77
|
1 |
(*<*)
|
|
2 |
theory Current_files_prop
|
|
3 |
imports Main Flask_type Flask My_list_prefix Init_prop Valid_prop
|
|
4 |
begin
|
|
5 |
(*<*)
|
|
6 |
|
|
7 |
context init begin
|
|
8 |
|
|
9 |
lemma current_files_ndef: "f \<notin> current_files \<tau> \<Longrightarrow> inum_of_file \<tau> f = None"
|
|
10 |
by (simp add:current_files_def)
|
|
11 |
|
|
12 |
(************** file_of_proc_fd vs proc_fd_of_file *****************)
|
|
13 |
lemma pfdof_simp1: "file_of_proc_fd \<tau> p fd = Some f \<Longrightarrow> (p, fd) \<in> proc_fd_of_file \<tau> f"
|
|
14 |
by (simp add:proc_fd_of_file_def)
|
|
15 |
|
|
16 |
lemma pfdof_simp2: "(p, fd) \<in> proc_fd_of_file \<tau> f \<Longrightarrow> file_of_proc_fd \<tau> p fd = Some f"
|
|
17 |
by (simp add:proc_fd_of_file_def)
|
|
18 |
|
|
19 |
lemma pfdof_simp3: "proc_fd_of_file \<tau> f = {(p, fd)} \<Longrightarrow> \<forall> p' fd'. (file_of_proc_fd \<tau> p' fd' = Some f \<longrightarrow> p = p' \<and> fd = fd')"
|
|
20 |
by (simp add:proc_fd_of_file_def, auto)
|
|
21 |
|
|
22 |
lemma pfdof_simp4: "\<lbrakk>file_of_proc_fd \<tau> p' fd' = Some f; proc_fd_of_file \<tau> f = {(p, fd)}\<rbrakk> \<Longrightarrow> p' = p \<and> fd' = fd"
|
|
23 |
by (drule pfdof_simp3, auto)
|
|
24 |
|
|
25 |
end
|
|
26 |
|
|
27 |
context flask begin
|
|
28 |
|
|
29 |
(***************** inode number lemmas *************************)
|
|
30 |
|
|
31 |
lemma iof's_im_in_cim: "inum_of_file \<tau> f = Some im \<Longrightarrow> im \<in> current_inode_nums \<tau>"
|
|
32 |
by (auto simp add:current_inode_nums_def current_file_inums_def)
|
|
33 |
|
|
34 |
lemma ios's_im_in_cim: "inum_of_socket \<tau> s = Some im \<Longrightarrow> im \<in> current_inode_nums \<tau>"
|
|
35 |
by (case_tac s, auto simp add:current_inode_nums_def current_sock_inums_def)
|
|
36 |
|
|
37 |
lemma fim_noninter_sim_aux[rule_format]:
|
|
38 |
"\<forall> f s. inum_of_file \<tau> f = Some im \<and> inum_of_socket \<tau> s = Some im \<and> valid \<tau> \<longrightarrow> False"
|
|
39 |
apply (induct \<tau>)
|
|
40 |
apply (clarsimp simp:inum_of_file.simps inum_of_socket.simps)
|
|
41 |
apply (drule init_inum_sock_file_noninter, simp, simp)
|
|
42 |
apply ((rule allI|rule impI|erule conjE)+)
|
|
43 |
apply (frule vd_cons, frule vt_grant_os, simp, case_tac a)
|
|
44 |
apply (auto simp:inum_of_file.simps inum_of_socket.simps split:if_splits option.splits
|
|
45 |
dest:ios's_im_in_cim iof's_im_in_cim)
|
|
46 |
done
|
|
47 |
|
|
48 |
lemma fim_noninter_sim':"\<lbrakk>inum_of_file \<tau> f = Some im; inum_of_socket \<tau> s = Some im; valid \<tau>\<rbrakk> \<Longrightarrow> False"
|
|
49 |
by (auto intro:fim_noninter_sim_aux)
|
|
50 |
|
|
51 |
lemma fim_noninter_sim'':"\<lbrakk>inum_of_socket \<tau> s = Some im; inum_of_file \<tau> f = Some im; valid \<tau>\<rbrakk> \<Longrightarrow> False"
|
|
52 |
by (auto intro:fim_noninter_sim_aux)
|
|
53 |
|
|
54 |
lemma fim_noninter_sim: "valid \<tau> \<Longrightarrow> (current_file_inums \<tau>) \<inter> (current_sock_inums \<tau>) = {}"
|
|
55 |
by (auto simp:current_file_inums_def current_sock_inums_def intro:fim_noninter_sim_aux[rule_format])
|
|
56 |
|
|
57 |
(******************* file inum has inode tag ************************)
|
|
58 |
|
|
59 |
lemma finum_has_itag_aux[rule_format]:
|
|
60 |
"\<forall> f im. inum_of_file \<tau> f = Some im \<and> valid \<tau> \<longrightarrow> itag_of_inum \<tau> im \<noteq> None"
|
|
61 |
apply (induct \<tau>)
|
|
62 |
apply (clarsimp simp:inum_of_file.simps itag_of_inum.simps init_inum_of_file_props)
|
|
63 |
apply (clarify, frule vt_grant_os, frule vd_cons, case_tac a)
|
|
64 |
apply (auto simp add:inum_of_file.simps itag_of_inum.simps os_grant.simps current_files_def
|
|
65 |
dest:fim_noninter_sim'' split:option.splits if_splits t_socket_type.splits)
|
|
66 |
done
|
|
67 |
|
|
68 |
lemma finum_has_itag: "\<lbrakk>inum_of_file \<tau> f = Some im; valid \<tau>\<rbrakk> \<Longrightarrow> \<exists> tag. itag_of_inum \<tau> im = Some tag"
|
|
69 |
by (auto dest:conjI[THEN finum_has_itag_aux])
|
|
70 |
|
|
71 |
(*********************** file inum is file itag *************************)
|
|
72 |
|
|
73 |
lemma finum_has_ftag_aux[rule_format]:
|
|
74 |
"\<forall> f tag. inum_of_file \<tau> f = Some im \<and> itag_of_inum \<tau> im = Some tag \<and> valid \<tau> \<longrightarrow> is_file_dir_itag tag"
|
|
75 |
apply (induct \<tau>)
|
|
76 |
apply (clarsimp simp:inum_of_file.simps itag_of_inum.simps init_inum_of_file_props)
|
|
77 |
apply (clarify, frule vt_grant_os, frule vd_cons, case_tac a)
|
|
78 |
apply (auto simp:inum_of_file.simps os_grant.simps current_files_def itag_of_inum.simps
|
|
79 |
split:if_splits option.splits t_socket_type.splits
|
|
80 |
dest:ios's_im_in_cim iof's_im_in_cim)
|
|
81 |
done
|
|
82 |
|
|
83 |
lemma finum_has_ftag:
|
|
84 |
"\<lbrakk>inum_of_file \<tau> f = Some im; itag_of_inum \<tau> im = Some tag; valid \<tau>\<rbrakk> \<Longrightarrow> is_file_dir_itag tag"
|
|
85 |
by (auto intro:finum_has_ftag_aux)
|
|
86 |
|
|
87 |
lemma finum_has_ftag':
|
|
88 |
"\<lbrakk>inum_of_file \<tau> f = Some im; valid \<tau>\<rbrakk> \<Longrightarrow> itag_of_inum \<tau> im = Some Tag_FILE \<or> itag_of_inum \<tau> im = Some Tag_DIR"
|
|
89 |
apply (frule finum_has_itag, simp, erule exE, drule finum_has_ftag, simp+)
|
|
90 |
apply (case_tac tag, auto)
|
|
91 |
done
|
|
92 |
|
|
93 |
(******************* sock inum has inode tag ************************)
|
|
94 |
|
|
95 |
lemma sinum_has_itag_aux[rule_format]:
|
|
96 |
"\<forall> s im. inum_of_socket \<tau> s = Some im \<and> valid \<tau> \<longrightarrow> itag_of_inum \<tau> im \<noteq> None"
|
|
97 |
apply (induct \<tau>)
|
|
98 |
apply (clarsimp simp:inum_of_socket.simps itag_of_inum.simps)
|
|
99 |
apply (drule init_inumos_prop4, clarsimp)
|
|
100 |
apply (clarify, frule vt_grant_os, frule vd_cons, case_tac a)
|
|
101 |
apply (auto simp add:inum_of_socket.simps itag_of_inum.simps os_grant.simps
|
|
102 |
dest:fim_noninter_sim'' ios's_im_in_cim iof's_im_in_cim
|
|
103 |
split:option.splits if_splits t_socket_type.splits)
|
|
104 |
done
|
|
105 |
|
|
106 |
lemma sinum_has_itag: "\<lbrakk>inum_of_socket \<tau> s = Some im; valid \<tau>\<rbrakk> \<Longrightarrow> \<exists> tag. itag_of_inum \<tau> im = Some tag"
|
|
107 |
by (auto dest:conjI[THEN sinum_has_itag_aux])
|
|
108 |
|
|
109 |
(********************** socket inum is socket itag **********************)
|
|
110 |
|
|
111 |
lemma sinum_has_stag_aux[rule_format]:
|
|
112 |
"\<forall> s tag. inum_of_socket \<tau> s = Some im \<and> itag_of_inum \<tau> im = Some tag \<and> valid \<tau> \<longrightarrow> is_sock_itag tag"
|
|
113 |
apply (induct \<tau>)
|
|
114 |
apply (clarsimp simp:inum_of_socket.simps itag_of_inum.simps)
|
|
115 |
apply (drule init_inumos_prop4, clarsimp)
|
|
116 |
apply (clarify, frule vt_grant_os, frule vd_cons, case_tac a)
|
|
117 |
apply (auto simp add:inum_of_socket.simps itag_of_inum.simps os_grant.simps
