beginnig of the slides (not yet finished)
authorurbanc
Tue, 23 Aug 2011 00:24:10 +0000
changeset 204 e7edf55befc6
parent 203 5d724fe0e096
child 205 cf0e1fc65876
beginnig of the slides (not yet finished)
Closures.thy
Slides/ROOT1.ML
Slides/Slides1.thy
Slides/document/chunhan.jpg
Slides/document/root.tex
Slides/document/xingyuan.jpg
--- a/Closures.thy	Mon Aug 22 12:49:27 2011 +0000
+++ b/Closures.thy	Tue Aug 23 00:24:10 2011 +0000
@@ -164,6 +164,7 @@
   then show "regular (Deriv_lang B A)" by auto
 qed
 
+
 subsection {* Finite and co-finite sets are regular *}
 
 lemma singleton_regular:
@@ -243,4 +244,31 @@
 qed
 
 
+
+(* tests *)
+definition
+  "quot A B \<equiv> {x. \<exists>y \<in> B. x @ y \<in> A}"
+
+definition
+  "quot1 A B \<equiv> {x. \<exists>y \<in> B. y @ x \<in> A}"
+
+lemma
+  "quot1 A B \<subseteq> Deriv_lang B A"
+unfolding quot1_def Derivs_def
+apply(auto)
+done
+
+lemma  
+  "rev ` quot1 A B \<subseteq> quot (rev ` A) (rev ` B)"
+unfolding quot_def quot1_def
+apply(auto)
+unfolding image_def
+apply(auto)
+apply(rule_tac x="y" in bexI)
+apply(rule_tac x="y @ xa" in bexI)
+apply(auto)
+done
+
+
+
 end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Slides/ROOT1.ML	Tue Aug 23 00:24:10 2011 +0000
@@ -0,0 +1,5 @@
+(*show_question_marks := false;*)
+
+no_document use_thy "~~/src/HOL/Library/LaTeXsugar";
+quick_and_dirty := true;
+use_thy "Slides1"
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Slides/Slides1.thy	Tue Aug 23 00:24:10 2011 +0000
@@ -0,0 +1,893 @@
+(*<*)
+theory Slides1
+imports "~~/src/HOL/Library/LaTeXsugar"
+begin
+
+notation (latex output)
+  set ("_") and
+  Cons  ("_::/_" [66,65] 65) 
+
+(*>*)
+
+
+text_raw {*
+  %\renewcommand{\slidecaption}{Cambridge, 9 November 2010}
+  \renewcommand{\slidecaption}{Nijmegen, 25 August 2011}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}
+  \frametitle{%
+  \begin{tabular}{@ {}c@ {}}
+  \Large A Formalisation of the\\[-4mm] 
+  \Large Myhill-Nerode Theorem based on\\[-4mm] 
+  \Large Regular Expressions\\[-4mm]
+  \Large (Proof Pearl)\\[0mm] 
+  \end{tabular}}
+  
+  \begin{center}
+  \begin{tabular}{c@ {\hspace{15mm}}c}
+  \includegraphics[scale=0.034]{chunhan.jpg} &
+  \includegraphics[scale=0.034]{xingyuan.jpg}\\[-5mm]
+  \end{tabular}
+  \end{center}
+ 
+
+  \begin{center}
+  \small joint work with Chunhan Wu and Xingyuan Zhang from the PLA
+  University of Science and Technology in Nanjing
+  \end{center}
+
+  \begin{center}
+  \small Christian Urban\\
+  TU Munich
+  \end{center}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{In Most Textbooks\ldots}
+
+  \begin{itemize}
+  \item A \alert{regular language} is one where there is a DFA that 
+  recognises it.\bigskip\pause
+  \end{itemize}
+
+
+  I can think of three reasons why this is a good definition:\medskip
+  \begin{itemize}
+  \item string matching via DFAs (yacc)
+  \item pumping lemma
+  \item closure properties of regular languages (closed under complement)
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
+
+  \begin{center}
+  \huge\bf\textcolor{gray}{in Nuprl}
+  \end{center}
+
+  \begin{itemize}
+  \item Constable, Jackson, Naumov, Uribe\medskip
+  \item \alert{18 months} for automata theory, Hopcroft \& Ullman chapters 1--11 (including Myhill-Nerode)
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
+
+  \begin{center}
