj; \<not> taintable_s obj; init_alive obj\<rbrakk> \<Longrightarrow> \<not> taintable obj"
 | 
|  |    143 | apply (erule swap)
 | 
|  |    144 | by (simp add:static_complete undeletable_s_complete)
 | 
|  |    145 | 
 | 
|  |    146 | 
 | 
|  |    147 | 
 | 
|  |    148 | (************** static \<rightarrow> dynamic ***************)
 | 
|  |    149 | 
 | 
|  |    150 | lemma created_can_have_many:
 | 
|  |    151 |   "\<lbrakk>valid s; alive s obj; \<not> init_alive obj\<rbrakk> \<Longrightarrow> \<exists> s'. valid s' \<and> alive s' obj \<and> alive s' obj' \<and> s2ss s = s2ss s'"
 | 
|  |    152 | sorry
 | 
|  |    153 | 
 | 
|  |    154 | lemma s2d_main:
 | 
|  |    155 |   "ss \<in> static \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss"
 | 
|  |    156 | apply (erule static.induct)
 | 
|  |    157 | apply (rule_tac x = "[]" in exI, simp add:s2ss_nil_prop valid.intros)
 | 
|  |    158 | 
 | 
|  |    159 | apply (erule exE|erule conjE)+
 | 
|  |    160 | 
 | 
|  |    161 | apply (erule exE, erule conjE)+
 | 
|  |    162 | 
 | 
|  |    163 | sorry
 | 
|  |    164 | 
 | 
|  |    165 | 
 | 
|  |    166 | 
 | 
|  |    167 | lemma tainted_s_imp_tainted:
 | 
|  |    168 |   "\<lbrakk>tainted_s ss sobj; ss \<in> static\<rbrakk> \<Longrightarrow> \<exists> obj s. s2ss s = ss \<and> valid s \<and> co2sobj s obj = Some sobj \<and> obj \<in> tainted s"
 | 
|  |    169 | sorry
 | 
|  |    170 | 
 | 
|  |    171 | 
 | 
|  |    172 | theorem static_sound:
 | 
|  |    173 |   assumes tbl_s: "taintable_s obj"
 | 
|  |    174 |   shows "taintable obj"
 | 
|  |    175 | proof-
 | 
|  |    176 |   from tbl_s obtain ss sobj where static: "ss \<in> static"
 | 
|  |    177 |     and sobj: "tainted_s ss sobj" and related: "init_obj_related sobj obj"
 | 
|  |    178 |     and init_alive: "init_alive obj" by (auto simp:taintable_s_def)
 | 
|  |    179 |   from static sobj tainted_s_imp_tainted 
 | 
|  |    180 |   obtain s obj' where s2ss: "s2ss s = ss" and co2sobj: "co2sobj s obj' = Some sobj"
 | 
|  |    181 |     and tainted: "obj' \<in> tainted s" and vs: "valid s" by blast
 | 
|  |    182 |   
 | 
|  |    183 |   from co2sobj related
 | 
|  |    184 |   have eq:"obj = obj'"
 | 
|  |    185 |     apply (case_tac obj', case_tac [!] obj, case_tac [!] sobj)
 | 
|  |    186 |     apply auto
 | 
|  |    187 |     apply (auto split:option.splits if_splits)
 | 
|  |    188 |     apply (case_tac a, simp+)
 | 
|  |    189 |     apply (simp add:cp2sproc_def split:option.splits if_splits)
 | 
|  |    190 |     apply simp
 | 
|  |    191 |     sorry
 | 
|  |    192 |   with tainted vs init_alive
 | 
|  |    193 |   show ?thesis by (auto simp:taintable_def)
 | 
|  |    194 | qed
 | 
|  |    195 | 
 | 
|  |    196 | 
 | 
|  |    197 | 
 | 
|  |    198 | lemma ts2t:
 | 
|  |    199 |   "obj \<in> tainted_s ss \<Longrightarrow> \<exists> s. obj \<in> tainted s"
 | 
|  |    200 |   "obj \<in> tainted_s ss \<Longrightarrow> \<exists> so. so True \<in> ss \<Longrightarrow> so True \<in> ss \<Longrightarrow> \<exists> s. valid s \<and> s2ss s = ss \<Longrightarrow> so True \<in> s2ss s \<Longrightarrow> tainted s obj. "
 | 
|  |    201 | 
 | 
|  |    202 | 
 | 
|  |    203 | 
 | 
|  |    204 | 
 | 
|  |    205 | end |