|
|
118 |
dest:fim_noninter_sim'' ios's_im_in_cim iof's_im_in_cim
|
|
119 |
split:option.splits if_splits t_socket_type.splits)
|
|
120 |
done
|
|
121 |
|
|
122 |
lemma sinum_has_stag: "\<lbrakk>inum_of_socket \<tau> s = Some im; itag_of_inum \<tau> im = Some tag; valid \<tau>\<rbrakk> \<Longrightarrow> is_sock_itag tag"
|
|
123 |
by (auto dest:conjI[THEN sinum_has_stag_aux])
|
|
124 |
|
|
125 |
lemma sinum_has_stag':
|
|
126 |
"\<lbrakk>inum_of_socket \<tau> s = Some im; valid \<tau>\<rbrakk>
|
|
127 |
\<Longrightarrow> itag_of_inum \<tau> im = Some Tag_UDP_SOCK \<or> itag_of_inum \<tau> im = Some Tag_TCP_SOCK"
|
|
128 |
apply (frule sinum_has_itag, simp, erule exE)
|
|
129 |
apply (drule sinum_has_stag, simp+, case_tac tag, simp+)
|
|
130 |
done
|
|
131 |
|
|
132 |
(************************************ 4 in 1 *************************************)
|
|
133 |
|
|
134 |
lemma file_leveling: "valid \<tau> \<longrightarrow> (
|
|
135 |
(\<forall> f. f \<in> files_hung_by_del \<tau> \<longrightarrow> inum_of_file \<tau> f \<noteq> None) \<and>
|
|
136 |
(\<forall> f pf im. parent f = Some pf \<and> inum_of_file \<tau> f = Some im \<longrightarrow> inum_of_file \<tau> pf \<noteq> None) \<and>
|
|
137 |
(\<forall> f f' im. is_file \<tau> f \<and> parent f' = Some f \<and> inum_of_file \<tau> f' = Some im \<longrightarrow> False) \<and>
|
|
138 |
(\<forall> f f' im. f \<in> files_hung_by_del \<tau> \<and> inum_of_file \<tau> f' = Some im \<and> parent f' = Some f \<longrightarrow> False) )"
|
|
139 |
proof (induct \<tau>)
|
|
140 |
case Nil
|
|
141 |
show ?case
|
|
142 |
apply (auto simp:inum_of_file.simps files_hung_by_del.simps is_file_def itag_of_inum.simps parent_file_in_init split:option.splits t_inode_tag.splits)
|
|
143 |
apply (drule init_files_hung_by_del_props, simp add:init_file_has_inum)
|
|
144 |
apply (rule init_parent_file_has_inum, simp+)
|
|
145 |
apply (rule init_file_has_no_son', simp+)
|
|
146 |
apply (rule init_file_hung_has_no_son, simp+)
|
|
147 |
done
|
|
148 |
next
|
|
149 |
case (Cons a \<tau>)
|
|
150 |
assume pre: "valid \<tau> \<longrightarrow>
|
|
151 |
(\<forall> f. f \<in> files_hung_by_del \<tau> \<longrightarrow> inum_of_file \<tau> f \<noteq> None) \<and>
|
|
152 |
(\<forall>f pf im. parent f = Some pf \<and> inum_of_file \<tau> f = Some im \<longrightarrow> inum_of_file \<tau> pf \<noteq> None) \<and>
|
|
153 |
(\<forall>f f' im. is_file \<tau> f \<and> parent f' = Some f \<and> inum_of_file \<tau> f' = Some im \<longrightarrow> False) \<and>
|
|
154 |
(\<forall>f f' im. f \<in> files_hung_by_del \<tau> \<and> inum_of_file \<tau> f' = Some im \<and> parent f' = Some f \<longrightarrow> False)"
|
|
155 |
show ?case
|
|
156 |
proof
|
|
157 |
assume cons:"valid (a # \<tau>)"
|
|
158 |
show "(\<forall>f. f \<in> files_hung_by_del (a # \<tau>) \<longrightarrow> inum_of_file (a # \<tau>) f \<noteq> None) \<and>
|
|
159 |
(\<forall>f pf im. parent f = Some pf \<and> inum_of_file (a # \<tau>) f = Some im \<longrightarrow> inum_of_file (a # \<tau>) pf \<noteq> None) \<and>
|
|
160 |
(\<forall>f f' im. is_file (a # \<tau>) f \<and> parent f' = Some f \<and> inum_of_file (a # \<tau>) f' = Some im \<longrightarrow> False) \<and>
|
|
161 |
(\<forall>f f' im. f \<in> files_hung_by_del (a # \<tau>) \<and> inum_of_file (a # \<tau>) f' = Some im \<and> parent f' = Some f \<longrightarrow> False)"
|
|
162 |
proof-
|
|
163 |
have vt: "valid \<tau>" using cons by (auto dest:vd_cons)
|
|
164 |
have os: "os_grant \<tau> a" using cons by (auto dest:vt_grant_os)
|
|
165 |
have fin: "\<forall>f. f \<in> files_hung_by_del \<tau> \<longrightarrow> inum_of_file \<tau> f \<noteq> None" using vt pre by auto
|
|
166 |
have pin: "\<forall>f pf im. parent f = Some pf \<and> inum_of_file \<tau> f = Some im \<longrightarrow> inum_of_file \<tau> pf \<noteq> None"
|
|
167 |
using vt pre apply (erule_tac impE, simp) by ((erule_tac conjE)+, assumption)
|
|
168 |
have fns: "\<forall>f f' im. is_file \<tau> f \<and> parent f' = Some f \<and> inum_of_file \<tau> f' = Some im \<longrightarrow> False"
|
|
169 |
using vt pre apply (erule_tac impE, simp) by ((erule_tac conjE)+, assumption)
|
|
170 |
have hns: "\<forall>f f' im. f \<in> files_hung_by_del \<tau> \<and> inum_of_file \<tau> f' = Some im \<and> parent f' = Some f \<longrightarrow> False"
|
|
171 |
using vt pre apply (erule_tac impE, simp) by ((erule_tac conjE)+, assumption)
|
|
172 |
have ain: "\<forall>f' f im. f \<preceq> f' \<and> inum_of_file \<tau> f' = Some im \<longrightarrow> inum_of_file \<tau> f \<noteq> None"
|
|
173 |
proof
|
|
174 |
fix f'
|
|
175 |
show " \<forall>f im. f \<preceq> f' \<and> inum_of_file \<tau> f' = Some im \<longrightarrow> inum_of_file \<tau> f \<noteq> None"
|
|
176 |
proof (induct f')
|
|
177 |
case Nil show ?case by (auto simp: no_junior_def)
|
|
178 |
next
|
|
179 |
case (Cons a f')
|
|
180 |
assume pre:"\<forall>f im. f \<preceq> f' \<and> inum_of_file \<tau> f' = Some im \<longrightarrow> inum_of_file \<tau> f \<noteq> None"
|
|
181 |
show "\<forall>f im. f \<preceq> a # f' \<and> inum_of_file \<tau> (a # f') = Some im \<longrightarrow> inum_of_file \<tau> f \<noteq> None"
|
|
182 |
proof clarify
|
|
183 |
fix f im
|
|
184 |
assume h1: "f \<preceq> a # f'"
|
|
185 |
and h2: "inum_of_file \<tau> (a # f') = Some im"
|
|
186 |
show "\<exists>y. inum_of_file \<tau> f = Some y"
|
|
187 |
proof-
|
|
188 |
have h3: "\<exists> y. inum_of_file \<tau> f' = Some y"
|
|
189 |
proof-
|
|
190 |
have "parent (a # f') = Some f'" by simp
|
|
191 |
hence "\<exists> y. inum_of_file \<tau> f' = Some y" using pin h2 by blast
|
|
192 |
with h1 show ?thesis by simp
|
|
193 |
qed
|
|
194 |
from h1 have "f = a # f' \<or> f = f' \<or> f \<preceq> f'" by (induct f, auto simp:no_junior_def)
|
|
195 |
moreover have "f = a # f' \<Longrightarrow> \<exists>y. inum_of_file \<tau> f = Some y" using h2 by simp
|
|
196 |
moreover have "f = f' \<Longrightarrow> \<exists>y. inum_of_file \<tau> f = Some y" using h3 by simp
|
|
197 |
moreover have "f \<preceq> f' \<Longrightarrow> \<exists>y. inum_of_file \<tau> f = Some y" using pre h3 by simp
|
|
198 |
ultimately show ?thesis by auto
|
|
199 |
qed
|
|
200 |
qed
|
|
201 |
qed
|
|
202 |
qed
|
|
203 |
|
|
204 |
have fin': "\<And> f. f \<in> files_hung_by_del \<tau> \<Longrightarrow> \<exists> im. inum_of_file \<tau> f = Some im" using fin by auto
|
|
205 |
have pin': "\<And> f pf im. \<lbrakk>parent f = Some pf; inum_of_file \<tau> f = Some im\<rbrakk> \<Longrightarrow> \<exists> im'. inum_of_file \<tau> pf = Some im'"
|
|
206 |
using pin by auto
|
|
207 |
have fns': "\<And> f f' im. \<lbrakk>is_file \<tau> f; parent f' = Some f; inum_of_file \<tau> f' = Some im\<rbrakk> \<Longrightarrow> False" using fns by auto
|
|
208 |
have fns'': "\<And> f f' im im'. \<lbrakk>itag_of_inum \<tau> im = Some Tag_FILE; inum_of_file \<tau> f = Some im; parent f' = Some f; inum_of_file \<tau> f' = Some im'\<rbrakk> \<Longrightarrow> False"