+  \huge\bf\textcolor{gray}{in Coq}
+  \end{center}
+
+  \begin{itemize}
+  \item Filli\^atre, Briais, Braibant and others
+  \item multi-year effort; a number of results in automata theory, e.g.\medskip 
+    \begin{itemize}
+    \item Kleene's thm.~by Filli\^atre (\alert{``rather big''})
+    \item automata theory by Briais (5400 loc)
+    \item Braibant ATBR library, including Myhill-Nerode ($>\!\!\!>$2000 loc)
+    \item Mirkin's partial derivative automaton construction (10600 loc)
+    \end{itemize}
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
+  \mbox{}\\[-10mm]\mbox{}
+
+  \begin{center}
+  \huge\bf\textcolor{gray}{in HOL}
+  \end{center}
+
+  \begin{itemize}
+  \item automata @{text "\<Rightarrow>"} graphs, matrices, functions
+  \item<2-> combining automata/graphs
+
+  \onslide<2->{
+  \begin{center}
+  \begin{tabular}{ccc}
+  \begin{tikzpicture}[scale=1]
+  %\draw[step=2mm] (-1,-1) grid (1,1);
+  
+  \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
+  \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
+
+  \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  
+  \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+
+  \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+
+  \draw (-0.6,0.0) node {\small$A_1$};
+  \draw ( 0.6,0.0) node {\small$A_2$};
+  \end{tikzpicture}}
+
+  & 
+
+  \onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}}
+
+  &
+
+  \onslide<3->{\begin{tikzpicture}[scale=1]
+  %\draw[step=2mm] (-1,-1) grid (1,1);
+  
+  \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
+  \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
+
+  \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  
+  \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+
+  \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  
+  \draw (C) to [red, very thick, bend left=45] (B);
+  \draw (D) to [red, very thick, bend right=45] (B);
+
+  \draw (-0.6,0.0) node {\small$A_1$};
+  \draw ( 0.6,0.0) node {\small$A_2$};
+  \end{tikzpicture}}
+
+  \end{tabular}
+  \end{center}\medskip
+
+  \only<4-5>{
+  \begin{tabular}{@ {}l@ {}}
+  disjoint union:\\[2mm]
+  \smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}}
+  \end{tabular}}
+  \end{itemize}
+
+  \only<5>{
+  \begin{textblock}{13.9}(0.7,7.7)
+  \begin{block}{}
+  \medskip
+  \begin{minipage}{14cm}\raggedright
+  Problems with definition for regularity (Slind):\bigskip\\
+  \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip
+  \end{minipage}
+  \end{block}
+  \end{textblock}}
+  \medskip
+
+  \only<6->{A solution:\;\;\smath{\text{nat}} @{text "\<Rightarrow>"} state nodes}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
+  \mbox{}\\[-10mm]\mbox{}
+
+  \begin{center}
+  \huge\bf\textcolor{gray}{in HOL}
+  \end{center}
+
+  \begin{itemize}
+  \item Kozen's proof of Myhill-Nerode:\\ 
+  \hspace{5cm}\alert{inaccessible states}
+  \end{itemize}\bigskip\bigskip
+
+  \begin{center}
+  \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}
+  \end{center}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{Regular Expressions}
+  \mbox{}\\[20mm]\mbox{}
+
+  \begin{textblock}{13.9}(0.7,2.2)
+  \begin{block}{}
+  \begin{minipage}{13.4cm}\raggedright
+  {\bf Definition:}\smallskip\\
+  
+  A language \smath{A} is \alert{regular}, provided there exists a\\ 
+  regular expression that matches all strings of \smath{A}.