|
|
209 |
by (rule_tac f = f and f' = f' in fns', auto simp:is_file_def)
|
|
210 |
have hns': "\<And> f f' im. \<lbrakk>f \<in> files_hung_by_del \<tau>; inum_of_file \<tau> f' = Some im; parent f' = Some f\<rbrakk> \<Longrightarrow> False" using hns by auto
|
|
211 |
have ain': "\<And> f f' im. \<lbrakk>f \<preceq> f'; inum_of_file \<tau> f' = Some im\<rbrakk> \<Longrightarrow> \<exists> im'. inum_of_file \<tau> f = Some im'" using ain by auto
|
|
212 |
have dns': "\<And> f f' im. \<lbrakk>dir_is_empty \<tau> f; parent f' = Some f; inum_of_file \<tau> f' = Some im\<rbrakk> \<Longrightarrow> False"
|
|
213 |
apply (auto simp:dir_is_empty_def current_files_def is_dir_def split:option.splits)
|
|
214 |
by (erule_tac x = f' in allE, simp add:noJ_Anc parent_is_ancen, drule parent_is_parent, simp+)
|
|
215 |
|
|
216 |
have "\<forall> f. f \<in> files_hung_by_del (a # \<tau>) \<longrightarrow> inum_of_file (a # \<tau>) f \<noteq> None"
|
|
217 |
apply (clarify, case_tac a) using os fin
|
|
218 |
apply (auto simp:files_hung_by_del.simps inum_of_file.simps os_grant.simps current_files_def is_file_def
|
|
219 |
split:if_splits option.splits)
|
|
220 |
done
|
|
221 |
moreover
|
|
222 |
have "\<forall>f pf im. parent f = Some pf \<and> inum_of_file (a # \<tau>) f = Some im \<longrightarrow> inum_of_file (a # \<tau>) pf \<noteq> None"
|
|
223 |
apply (clarify, case_tac a)
|
|
224 |
using vt os pin'
|
|
225 |
apply (auto simp:os_grant.simps current_files_def inum_of_file.simps is_file_def is_dir_def
|
|
226 |
split:if_splits option.splits t_inode_tag.splits)
|
|
227 |
apply (drule_tac f = pf and f' = f in hns', simp, simp, simp)
|
|
228 |
apply (rule_tac f = list and f' = f in fns', simp add:is_file_def, simp, simp)
|
|
229 |
apply (rule_tac f = list and f' = f in dns', simp add:is_dir_def, simp, simp)
|
|
230 |
done
|
|
231 |
moreover have "\<forall>f f' im. is_file (a # \<tau>) f \<and> parent f' = Some f \<and> inum_of_file (a # \<tau>) f' = Some im \<longrightarrow> False"
|
|
232 |
apply (clarify, case_tac a)
|
|
233 |
using vt os fns'' cons
|
|
234 |
apply (auto simp:os_grant.simps current_files_def inum_of_file.simps itag_of_inum.simps
|
|
235 |
is_file_def is_dir_def
|
|
236 |
dest:ios's_im_in_cim iof's_im_in_cim
|
|
237 |
split:if_splits option.splits t_inode_tag.splits t_socket_type.splits)
|
|
238 |
apply (rule_tac im = a and f = f and f' = f' in fns'', simp+)
|
|
239 |
apply (drule_tac f = f' and pf = list in pin', simp, simp)
|
|
240 |
apply (drule_tac f = f' and pf = list2 in pin', simp, simp)
|
|
241 |
done
|
|
242 |
moreover have "\<forall>f f' im. f \<in> files_hung_by_del (a # \<tau>) \<and> inum_of_file (a # \<tau>) f' = Some im \<and>
|
|
243 |
parent f' = Some f \<longrightarrow> False"
|
|
244 |
apply (clarify, case_tac a)
|
|
245 |
using vt os hns'
|
|
246 |
apply (auto simp:os_grant.simps current_files_def inum_of_file.simps files_hung_by_del.simps
|
|
247 |
split:if_splits option.splits t_sock_addr.splits)
|
|
248 |
apply (drule fns', simp+)
|
|
249 |
done
|
|
250 |
ultimately show ?thesis by blast
|
|
251 |
qed
|
|
252 |
qed
|
|
253 |
qed
|
|
254 |
|
|
255 |
(**************** hung file in current ***********************)
|
|
256 |
|
|
257 |
lemma hung_file_has_inum:"\<lbrakk>f \<in> files_hung_by_del \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> inum_of_file \<tau> f \<noteq> None"
|
|
258 |
by (drule file_leveling[rule_format], blast)
|
|
259 |
|
|
260 |
lemma hung_file_has_inum': "\<lbrakk>f \<in> files_hung_by_del \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> \<exists> im. inum_of_file \<tau> f = Some im"
|
|
261 |
by (auto dest:hung_file_has_inum)
|
|
262 |
|
|
263 |
lemma hung_file_in_current: "\<lbrakk>f \<in> files_hung_by_del \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> f \<in> current_files \<tau>"
|
|
264 |
by (clarsimp simp add:current_files_def hung_file_has_inum')
|
|
265 |
|
|
266 |
lemma parentf_has_inum: "\<lbrakk>parent f = Some pf; inum_of_file \<tau> f = Some im; valid \<tau>\<rbrakk> \<Longrightarrow> inum_of_file \<tau> pf \<noteq> None"
|
|
267 |
by (drule file_leveling[rule_format], blast)
|
|
268 |
|
|
269 |
lemma parentf_has_inum': "\<lbrakk>parent f = Some pf; inum_of_file \<tau> f = Some im; valid \<tau>\<rbrakk> \<Longrightarrow> \<exists> im'. inum_of_file \<tau> pf = Some im'"
|
|
270 |
by (auto dest:parentf_has_inum)
|
|
271 |
|
|
272 |
lemma parentf_in_current: "\<lbrakk>parent f = Some pf; f \<in> current_files \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> pf \<in> current_files \<tau>"
|
|
273 |
by (clarsimp simp add:current_files_def parentf_has_inum')
|
|
274 |
|
|
275 |
lemma parentf_in_current': "\<lbrakk>a # pf \<in> current_files \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> pf \<in> current_files \<tau>"
|
|
276 |
apply (subgoal_tac "parent (a # pf) = Some pf")
|
|
277 |
by (erule parentf_in_current, simp+)
|
|
278 |
|
|
279 |
lemma ancenf_has_inum_aux: "\<forall> f im. f \<preceq> f' \<and> inum_of_file \<tau> f' = Some im \<and> valid \<tau> \<longrightarrow> inum_of_file \<tau> f \<noteq> None"
|
|
280 |
proof (induct f')
|
|
281 |
case Nil show ?case by (auto simp: no_junior_def)
|
|
282 |
next
|
|
283 |
case (Cons a f')
|
|
284 |
assume pre:"\<forall>f im. f \<preceq> f' \<and> inum_of_file \<tau> f' = Some im \<and> valid \<tau> \<longrightarrow> inum_of_file \<tau> f \<noteq> None"
|
|
285 |
show "\<forall>f im. f \<preceq> a # f' \<and> inum_of_file \<tau> (a # f') = Some im \<and> valid \<tau> \<longrightarrow> inum_of_file \<tau> f \<noteq> None"
|
|
286 |
proof clarify
|
|
287 |
fix f im
|
|
288 |
assume h1: "f \<preceq> a # f'"
|
|
289 |
and h2: "inum_of_file \<tau> (a # f') = Some im"
|
|
290 |
and h3: "valid \<tau>"
|
|
291 |
show "\<exists>y. inum_of_file \<tau> f = Some y"
|
|
292 |
proof-
|
|
293 |
have h4: "\<exists> y. inum_of_file \<tau> f' = Some y"
|
|
294 |
proof-
|
|
295 |
have "parent (a # f') = Some f'" by simp
|
|
296 |
hence "\<exists> y. inum_of_file \<tau> f' = Some y" using parentf_has_inum' h2 h3 by blast
|
|
297 |
with h1 show ?thesis by simp
|
|
298 |
qed
|
|
299 |
from h1 have "f = a # f' \<or> f = f' \<or> f \<preceq> f'" by (induct f, auto simp:no_junior_def)
|
|
300 |
moreover have "f = a # f' \<Longrightarrow> \<exists>y. inum_of_file \<tau> f = Some y" using h2 by simp
|
|
301 |
moreover have "f = f' \<Longrightarrow> \<exists>y. inum_of_file \<tau> f = Some y" using h4 by simp
|
|
302 |
moreover have "f \<preceq> f' \<Longrightarrow> \<exists>y. inum_of_file \<tau> f = Some y" using pre h3 h4 by simp
|
|
303 |
ultimately show ?thesis by auto
|
|
304 |
qed
|
|
305 |
qed
|
|
306 |
qed
|
|
307 |
|
|
308 |
lemma ancenf_has_inum: "\<lbrakk>f \<preceq> f'; inum_of_file \<tau> f' = Some im; valid \<tau>\<rbrakk> \<Longrightarrow> inum_of_file \<tau> f \<noteq> None"
|
|
309 |
by (rule ancenf_has_inum_aux[rule_format], auto)
|
|
310 |
|
|
311 |
lemma ancenf_has_inum': "\<lbrakk>f \<preceq> f'; inum_of_file \<tau> f' = Some im; valid \<tau>\<rbrakk> \<Longrightarrow> \<exists> im'. inum_of_file \<tau> f = Some im'"
|
|
312 |
by (auto dest:ancenf_has_inum)
|
|
313 |
|
|
314 |
lemma ancenf_in_current: "\<lbrakk>f \<preceq> f'; f' \<in> current_files \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> f \<in> current_files \<tau>"
|
|
315 |
by (simp add:current_files_def, erule exE, simp add:ancenf_has_inum')
|
|
316 |
|
|
317 |
lemma file_has_no_son: "\<lbrakk>is_file \<tau> f; parent f' = Some f; inum_of_file \<tau> f' = Some im; valid \<tau>\<rbrakk> \<Longrightarrow> False"
|
|
318 |
by (drule file_leveling[rule_format], blast)
|
|
319 |
|
|
320 |
lemma file_has_no_son': "\<lbrakk>is_file \<tau> f; parent f' = Some f; f' \<in> current_files \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> False"
|
|
321 |
by (simp add:current_files_def, erule exE, auto intro:file_has_no_son)
|
|
322 |
|
|
323 |
lemma hung_file_no_son: "\<lbrakk>f \<in> files_hung_by_del \<tau>; valid \<tau>; inum_of_file \<tau> f' = Some im; parent f' = Some f\<rbrakk> \<Longrightarrow> False"
|
|
324 |
by (drule file_leveling[rule_format], blast)
|
|
325 |
|
|
326 |
lemma hung_file_no_son': "\<lbrakk>f \<in> files_hung_by_del \<tau>; valid \<tau>; f' \<in> current_files \<tau>; parent f' = Some f\<rbrakk> \<Longrightarrow> False"
|
|
327 |
by (simp add:current_files_def, erule exE, auto intro:hung_file_no_son)
|
|
328 |
|
|
329 |
lemma hung_file_no_des_aux: "\<forall> f. f \<in> files_hung_by_del \<tau> \<and> valid \<tau> \<and> f' \<in> current_files \<tau> \<and> f \<preceq> f' \<and> f \<noteq> f' \<longrightarrow> False"
|
|
330 |
proof (induct f')
|
|
331 |
case Nil
|
|
332 |
show ?case
|
|
333 |
by (auto simp:files_hung_by_del.simps current_files_def inum_of_file.simps no_junior_def split:if_splits option.splits)
|
|
334 |
next
|
|
335 |
case (Cons a pf)
|
|
336 |
assume pre: "\<forall>f. f \<in> files_hung_by_del \<tau> \<and> valid \<tau> \<and> pf \<in> current_files \<tau> \<and> f \<preceq> pf \<and> f \<noteq> pf\<longrightarrow> False"
|
|
337 |
show ?case
|
|
338 |
proof clarify
|
|
339 |
fix f
|
|
340 |
assume h1: "f \<in> files_hung_by_del \<tau>"
|
|
341 |
and h2: "valid \<tau>"
|
|
342 |
and h3: "a # pf \<in> current_files \<tau>"
|
|
343 |
and h4: "f \<preceq> a # pf"
|
|
344 |
and h5: "f \<noteq> a # pf"
|
|
345 |
have h6: "parent (a # pf) = Some pf" by simp
|
|
346 |
with h2 h3 have h7: "pf \<in> current_files \<tau>" by (drule_tac parentf_in_current, auto)
|
|
347 |
from h4 h5 have h8: "f \<preceq> pf" by (erule_tac no_juniorE, case_tac zs, auto simp:no_junior_def)
|
|
348 |
show False
|
|
349 |
proof (cases "f = pf")
|
|
350 |
case True with h6 h2 h3 h1
|
|
351 |
show False by (auto intro!:hung_file_no_son')
|
|
352 |
next
|
|
353 |
case False with pre h1 h2 h7 h8
|
|
354 |
show False by blast
|
|
355 |
qed
|
|
356 |
qed
|
|
357 |
qed
|
|
358 |
|
|
359 |
lemma hung_file_no_des: "\<lbrakk>f \<in> files_hung_by_del \<tau>; valid \<tau>; f' \<in> current_files \<tau>; f \<preceq> f'; f \<noteq> f'\<rbrakk> \<Longrightarrow> False"
|
|
360 |
by (rule hung_file_no_des_aux[rule_format], blast)
|
|
361 |
|
|
362 |
(* current version, dir can not be opened, so hung_files are all files
|
|
363 |
lemma hung_file_is_leaf: "\<lbrakk>f \<in> files_hung_by_del \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> is_file \<tau> f \<or> dir_is_empty \<tau> f"
|
|
364 |
apply (frule hung_file_has_inum', simp, erule exE)
|
|
365 |
apply (auto simp add:is_file_def dir_is_empty_def is_dir_def dest:finum_has_itag finum_has_ftag split:option.splits if_splits t_inode_tag.splits)
|
|
366 |
by (simp add: noJ_Anc, auto dest:hung_file_no_des)
|
|
367 |
*)
|
|
368 |
|
|
369 |
lemma hung_file_has_filetag:
|
|
370 |
"\<lbrakk>f \<in> files_hung_by_del s; inum_of_file s f = Some im; valid s\<rbrakk> \<Longrightarrow> itag_of_inum s im = Some Tag_FILE"
|
|
371 |
apply (induct s)
|
|
372 |
apply (simp add:files_hung_by_del.simps)
|
|
373 |
apply (drule init_files_hung_prop2, (erule exE)+)
|
|
374 |
apply (drule init_filefd_prop5, clarsimp simp:is_init_file_def split:t_inode_tag.splits option.splits)
|
|
375 |
|
|
376 |
apply (frule vd_cons, frule vt_grant_os, case_tac a)
|
|
377 |
apply (auto simp:files_hung_by_del.simps is_file_def is_dir_def current_files_def current_inode_nums_def
|
|
378 |
split:if_splits option.splits t_inode_tag.splits t_socket_type.splits
|
|
379 |
dest:hung_file_has_inum iof's_im_in_cim)
|
|
380 |
done
|
|
381 |
|
|
382 |
lemma hung_file_is_file: "\<lbrakk>f \<in> files_hung_by_del \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> is_file \<tau> f"
|
|
383 |
apply (frule hung_file_has_inum', simp, erule exE)
|
|
384 |
apply (drule hung_file_has_filetag, auto simp:is_file_def)
|
|
385 |
done
|
|
386 |
|
|
387 |
(*********************** 2 in 1 *********************)
|
|
388 |
|
|
389 |
lemma file_of_pfd_2in1: "valid s \<Longrightarrow> (
|
|
390 |
(\<forall> p fd f. file_of_proc_fd s p fd = Some f \<longrightarrow> inum_of_file s f \<noteq> None) \<and>
|
|
391 |
(\<forall> p fd f. file_of_proc_fd s p fd = Some f \<longrightarrow> is_file s f) )"
|
|
392 |
proof (induct s)
|
|
393 |
case Nil
|
|
394 |
show ?case
|
|
395 |
by (auto dest:init_filefd_valid simp:is_file_def)
|
|
396 |
next
|
|
397 |
case (Cons e s)
|
|
398 |
hence vd_e: "valid (e # s)" and vd_s: "valid s" and os: "os_grant s e"
|
|
399 |
and pfd: "\<And> p fd f. file_of_proc_fd s p fd = Some f \<Longrightarrow> inum_of_file s f \<noteq> None"
|
|
400 |
and isf: "\<And> p fd f. file_of_proc_fd s p fd = Some f \<Longrightarrow> is_file s f"
|
|
401 |
by (auto dest:vd_cons vt_grant_os)
|
|
402 |
from pfd have pfd': "\<And> p fd f. inum_of_file s f = None \<Longrightarrow> file_of_proc_fd s p fd \<noteq> Some f"
|
|
403 |
by (rule_tac notI, drule_tac pfd, simp)
|
|
404 |
|
|
405 |
have "\<forall>p fd f. file_of_proc_fd (e # s) p fd = Some f \<longrightarrow> inum_of_file (e # s) f \<noteq> None"
|
|
406 |
apply (case_tac e) using os
|
|
407 |
apply (auto simp:inum_of_file.simps file_of_proc_fd.simps os_grant.simps current_files_def
|
|
408 |
dir_is_empty_def is_file_def is_dir_def
|
|
409 |
split:if_splits option.splits dest:pfd)
|
|
410 |
apply (simp add:pfdof_simp3)+
|
|
411 |
apply (simp add:proc_fd_of_file_def)
|
|
412 |
apply (drule isf, simp add:is_file_def split:t_inode_tag.splits)
|
|
413 |
done
|
|
414 |
moreover
|
|
415 |
have "\<forall>p fd f. file_of_proc_fd (e # s) p fd = Some f \<longrightarrow> is_file (e # s) f"
|
|
416 |
apply (case_tac e) using os
|
|
417 |
apply (auto split:option.splits t_inode_tag.splits if_splits t_socket_type.splits
|
|
418 |
dest:pfd isf iof's_im_in_cim
|
|
419 |
simp:is_file_def is_dir_def dir_is_empty_def current_files_def)
|
|
420 |
apply (simp add:pfdof_simp3)+