+  \end{minipage}
+  \end{block}
+  \end{textblock}\pause
+  
+  {\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause
+
+  What we might lose?\pause
+  \begin{itemize}\renewcommand{\ULthickness}{2pt}
+  \item pumping lemma\pause
+  \item closure under complementation\pause
+  \item \only<6>{regular expression matching}%
+        \only<7>{\textcolor{red}{\sout{\textcolor{black}{regular expression matching}}}}
+  \end{itemize}
+
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{Regular Expressions}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Regular Expression Matching}
+
+  \begin{itemize}
+  \item Harper in JFP'99: ``Functional Pearl: Proof- Directed Debugging''\medskip
+  \item Yi in JFP'06: ``Educational Pearl: `Proof-Directed Debugging' revisited 
+  for a first-order version''\medskip
+  \item Owens et al in JFP'09: ``Regular-expression derivatives re-examined''\bigskip\pause
+
+  \begin{quote}\small
+  ``Unfortunately, regular expression derivatives have been lost in the 
+  sands of time, and few computer scientists are aware of them.''
+  \end{quote}
+  \end{itemize}
+  
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Myhill-Nerode Theorem}
+
+  \begin{itemize}
+  \item provides necessary and suf\!ficient conditions for a language 
+  being regular (pumping lemma only necessary)\medskip
+
+  \item will help with closure properties of regular languages\bigskip\pause
+
+  \item key is the equivalence relation:\smallskip
+  \begin{center}
+  \smath{x \approx_{L} y \,\dn\, \forall z.\; x @ z \in L \Leftrightarrow y @ z \in L}
+  \end{center}
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Myhill-Nerode Theorem}
+
+  \mbox{}\\[5cm]
+
+  \begin{itemize}
+  \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_L) \;\Leftrightarrow\; L\; \text{is regular}}
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Equivalence Classes}
+
+  \begin{itemize}
+  \item \smath{L = []}
+  \begin{center}
+  \smath{\Big\{\{[]\},\; U\!N\!IV - \{[]\}\Big\}}
+  \end{center}\bigskip\bigskip
+
+  \item \smath{L = [c]}
+  \begin{center}
+  \smath{\Big\{\{[]\},\; \{[c]\},\; U\!N\!IV - \{[], [c]\}\Big\}}
+  \end{center}\bigskip\bigskip
+
+  \item \smath{L = \varnothing}
+  \begin{center}
+  \smath{\Big\{U\!N\!IV\Big\}}
+  \end{center}
+
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Regular Languages}
+
+  \begin{itemize}
+  \item \smath{L} is regular \smath{\dn} if there is an automaton \smath{M} 
+  such that \smath{\mathbb{L}(M) = L}\\[1.5cm]
+
+  \item Myhill-Nerode:
+
+  \begin{center}
+  \begin{tabular}{l}
+  finite $\Rightarrow$ regular\\
+  \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_L) \Rightarrow \exists r. L = \mathbb{L}(r)}\\[3mm]
+  regular $\Rightarrow$ finite\\
+  \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})}
+  \end{tabular}
+  \end{center}
+
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Final States}
+
+  \mbox{}\\[3cm]
+
+  \begin{itemize}
+  \item \smath{\text{final}_L\,X \dn}\\
+  \smath{\hspace{6mm}X \in (U\!N\!IV /\!/\approx_L) \;\wedge\; \forall s \in X.\; s \in L}
+  \smallskip
+  \item we can prove: \smath{L = \bigcup \{X.\;\text{final}_L\,X\}}
+
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Transitions between\\[-3mm] Equivalence Classes}
+
+  \smath{L = \{[c]\}}
+
+  \begin{tabular}{@ {\hspace{-7mm}}cc}
+  \begin{tabular}{c}
+  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
+  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
+
+  %\draw[help lines] (0,0) grid (3,2);
+
+  \node[state,initial]   (q_0)                        {$R_1$};
+  \node[state,accepting] (q_1) [above right of=q_0]   {$R_2$};
+  \node[state]           (q_2) [below right of=q_0]   {$R_3$};
+
+  \path[->] (q_0) edge                node        {c} (q_1)
+                  edge                node [swap] {$\Sigma-{c}$} (q_2)
+            (q_2) edge [loop below]   node        {$\Sigma$} ()
+            (q_1) edge                node        {$\Sigma$} (q_2);
+  \end{tikzpicture}
+  \end{tabular}
+  &
+  \begin{tabular}[t]{ll}
+  \\[-20mm]
+  \multicolumn{2}{l}{\smath{U\!N\!IV /\!/\approx_L} produces}\\[4mm]
+
+  \smath{R_1}: & \smath{\{[]\}}\\
+  \smath{R_2}: & \smath{\{[c]\}}\\
+  \smath{R_3}: & \smath{U\!N\!IV - \{[], [c]\}}\\[6mm]
+  \multicolumn{2}{l}{\onslide<2->{\smath{X \stackrel{c}{\longrightarrow} Y \dn X ; [c] \subseteq Y}}}
+  \end{tabular}
+
+  \end{tabular}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Systems of Equations}
+
+  Inspired by a method of Brzozowski\;'64, we can build an equational system
+  characterising the equivalence classes:
+
+  \begin{center}
+  \begin{tabular}{@ {\hspace{-20mm}}c}
+  \\[-13mm]
+  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
+  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
+
+  %\draw[help lines] (0,0) grid (3,2);
+
+  \node[state,initial]   (p_0)                  {$R_1$};
+  \node[state,accepting] (p_1) [right of=q_0]   {$R_2$};
+
+  \path[->] (p_0) edge [bend left]   node        {a} (p_1)
+                  edge [loop above]   node       {b} ()
+            (p_1) edge [loop above]   node       {a} ()
+                  edge [bend left]   node        {b} (p_0);
+  \end{tikzpicture}\\
+  \\[-13mm]
+  \end{tabular}
+  \end{center}
+
+  \begin{center}
+  \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  & \smath{R_1} & \smath{\equiv} & \smath{R_1;b + R_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\
+  & \smath{R_2} & \smath{\equiv} & \smath{R_1;a + R_2;a}\medskip\\
+  \onslide<3->{we can prove} 
+  & \onslide<3->{\smath{R_1}} & \onslide<3->{\smath{=}} 
+      & \onslide<3->{\smath{R_1; \mathbb{L}(b) \,\cup\, R_2;\mathbb{L}(b) \,\cup\, \{[]\};\{[]\}}}\\
+  & \onslide<3->{\smath{R_2}} & \onslide<3->{\smath{=}}    
+      & \onslide<3->{\smath{R_1; \mathbb{L}(a) \,\cup\, R_2;\mathbb{L}(a)}}\\
+  \end{tabular}
+  \end{center}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>[t]
+  \small
+
+  \begin{center}
+  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll}
+  \onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}} 
+      & \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
+  \onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}}    
+      & \onslide<1->{\smath{R_1; a + R_2; a}}\\
+
+  & & & \onslide<2->{by Arden}\\
+
+  \onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}} 
+      & \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
+  \onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}}    
+      & \only<2>{\smath{R_1; a + R_2; a}}%
+        \only<3->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<4->{by Arden}\\
+
+  \onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}} 
+      & \onslide<4->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\
+  \onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}}    
+      & \onslide<4->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<5->{by substitution}\\
+
+  \onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}} 
+      & \onslide<5->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\
+  \onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}}    
+      & \onslide<5->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<6->{by Arden}\\
+
+  \onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}} 
+      & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
+  \onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}}    
+      & \onslide<6->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<7->{by substitution}\\
+
+  \onslide<7->{\smath{R_1}} & \onslide<7->{\smath{=}} 
+      & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
+  \onslide<7->{\smath{R_2}} & \onslide<7->{\smath{=}}    
+      & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star 
+          \cdot a\cdot a^\star}}\\
+  \end{tabular}
+  \end{center}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE A Variant of Arden's Lemma}
+
+  {\bf Arden's Lemma:}\smallskip 
+
+  If \smath{[] \not\in A} then
+  \begin{center}
+  \smath{X = X; A + \text{something}}
+  \end{center}