|
|
421 |
apply (simp add:proc_fd_of_file_def)
|
|
422 |
done
|
|
423 |
ultimately show ?case by auto
|
|
424 |
qed
|
|
425 |
|
|
426 |
|
|
427 |
(************** file_of_proc_fd in current ********************)
|
|
428 |
|
|
429 |
lemma file_of_pfd_imp_inode': "\<lbrakk>file_of_proc_fd \<tau> p fd = Some f; valid \<tau>\<rbrakk> \<Longrightarrow> inum_of_file \<tau> f \<noteq> None"
|
|
430 |
by (drule file_of_pfd_2in1, blast)
|
|
431 |
|
|
432 |
lemma file_of_pfd_imp_inode: "\<lbrakk>file_of_proc_fd \<tau> p fd = Some f; valid \<tau>\<rbrakk> \<Longrightarrow> \<exists> im. inum_of_file \<tau> f = Some im"
|
|
433 |
by (auto dest!:file_of_pfd_imp_inode')
|
|
434 |
|
|
435 |
lemma file_of_pfd_in_current: "\<lbrakk>file_of_proc_fd \<tau> p fd = Some f; valid \<tau>\<rbrakk> \<Longrightarrow> f \<in> current_files \<tau>"
|
|
436 |
by (auto dest!:file_of_pfd_imp_inode' simp:current_files_def)
|
|
437 |
|
|
438 |
|
|
439 |
(*************** file_of_proc_fd is file *********************)
|
|
440 |
|
|
441 |
lemma file_of_pfd_is_file:
|
|
442 |
"\<lbrakk>file_of_proc_fd \<tau> p fd = Some f; valid \<tau>\<rbrakk> \<Longrightarrow> is_file \<tau> f"
|
|
443 |
by (drule file_of_pfd_2in1, auto simp:is_file_def)
|
|
444 |
|
|
445 |
lemma file_of_pfd_is_file':
|
|
446 |
"\<lbrakk>file_of_proc_fd \<tau> p fd = Some f; is_dir \<tau> f; valid \<tau>\<rbrakk> \<Longrightarrow> False"
|
|
447 |
by (drule file_of_pfd_is_file, auto simp:is_file_def is_dir_def split:option.splits t_inode_tag.splits)
|
|
448 |
|
|
449 |
lemma file_of_pfd_is_file_tag:
|
|
450 |
"\<lbrakk>file_of_proc_fd \<tau> p fd = Some f; valid \<tau>; inum_of_file \<tau> f = Some im\<rbrakk> \<Longrightarrow> itag_of_inum \<tau> im = Some Tag_FILE"
|
|
451 |
by (drule file_of_pfd_is_file, auto simp:is_file_def split:option.splits t_inode_tag.splits)
|
|
452 |
|
|
453 |
(************** parent file / ancestral file is dir *******************)
|
|
454 |
|
|
455 |
lemma parentf_is_dir_aux: "\<forall> f pf. parent f = Some pf \<and> inum_of_file \<tau> f = Some im \<and> inum_of_file \<tau> pf = Some ipm \<and> valid \<tau> \<longrightarrow> itag_of_inum \<tau> ipm = Some Tag_DIR"
|
|
456 |
apply (induct \<tau>)
|
|
457 |
apply (clarsimp simp:inum_of_file.simps itag_of_inum.simps init_parent_file_is_dir')
|
|
458 |
apply (clarify, frule vd_cons, frule vt_grant_os, case_tac a)
|
|
459 |
apply (auto simp:inum_of_file.simps itag_of_inum.simps os_grant.simps
|
|
460 |
current_files_def is_dir_def is_file_def
|
|
461 |
dest: ios's_im_in_cim iof's_im_in_cim
|
|
462 |
split:if_splits option.splits t_sock_addr.splits t_inode_tag.splits t_socket_type.splits)
|
|
463 |
apply (drule parentf_has_inum', simp, simp, simp)+
|
|
464 |
done
|
|
465 |
|
|
466 |
lemma parentf_has_dirtag:
|
|
467 |
"\<lbrakk>parent f = Some pf; inum_of_file \<tau> f = Some im; inum_of_file \<tau> pf = Some ipm; valid \<tau>\<rbrakk>
|
|
468 |
\<Longrightarrow> itag_of_inum \<tau> ipm = Some Tag_DIR"
|
|
469 |
by (auto intro:parentf_is_dir_aux[rule_format])
|
|
470 |
|
|
471 |
lemma parentf_is_dir': "\<lbrakk>parent f = Some pf; inum_of_file \<tau> f = Some im; valid \<tau>\<rbrakk> \<Longrightarrow> is_dir \<tau> pf"
|
|
472 |
apply (frule parentf_has_inum', simp+, erule exE, simp add:is_dir_def split:t_inode_tag.splits option.splits)
|
|
473 |
by (auto dest:parentf_has_dirtag)
|
|
474 |
|
|
475 |
lemma parentf_is_dir: "\<lbrakk>parent f = Some pf; f \<in> current_files \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> is_dir \<tau> pf"
|
|
476 |
by (clarsimp simp:current_files_def parentf_is_dir')
|
|
477 |
|
|
478 |
lemma parentf_is_dir'': "\<lbrakk>f # pf \<in> current_files \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> is_dir \<tau> pf"
|
|
479 |
by (auto intro!:parentf_is_dir)
|
|
480 |
|
|
481 |
lemma ancenf_is_dir_aux: "\<forall> f. f \<preceq> f' \<and> f \<noteq> f' \<and> f' \<in> current_files \<tau> \<and> valid \<tau> \<longrightarrow> is_dir \<tau> f"
|
|
482 |
proof (induct f')
|
|
483 |
case Nil show ?case
|
|
484 |
by (auto simp:current_files_def no_junior_def)
|
|
485 |
next
|
|
486 |
case (Cons a pf)
|
|
487 |
assume pre: "\<forall>f. f \<preceq> pf \<and> f \<noteq> pf \<and> pf \<in> current_files \<tau> \<and> valid \<tau> \<longrightarrow> is_dir \<tau> f"
|
|
488 |
show ?case
|
|
489 |
proof clarify
|
|
490 |
fix f
|
|
491 |
assume h1: "f \<preceq> a # pf"
|
|
492 |
and h2: "f \<noteq> a # pf"
|
|
493 |
and h3: "a # pf \<in> current_files \<tau>"
|
|
494 |
and h4: "valid \<tau>"
|
|
495 |
have h5: "parent (a # pf) = Some pf" by simp
|
|
496 |
with h3 h4 have h6: "pf \<in> current_files \<tau>" by (drule_tac parentf_in_current, auto)
|
|
497 |
from h1 h2 have h7: "f \<preceq> pf" by (erule_tac no_juniorE, case_tac zs, auto simp:no_junior_def)
|
|
498 |
show "is_dir \<tau> f"
|
|
499 |
proof (cases "f = pf")
|
|
500 |
case True with h3 h4 h5 show "is_dir \<tau> f" by (drule_tac parentf_is_dir, auto)
|
|
501 |
next
|
|
502 |
case False with pre h6 h7 h4 show "is_dir \<tau> f" by blast
|
|
503 |
qed
|
|
504 |
qed
|
|
505 |
qed
|
|
506 |
|
|
507 |
lemma ancenf_is_dir: "\<lbrakk>f \<preceq> f'; f \<noteq> f'; f' \<in> current_files \<tau>; valid \<tau>\<rbrakk> \<Longrightarrow> is_dir \<tau> f"
|
|
508 |
by (auto intro:ancenf_is_dir_aux[rule_format])
|
|
509 |
|
|
510 |
(************* rebuild current_files simpset ***********************)
|
|
511 |
|
|
512 |
lemma current_files_nil: "current_files [] = init_files"
|
|
513 |
apply (simp add:current_files_def inum_of_file.simps)
|
|
514 |
by (auto dest:inof_has_file_tag init_file_has_inum)
|
|
515 |
|
|
516 |
lemma current_files_open: "current_files (Open p f flags fd (Some i) # \<tau>) = insert f (current_files \<tau>)"
|
|
517 |
by (auto simp add:current_files_def inum_of_file.simps split:option.splits)
|
|
518 |
|
|
519 |
lemma current_files_open': "current_files (Open p f flags fd None # \<tau>) = current_files \<tau>"
|
|
520 |
by (simp add:current_files_def inum_of_file.simps split:option.splits)
|
|
521 |
|
|
522 |
lemma current_files_closefd: "current_files (CloseFd p fd # \<tau>) = (
|
|
523 |
case (file_of_proc_fd \<tau> p fd) of
|
|
524 |
Some f \<Rightarrow> ( if ((proc_fd_of_file \<tau> f = {(p, fd)}) \<and> (f \<in> files_hung_by_del \<tau>))
|
|
525 |
then current_files \<tau> - {f}
|
|
526 |
else current_files \<tau>)
|
|
527 |
| _ \<Rightarrow> current_files \<tau> )"
|
|
528 |
by (auto simp:current_files_def inum_of_file.simps split:option.splits)
|
|
529 |
|
|
530 |
lemma current_files_unlink: "current_files (UnLink p f # \<tau>) = (if (proc_fd_of_file \<tau> f = {}) then (current_files \<tau>) - {f} else current_files \<tau>)"
|
|
531 |
by (auto simp:current_files_def inum_of_file.simps split:option.splits)
|
|
532 |
|
|
533 |
lemma current_files_rmdir: "current_files (Rmdir p f # \<tau>) = current_files \<tau> - {f}"
|
|
534 |