+  has the (unique) solution
+  \begin{center}
+  \smath{X = \text{something} ; A^\star}
+  \end{center}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->[t]
+  \small
+
+  \begin{center}
+  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll}
+  \onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}} 
+      & \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
+  \onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}}    
+      & \onslide<1->{\smath{R_1; a + R_2; a}}\\
+
+  & & & \onslide<2->{by Arden}\\
+
+  \onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}} 
+      & \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
+  \onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}}    
+      & \only<2>{\smath{R_1; a + R_2; a}}%
+        \only<3->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<4->{by Arden}\\
+
+  \onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}} 
+      & \onslide<4->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\
+  \onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}}    
+      & \onslide<4->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<5->{by substitution}\\
+
+  \onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}} 
+      & \onslide<5->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\
+  \onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}}    
+      & \onslide<5->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<6->{by Arden}\\
+
+  \onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}} 
+      & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
+  \onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}}    
+      & \onslide<6->{\smath{R_1; a\cdot a^\star}}\\
+
+  & & & \onslide<7->{by substitution}\\
+
+  \onslide<7->{\smath{R_1}} & \onslide<7->{\smath{=}} 
+      & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
+  \onslide<7->{\smath{R_2}} & \onslide<7->{\smath{=}}    
+      & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star 
+          \cdot a\cdot a^\star}}\\
+  \end{tabular}
+  \end{center}
+
+  \only<8->{
+  \begin{textblock}{6}(2.5,4)
+  \begin{block}{}
+  \begin{minipage}{8cm}\raggedright
+  
+  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm]
+  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
+
+  %\draw[help lines] (0,0) grid (3,2);
+
+  \node[state,initial]   (p_0)                  {$R_1$};
+  \node[state,accepting] (p_1) [right of=q_0]   {$R_2$};
+
+  \path[->] (p_0) edge [bend left]   node        {a} (p_1)
+                  edge [loop above]   node       {b} ()
+            (p_1) edge [loop above]   node       {a} ()
+                  edge [bend left]   node        {b} (p_0);
+  \end{tikzpicture}
+
+  \end{minipage}
+  \end{block}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Equ's Solving Algorithm}
+
+  \begin{itemize}
+  \item The algorithm must terminate: Arden makes one equation smaller; 
+  substitution deletes one variable from the right-hand sides.\bigskip
+
+  \item We need to maintain the invariant that Arden is applicable
+  (if \smath{[] \not\in A} then \ldots):\medskip
+
+  \begin{center}\small
+  \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll}
+  \smath{R_1} & \smath{=} & \smath{R_1; b + R_2; b + \lambda;[]}\\
+  \smath{R_2} & \smath{=} & \smath{R_1; a + R_2; a}\\
+
+  & & & by Arden\\
+
+  \smath{R_1} & \smath{=} & \smath{R_1; b + R_2; b + \lambda;[]}\\
+  \smath{R_2} & \smath{=} & \smath{R_1; a\cdot a^\star}\\
+  \end{tabular}
+  \end{center}
+
+  \end{itemize}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Equ's Solving Algorithm}
+
+  \begin{itemize}
+  \item The algorithm is still a bit hairy to formalise because of our set-representation
+  for equations:
+  
+  \begin{center}
+  \begin{tabular}{ll}
+  \smath{\big\{ (X, \{(Y_1, r_1), (Y_2, r_2), \ldots\}),}\\
+  \mbox{}\hspace{5mm}\smath{\ldots}\\
+  & \smath{\big\}}
+  \end{tabular}
+  \end{center}\bigskip\pause
+
+  \small
+  they are generated from \smath{U\!N\!IV /\!/ \approx_L}
+
+  \end{itemize}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Other Direction}
+
+  One has to prove
+
+  \begin{center}
+  \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})}
+  \end{center}
+
+  by induction on \smath{r}. Not trivial, but after a bit 
+  of thinking (by Chunhan), one can prove that if
+
+  \begin{center}
+  \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1)})}\hspace{5mm}
+  \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_2)})}
+  \end{center}
+
+  then
+
+  \begin{center}
+  \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1) \,\cup\, \mathbb{L}(r_2)})}
+  \end{center}
+  
+  
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE What Have We Achieved?}
+
+  \begin{itemize}
+  \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_L) \;\Leftrightarrow\; L\; \text{is regular}}
+  \bigskip\pause
+  \item regular languages are closed under complementation; this is easy
+  \begin{center}
+  \smath{U\!N\!IV /\!/ \approx_L \;\;=\;\; U\!N\!IV /\!/ \approx_{-L}}
+  \end{center}\pause\bigskip
+  
+  \item if you want to do regular expression matching (see Scott's paper)\pause\bigskip
+
+  \item I cannot yet give definite numbers
+  \end{itemize}
+
+  \only<2>{
+  \begin{textblock}{10}(4,14)
+  \small
+  \smath{x \approx_{L} y \,\dn\, \forall z.\; x @ z \in L \Leftrightarrow y @ z \in L}
+  \end{textblock}
+  }
+
+  
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Examples}
+
+  \begin{itemize}
+  \item \smath{L \equiv \Sigma^\star 0 \Sigma} is regular
+  \begin{quote}\small
+  \begin{tabular}{lcl}
+  \smath{A_1} & \smath{=} & \smath{\Sigma^\star 00}\\
+  \smath{A_2} & \smath{=} & \smath{\Sigma^\star 01}\\
+  \smath{A_3} & \smath{=} & \smath{\Sigma^\star 10 \cup \{0\}}\\
+  \smath{A_4} & \smath{=} & \smath{\Sigma^\star 11 \cup \{1\} \cup \{[]\}}\\
+  \end{tabular}
+  \end{quote}
+
+  \item \smath{L \equiv \{ 0^n 1^n \,|\, n \ge 0\}} is not regular
+  \begin{quote}\small
+  \begin{tabular}{lcl}
+  \smath{B_0} & \smath{=} & \smath{\{0^n 1^n \,|\,     n \ge 0\}}\\
+  \smath{B_1} & \smath{=} & \smath{\{0^n 1^{(n-1)} \,|\, n \ge 1\}}\\
+  \smath{B_2} & \smath{=} & \smath{\{0^n 1^{(n-2)} \,|\, n \ge 2\}}\\
+  \smath{B_3} & \smath{=} & \smath{\{0^n 1^{(n-3)} \,|\, n \ge 3\}}\\
+              & \smath{\vdots} &\\
+  \end{tabular}
+  \end{quote}
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE What We Have Not Achieved}
+
+  \begin{itemize}
+  \item regular expressions are not good if you look for a minimal
+  one for a language (DFAs have this notion)\pause\bigskip
+
+  \item Is there anything to be said about context free languages:\medskip
+  
+  \begin{quote}
+  A context free language is where every string can be recognised by
+  a pushdown automaton.
+  \end{quote}
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE Conclusion}
+
+  \begin{itemize}
+  \item on balance regular expression are superior 
+  to DFAs, in my opinion\bigskip
+
+  \item I cannot think of a reason to not teach regular languages
+  to students this way (!?)\bigskip
+
+  \item I have never ever seen a proof of Myhill-Nerode based on
+  regular expressions\bigskip
+
+  \item no application, but lots of fun\bigskip
+
+  \item great source of examples
+
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+(*<*)
+end
+(*>*)
\ No newline at end of file
Binary file Slides/document/chunhan.jpg has changed
--- a/Slides/document/root.tex	Mon Aug 22 12:49:27 2011 +0000
+++ b/Slides/document/root.tex	Tue Aug 23 00:24:10 2011 +0000
@@ -9,6 +9,7 @@
 \usepackage{proof}
 \usepackage{ifthen}
 \usepackage{animate}
+\usepackage{ulem}
 \usepackage{tikz}
 \usepackage{pgf}
 \usetikzlibrary{arrows}
@@ -44,6 +45,7 @@
 % general math stuff
 \newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions
 \newcommand{\dnn}{\stackrel{\mbox{\Large def}}{=}}
+\renewcommand{\isasymequiv}{$\dn$}
 \renewcommand{\emptyset}{\varnothing}% nice round empty set
 \renewcommand{\Gamma}{\varGamma} 
 \DeclareRobustCommand{\flqq}{\mbox{\guillemotleft}}
Binary file Slides/document/xingyuan.jpg has changed