by (auto simp:current_files_def inum_of_file.simps split:option.splits)
|
|
535 |
|
|
536 |
lemma current_files_mkdir: "current_files (Mkdir p f ino # \<tau>) = insert f (current_files \<tau>)"
|
|
537 |
by (auto simp:current_files_def inum_of_file.simps split:option.splits)
|
|
538 |
|
|
539 |
lemma current_files_linkhard:
|
|
540 |
"valid (LinkHard p f\<^isub>1 f\<^isub>2 # \<tau>) \<Longrightarrow> current_files (LinkHard p f\<^isub>1 f\<^isub>2 # \<tau>) = insert f\<^isub>2 (current_files \<tau>)"
|
|
541 |
apply (frule vt_grant_os, frule vd_cons)
|
|
542 |
by (auto simp:current_files_def inum_of_file.simps os_grant.simps is_file_def split:option.splits)
|
|
543 |
|
|
544 |
(*
|
|
545 |
lemma rename_renaming_decom:
|
|
546 |
"\<lbrakk>f\<^isub>3 \<preceq> file_after_rename f\<^isub>2 f\<^isub>3 f; Rename p f\<^isub>2 f\<^isub>3 # valid \<tau>; f \<in> current_files \<tau>\<rbrakk> \<Longrightarrow> f\<^isub>2 \<preceq> f"
|
|
547 |
apply (case_tac "f\<^isub>2 \<preceq> f", simp)
|
|
548 |
apply (simp add:file_after_rename_def split:if_splits)
|
|
549 |
by (frule vd_cons, frule vt_grant_os, auto simp:os_grant.simps dest!:ancenf_in_current)
|
|
550 |
|
|
551 |
lemma rename_renaming_decom':
|
|
552 |
"\<lbrakk>\<not> f\<^isub>3 \<preceq> file_after_rename f\<^isub>2 f\<^isub>3 f; Rename p f\<^isub>2 f\<^isub>3 # valid \<tau>; f \<in> current_files \<tau>\<rbrakk> \<Longrightarrow> \<not> f\<^isub>2 \<preceq> f"
|
|
553 |
by (case_tac "f\<^isub>2 \<preceq> f", drule_tac f\<^isub>3 = f\<^isub>3 in file_renaming_prop1, simp+)
|
|
554 |
|
|
555 |
lemma current_files_rename: "Rename p f\<^isub>2 f\<^isub>3 # valid \<tau> \<Longrightarrow> current_files (Rename p f\<^isub>2 f\<^isub>3 # \<tau>) = {file_after_rename f\<^isub>2 f\<^isub>3 f\<^isub>1| f\<^isub>1. f\<^isub>1 \<in> current_files \<tau>}"
|
|
556 |
apply (frule vt_grant_os, frule vd_cons)
|
|
557 |
apply (auto simp:current_files_def inum_of_file.simps os_grant.simps split:if_splits option.splits)
|
|
558 |
apply (rule_tac x = x in exI, simp add:file_after_rename_def)
|
|
559 |
apply (frule_tac f\<^isub>2 = f\<^isub>2 in file_renaming_prop1', drule_tac f\<^isub>2 = f\<^isub>2 in file_renaming_prop5')
|
|
560 |
apply (erule_tac x = "file_before_rename f\<^isub>2 f\<^isub>3 x" in allE, simp)
|
|
561 |
apply (rule_tac x = x in exI, simp add:file_after_rename_def)
|
|
562 |
apply (drule_tac a = f\<^isub>3 and b = f\<^isub>2 in no_junior_conf, simp, simp)
|
|
563 |
apply (drule_tac f = f\<^isub>3 and f' = f\<^isub>2 in ancenf_has_inum', simp, simp, simp)
|
|
564 |
apply (drule_tac f\<^isub>2 = f\<^isub>2 in rename_renaming_decom, simp, simp add:current_files_def, simp add:file_renaming_prop5)
|
|
565 |
apply (drule_tac f\<^isub>2 = f\<^isub>2 in rename_renaming_decom', simp, simp add:current_files_def)
|
|
566 |
apply (simp add:file_after_rename_def)
|
|
567 |
apply (drule_tac f\<^isub>2 = f\<^isub>2 in rename_renaming_decom', simp, simp add:current_files_def)
|
|
568 |
apply (simp add:file_after_rename_def)
|
|
569 |
done
|
|
570 |
*)
|
|
571 |
|
|
572 |
lemma current_files_other:
|
|
573 |
"\<lbrakk>\<forall> p f flag fd opt. e \<noteq> Open p f flag fd opt;
|
|
574 |
\<forall> p fd. e \<noteq> CloseFd p fd;
|
|
575 |
\<forall> p f. e \<noteq> UnLink p f;
|
|
576 |
\<forall> p f. e \<noteq> Rmdir p f;
|
|
577 |
\<forall> p f i. e \<noteq> Mkdir p f i;
|
|
578 |
\<forall> p f f'. e \<noteq> LinkHard p f f'\<rbrakk> \<Longrightarrow> current_files (e # \<tau>) = current_files \<tau>"
|
|
579 |
by (case_tac e, auto simp:current_files_def inum_of_file.simps)
|
|
580 |
|
|
581 |
lemmas current_files_simps = current_files_nil current_files_open current_files_open'
|
|
582 |
current_files_closefd current_files_unlink current_files_rmdir
|
|
583 |
current_files_mkdir current_files_linkhard current_files_other
|
|
584 |
|
|
585 |
|
|
586 |
(******************** is_file simpset *********************)
|
|
587 |
|
|
588 |
lemma is_file_open:
|
|
589 |
"valid (Open p f flags fd opt # s) \<Longrightarrow>
|
|
590 |
is_file (Open p f flags fd opt # s) = (if (opt = None) then is_file s else (is_file s) (f:= True))"
|
|
591 |
apply (frule vd_cons, drule vt_grant_os, rule ext)
|
|
592 |
apply (auto dest:finum_has_itag iof's_im_in_cim
|
|
593 |
split:if_splits option.splits t_inode_tag.splits
|
|
594 |
simp:is_file_def current_files_def)
|
|
595 |
done
|
|
596 |
|
|
597 |
lemma is_file_closefd:
|
|
598 |
"valid (CloseFd p fd # s) \<Longrightarrow> is_file (CloseFd p fd # s) = (
|
|
599 |
case (file_of_proc_fd s p fd) of
|
|
600 |
Some f \<Rightarrow> ( if ((proc_fd_of_file s f = {(p, fd)}) \<and> (f \<in> files_hung_by_del s))
|
|
601 |
then (is_file s) (f := False)
|
|
602 |
else is_file s)
|
|
603 |
| _ \<Rightarrow> is_file s )"
|
|
604 |
apply (frule vd_cons, drule vt_grant_os, rule ext)
|
|
605 |
apply (auto dest:finum_has_itag iof's_im_in_cim
|
|
606 |
split:if_splits option.splits t_inode_tag.splits
|
|
607 |
simp:is_file_def)
|
|
608 |
done
|
|
609 |
|
|
610 |
lemma is_file_unlink:
|
|
611 |
"valid (UnLink p f # s) \<Longrightarrow> is_file (UnLink p f # s) = (
|
|
612 |
if (proc_fd_of_file s f = {}) then (is_file s) (f := False) else is_file s)"
|
|
613 |
apply (frule vd_cons, drule vt_grant_os, rule ext)
|
|
614 |
apply (auto dest:finum_has_itag iof's_im_in_cim
|
|
615 |
split:if_splits option.splits t_inode_tag.splits
|
|
616 |
simp:is_file_def)
|
|
617 |
done
|
|
618 |
|
|
619 |
lemma is_file_linkhard:
|
|
620 |
"valid (LinkHard p f f' # s) \<Longrightarrow> is_file (LinkHard p f f' # s) = (is_file s) (f' := True)"
|
|
621 |
apply (frule vd_cons, drule vt_grant_os, rule ext)
|
|
622 |
apply (auto dest:finum_has_itag iof's_im_in_cim
|
|
623 |
split:if_splits option.splits t_inode_tag.splits
|
|
624 |
simp:is_file_def)
|
|
625 |
done
|
|
626 |
|
|
627 |
lemma is_file_other:
|
|
628 |
"\<lbrakk>valid (e # \<tau>);
|
|
629 |
\<forall> p f flag fd opt. e \<noteq> Open p f flag fd opt;
|
|
630 |
\<forall> p fd. e \<noteq> CloseFd p fd;
|
|
631 |
\<forall> p f. e \<noteq> UnLink p f;
|
|
632 |
\<forall> p f f'. e \<noteq> LinkHard p f f'\<rbrakk> \<Longrightarrow> is_file (e # \<tau>) = is_file \<tau>"
|
|
633 |
apply (frule vd_cons, drule vt_grant_os, rule_tac ext, case_tac e)
|
|
634 |
apply (auto dest:finum_has_itag iof's_im_in_cim intro!:ext
|
|
635 |
split:if_splits option.splits t_inode_tag.split t_socket_type.splits
|
|
636 |
simp:is_file_def dir_is_empty_def is_dir_def current_files_def)
|
|
637 |
done
|
|
638 |
|
|
639 |
lemma file_dir_conflict: "\<lbrakk>is_file s f; is_dir s f\<rbrakk> \<Longrightarrow> False"
|
|
640 |
by (auto simp:is_file_def is_dir_def split:option.splits t_inode_tag.splits)
|
|
641 |
|
|
642 |
lemma is_file_not_dir: "is_file s f \<Longrightarrow> \<not> is_dir s f"
|
|
643 |
by (rule notI, erule file_dir_conflict, simp)
|
|
644 |
|
|
645 |
lemma is_dir_not_file: "is_dir s f \<Longrightarrow> \<not> is_file s f"
|
|
646 |
by (rule notI, erule file_dir_conflict, simp)
|
|
647 |
|
|
648 |
lemmas is_file_simps = is_file_nil is_file_open is_file_closefd is_file_unlink is_file_linkhard is_file_other
|
|
649 |
|
|
650 |
(********* is_dir simpset **********)
|
|
651 |
|
|
652 |
lemma is_dir_mkdir: "valid (Mkdir p f i # s) \<Longrightarrow> is_dir (Mkdir p f i # s) = (is_dir s) (f := True)"
|
|
653 |
apply (frule vd_cons, drule vt_grant_os, rule_tac ext)
|
|
654 |
apply (auto dest:finum_has_itag iof's_im_in_cim intro!:ext
|
|
655 |
split:if_splits option.splits t_inode_tag.split t_socket_type.splits
|
|
656 |
simp:is_dir_def dir_is_empty_def is_dir_def current_files_def)
|
|
657 |
done
|
|
658 |
|
|
659 |
lemma is_dir_rmdir: "valid (Rmdir p f # s) \<Longrightarrow> is_dir (Rmdir p f # s) = (is_dir s) (f := False)"
|
|
660 |
apply (frule vd_cons, drule vt_grant_os, rule_tac ext)
|
|
661 |
apply (auto dest:finum_has_itag iof's_im_in_cim intro!:ext
|
|
662 |
split:if_splits option.splits t_inode_tag.split t_socket_type.splits
|
|
663 |
simp:is_dir_def dir_is_empty_def is_dir_def current_files_def)
|
|
664 |
done
|
|
665 |
|
|
666 |
lemma is_dir_other:
|
|
667 |
"\<lbrakk>valid (e # s);
|
|
668 |
\<forall> p f. e \<noteq> Rmdir p f;
|
|
669 |
\<forall> p f i. e \<noteq> Mkdir p f i\<rbrakk> \<Longrightarrow> is_dir (e # s) = is_dir s"
|
|
670 |
apply (frule vd_cons, drule vt_grant_os, rule_tac ext, case_tac e)
|
|
671 |
apply (auto dest:finum_has_itag iof's_im_in_cim intro!:ext
|
|
672 |
split:if_splits option.splits t_inode_tag.split t_socket_type.splits
|
|
673 |
simp:is_file_def dir_is_empty_def is_dir_def current_files_def)
|
|
674 |
apply (drule file_of_pfd_is_file, simp)
|
|
675 |
apply (simp add:is_file_def split:t_inode_tag.splits option.splits)
|
|
676 |
done
|
|
677 |
|
|
678 |
lemmas is_dir_simps = is_dir_nil is_dir_mkdir is_dir_rmdir is_dir_other
|
|
679 |
|
|
680 |
(*********** no root dir involved ***********)
|
|
681 |
|
|
682 |
lemma root_is_dir: "valid s \<Longrightarrow> is_dir s []"
|
|
683 |
apply (induct s, simp add:is_dir_nil root_is_init_dir)
|
|
684 |
apply (frule vd_cons, frule vt_grant_os, case_tac a)
|
|
685 |
apply (auto simp:is_dir_simps)
|
|
686 |
done
|
|
687 |
|
|
688 |
lemma root_is_dir': "\<lbrakk>is_file s []; valid s\<rbrakk> \<Longrightarrow> False"
|
|
689 |
apply (drule root_is_dir)
|
|
690 |
apply (erule file_dir_conflict, simp)
|
|
691 |
done
|
|
692 |
|
|
693 |
lemma noroot_execve:
|
|
694 |
"valid (Execve p f fds # s) \<Longrightarrow> f \<noteq> []"
|
|
695 |
by (frule vd_cons, drule vt_grant_os, auto dest!:root_is_dir')
|
|
696 |
|
|
697 |
lemma noroot_execve':
|
|
698 |
"valid (Execve p [] fds # s) \<Longrightarrow> False"
|
|
699 |
by (drule noroot_execve, simp)
|
|
700 |
|
|
701 |
lemma noroot_open:
|
|
702 |
"valid (Open p f flags fd opt # s) \<Longrightarrow> f \<noteq> []"
|
|
703 |
by (frule vd_cons, drule vt_grant_os, auto dest!:root_is_dir' split:option.splits)
|
|
704 |
|
|
705 |
lemma noroot_open':
|
|
706 |
"valid (Open p [] flags fd opt # s) \<Longrightarrow> False"
|
|
707 |
by (drule noroot_open, simp)
|
|
708 |
|
|
709 |
lemma noroot_filefd':
|
|
710 |
"\<lbrakk>file_of_proc_fd s p fd = Some []; valid s\<rbrakk> \<Longrightarrow> False"
|
|
711 |
apply (induct s arbitrary:p, simp)
|
|
712 |
apply (drule init_filefd_prop5, erule root_is_init_dir')
|
|
713 |
apply (frule vd_cons, frule vt_grant_os, case_tac a)
|
|
714 |
apply (auto split:if_splits option.splits dest!:root_is_dir')
|
|
715 |
done
|
|
716 |
|
|
717 |
lemma noroot_filefd:
|
|
718 |
"\<lbrakk>file_of_proc_fd s p fd = Some f; valid s\<rbrakk> \<Longrightarrow> f \<noteq> []"
|
|
719 |
by (rule notI, simp, erule noroot_filefd', simp)
|
|
720 |
|
|
721 |
lemma noroot_unlink:
|
|
722 |
"valid (UnLink p f # s) \<Longrightarrow> f \<noteq> []"
|
|
723 |
by (frule vd_cons, drule vt_grant_os, auto dest!:root_is_dir')
|
|
724 |
|
|
725 |
lemma noroot_unlink':
|
|
726 |
"valid (UnLink p [] # s) \<Longrightarrow> False"
|
|
727 |
by (drule noroot_unlink, simp)
|
|
728 |
|
|
729 |
lemma noroot_rmdir:
|
|
730 |
"valid (Rmdir p f # s) \<Longrightarrow> f \<noteq> []"
|
|
731 |
by (frule vd_cons, drule vt_grant_os, auto dest!:root_is_dir')
|
|
732 |
|
|
733 |
lemma noroot_rmdir':
|
|
734 |
"valid (Rmdir p [] # s) \<Longrightarrow> False"
|
|
735 |
by (drule noroot_rmdir, simp)
|
|
736 |
|
|
737 |
lemma noroot_mkdir:
|
|
738 |
"valid (Mkdir p f inum # s) \<Longrightarrow> f \<noteq> []"
|
|
739 |
by (frule vd_cons, drule vt_grant_os, auto dest!:root_is_dir')
|
|
740 |
|
|
741 |
lemma noroot_mkdir':
|
|
742 |
"valid (Mkdir p [] inum # s) \<Longrightarrow> False"
|
|
743 |
by (drule noroot_mkdir, simp)
|
|
744 |
|
|
745 |
lemma noroot_linkhard:
|
|
746 |
"valid (LinkHard p f f' # s) \<Longrightarrow> f \<noteq> [] \<and> f' \<noteq> []"
|
|
747 |
by (frule vd_cons, drule vt_grant_os, auto dest!:root_is_dir')
|
|
748 |
|
|
749 |
lemma noroot_linkhard':
|
|
750 |
"valid (LinkHard p [] f # s) \<Longrightarrow> False"
|
|
751 |
by (drule noroot_linkhard, simp)
|
|
752 |
|
|
753 |
lemma noroot_linkhard'':
|
|
754 |
"valid (LinkHard p f [] # s) \<Longrightarrow> False"
|
|
755 |
by (drule noroot_linkhard, simp)
|
|
756 |
|
|
757 |
lemma noroot_truncate:
|
|
758 |
"valid (Truncate p f len # s) \<Longrightarrow> f \<noteq> []"
|
|
759 |
by (frule vd_cons, drule vt_grant_os, auto dest!:root_is_dir')
|
|
760 |
|
|
761 |
lemma noroot_truncate':
|
|
762 |
"valid (Truncate p [] len # s) \<Longrightarrow> False"
|
|
763 |
by (drule noroot_truncate, simp)
|
|
764 |
|
|
765 |
lemmas noroot_events = noroot_execve noroot_open noroot_filefd noroot_unlink noroot_rmdir
|
|
766 |
noroot_mkdir noroot_linkhard noroot_truncate
|
|
767 |
|
|
768 |
lemmas noroot_events' = noroot_execve' noroot_open' noroot_filefd' noroot_unlink' noroot_rmdir'
|
|
769 |
noroot_mkdir' noroot_linkhard' noroot_linkhard'' noroot_truncate'
|
|
770 |
|
|
771 |
|
|
772 |
lemma is_file_in_current:
|
|
773 |
"is_file s f \<Longrightarrow> f \<in> current_files s"
|
|
774 |
by (auto simp:is_file_def current_files_def split:option.splits)
|
|
775 |
|
|
776 |
lemma is_dir_in_current:
|
|
777 |
"is_dir s f \<Longrightarrow> f \<in> current_files s"
|
|
778 |
by (auto simp:is_dir_def current_files_def split:option.splits)
|
|
779 |
|
|
780 |
|
|
781 |
(* simpset for same_inode_files: Current_files_prop.thy *)
|
|
782 |
|
|
783 |
lemma same_inode_files_nil:
|
|
784 |
"same_inode_files [] = init_same_inode_files"
|
|
785 |
by (rule ext, simp add:same_inode_files_def init_same_inode_files_def is_file_nil)
|
|
786 |
|
|
787 |
lemma iof's_im_in_cim': "Some im = inum_of_file \<tau> f \<Longrightarrow> im \<in> current_inode_nums \<tau>"
|
|
788 |
by (auto simp add:current_inode_nums_def current_file_inums_def)
|
|
789 |
|
|
790 |
lemma same_inode_files_open:
|
|
791 |
"valid (Open p f flags fd opt # s) \<Longrightarrow> same_inode_files (Open p f flags fd opt # s) = (\<lambda> f'.
|
|
792 |
if (f' = f \<and> opt \<noteq> None) then {f} else same_inode_files s f')"
|
|
793 |
apply (frule vt_grant_os, frule vd_cons, rule ext)
|
|
794 |
apply (auto simp:same_inode_files_def is_file_simps split:if_splits option.splits
|
|
795 |
dest:iof's_im_in_cim iof's_im_in_cim')
|
|
796 |
apply (drule is_file_in_current)
|
|
797 |
apply (simp add:current_files_def)
|
|
798 |
done
|
|
799 |
|
|
800 |
lemma same_inode_files_linkhard:
|
|
801 |
"valid (LinkHard p oldf f # s) \<Longrightarrow> same_inode_files (LinkHard p oldf f # s) = (\<lambda> f'.
|
|
802 |
if (f' = f \<or> f' \<in> same_inode_files s oldf)
|
|
803 |
then same_inode_files s oldf \<union> {f}
|
|
804 |
else same_inode_files s f')"
|
|
805 |
apply (frule vt_grant_os, frule vd_cons, rule ext)
|
|
806 |
apply (auto simp:same_inode_files_def is_file_simps split:if_splits option.splits
|
|
807 |
dest:iof's_im_in_cim iof's_im_in_cim')
|
|
808 |
apply (drule is_file_in_current)
|
|
809 |
apply (simp add:current_files_def is_file_def)
|
|
810 |
apply (simp add:is_file_def)
|
|
811 |
done
|
|
812 |
|
|
813 |
lemma inum_of_file_none_prop:
|
|
814 |
"\<lbrakk>inum_of_file s f = None; valid s\<rbrakk> \<Longrightarrow> f \<notin> current_files s"
|
|
815 |
by (simp add:current_files_def)
|
|
816 |
|
|
817 |
lemma same_inode_files_closefd:
|
|
818 |
"\<lbrakk>valid (CloseFd p fd # s); f' \<in> current_files (CloseFd p fd # s)\<rbrakk> \<Longrightarrow>
|
|
819 |
same_inode_files (CloseFd p fd # s) f' = (
|
|
820 |
case (file_of_proc_fd s p fd) of
|
|
821 |
Some f \<Rightarrow> (if ((proc_fd_of_file s f = {(p, fd)}) \<and> (f \<in> files_hung_by_del s))
|
|
822 |
then same_inode_files s f' - {f}
|
|
823 |
else same_inode_files s f' )
|
|
824 |
| None \<Rightarrow> same_inode_files s f' )"
|
|
825 |
apply (frule vt_grant_os, frule vd_cons)
|
|
826 |
apply (auto simp:same_inode_files_def is_file_closefd current_files_closefd
|
|
827 |
split:if_splits option.splits
|
|
828 |
dest:iof's_im_in_cim iof's_im_in_cim' inum_of_file_none_prop)
|
|
829 |
done
|
|
830 |
|
|
831 |
lemma same_inode_files_unlink:
|
|
832 |
"\<lbrakk>valid (UnLink p f # s); f' \<in> current_files (UnLink p f # s)\<rbrakk>
|
|
833 |
\<Longrightarrow> same_inode_files (UnLink p f # s) f' = (
|
|
834 |
if (proc_fd_of_file s f = {})
|
|
835 |
then same_inode_files s f' - {f}
|
|
836 |
else same_inode_files s f')"
|
|
837 |
apply (frule vt_grant_os, frule vd_cons)
|
|
838 |
apply (auto simp:same_inode_files_def is_file_unlink current_files_unlink
|
|
839 |
split:if_splits option.splits
|
|
840 |
dest:iof's_im_in_cim iof's_im_in_cim' inum_of_file_none_prop)
|
|
841 |
done
|
|
842 |
|
|
843 |
lemma same_inode_files_mkdir:
|
|
844 |
"valid (Mkdir p f inum # s) \<Longrightarrow> same_inode_files (Mkdir p f inum # s) = (same_inode_files s)"
|
|
845 |
apply (frule vt_grant_os, frule vd_cons, rule ext)
|
|
846 |
apply (auto simp:same_inode_files_def is_file_simps current_files_simps
|
|
847 |
split:if_splits option.splits
|
|
848 |
dest:iof's_im_in_cim iof's_im_in_cim' inum_of_file_none_prop is_file_in_current)
|
|
849 |
apply (simp add:current_files_def is_file_def)
|
|
850 |
done
|
|
851 |
|
|
852 |
lemma same_inode_files_other:
|
|
853 |
"\<lbrakk>valid (e # s);
|
|
854 |
\<forall> p f flag fd opt. e \<noteq> Open p f flag fd opt;
|
|
855 |
\<forall> p fd. e \<noteq> CloseFd p fd;
|
|
856 |
\<forall> p f. e \<noteq> UnLink p f;
|
|
857 |
\<forall> p f f'. e \<noteq> LinkHard p f f'\<rbrakk> \<Longrightarrow> same_inode_files (e # s) = same_inode_files s"
|
|
858 |
apply (frule vt_grant_os, frule vd_cons, rule ext, case_tac e)
|
|
859 |
apply (auto simp:same_inode_files_def is_file_simps current_files_simps dir_is_empty_def
|
|
860 |
split:if_splits option.splits
|
|
861 |
dest:iof's_im_in_cim iof's_im_in_cim' inum_of_file_none_prop is_file_not_dir)
|
|
862 |
apply (simp add:is_file_def is_dir_def current_files_def split:option.splits t_inode_tag.splits)+
|
|
863 |
done
|
|
864 |
|
|
865 |
lemmas same_inode_files_simps = same_inode_files_nil same_inode_files_open same_inode_files_linkhard
|
|
866 |
same_inode_files_closefd same_inode_files_unlink same_inode_files_mkdir same_inode_files_other
|
|
867 |
|
|
868 |
lemma same_inode_files_prop1:
|
|
869 |
"f \<in> same_inode_files s f' \<Longrightarrow> f \<in> current_files s"
|
|
870 |
by (simp add:same_inode_files_def is_file_def current_files_def split:if_splits option.splits)
|
|
871 |
|
|
872 |
lemma same_inode_files_prop2:
|
|
873 |
"\<lbrakk>f \<in> same_inode_files s f'; f'' \<notin> current_files s\<rbrakk> \<Longrightarrow> f \<noteq> f''"
|
|
874 |
by (auto dest:same_inode_files_prop1)
|
|
875 |
|
|
876 |
lemma same_inode_files_prop3:
|
|
877 |
"\<lbrakk>f \<in> same_inode_files s f'; is_dir s f''\<rbrakk> \<Longrightarrow> f \<noteq> f''"
|
|
878 |
apply (rule notI)
|
|
879 |
apply (simp add:same_inode_files_def is_file_def is_dir_def
|
|
880 |
split:if_splits option.splits t_inode_tag.splits)
|
|
881 |
done
|
|
882 |
|
|
883 |
lemma same_inode_files_prop4:
|
|
884 |
"\<lbrakk>f' \<in> same_inode_files s f; f'' \<in> same_inode_files s f'\<rbrakk> \<Longrightarrow> f'' \<in> same_inode_files s f"
|
|
885 |
by (auto simp:same_inode_files_def split:if_splits)
|
|
886 |
|
|
887 |
lemma same_inode_files_prop5:
|
|
888 |
"f' \<in> same_inode_files s f \<Longrightarrow> f \<in> same_inode_files s f'"
|
|
889 |
by (auto simp:same_inode_files_def is_file_def split:if_splits)
|
|
890 |
|
|
891 |
lemma same_inode_files_prop6:
|
|
892 |
"f' \<in> same_inode_files s f \<Longrightarrow> same_inode_files s f' = same_inode_files s f"
|
|
893 |
by (auto simp:same_inode_files_def is_file_def split:if_splits)
|
|
894 |
|
|
895 |
lemma same_inode_files_prop7:
|
|
896 |
"f' \<in> same_inode_files s f \<Longrightarrow> has_same_inode s f f'"
|
|
897 |
by (auto simp:same_inode_files_def is_file_def has_same_inode_def split:if_splits option.splits)
|
|
898 |
|
|
899 |
lemma same_inode_files_prop8:
|
|
900 |
"f' \<in> same_inode_files s f \<Longrightarrow> has_same_inode s f' f"
|
|
901 |
by (auto simp:same_inode_files_def is_file_def has_same_inode_def split:if_splits option.splits)
|
|
902 |
|
|
903 |
|
|
904 |
end
|
|
905 |
|
|
906 |
end |