--- a/Myhill_1.thy Sun Jan 30 17:24:37 2011 +0000
+++ b/Myhill_1.thy Mon Jan 31 12:54:31 2011 +0000
@@ -34,7 +34,7 @@
definition Seq :: "lang \<Rightarrow> lang \<Rightarrow> lang" (infixr ";;" 100)
where
- "L1 ;; L2 = {s1 @ s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}"
+ "A ;; B = {s\<^isub>1 @ s\<^isub>2 | s\<^isub>1 s\<^isub>2. s\<^isub>1 \<in> A \<and> s\<^isub>2 \<in> B}"
text {*
Transitive closure of language @{text "L"}.
@@ -691,7 +691,7 @@
have "finite ((snd \<circ> the_Trn) ` items_of rhs X)" using finite_items_of[OF finite] by auto
thus ?thesis
apply (auto simp:rexp_of_def Seq_def items_of_def)
- apply (rule_tac x = s1 in exI, rule_tac x = s2 in exI, auto)
+ apply (rule_tac x = "s\<^isub>1" in exI, rule_tac x = "s\<^isub>2" in exI, auto)
by (rule_tac x= "Trn X r" in exI, auto simp:Seq_def)
qed
@@ -707,7 +707,9 @@
lemma [simp]:
" L (attach_rexp r xb) = L xb ;; L r"
apply (cases xb, auto simp:Seq_def)
-by (rule_tac x = "s1 @ s1a" in exI, rule_tac x = s2a in exI,auto simp:Seq_def)
+apply(rule_tac x = "s\<^isub>1 @ s\<^isub>1'" in exI, rule_tac x = "s\<^isub>2'" in exI)
+apply(auto simp: Seq_def)
+done
lemma lang_of_append_rhs:
"L (append_rhs_rexp rhs r) = L rhs ;; L r"
@@ -1211,8 +1213,8 @@
by (auto simp:finals_def quotient_def)
theorem hard_direction:
- assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
- shows "\<exists> (reg::rexp). Lang = L reg"
+ assumes finite_CS: "finite (UNIV // \<approx>Lang)"
+ shows "\<exists> (r::rexp). Lang = L r"
proof -
have "\<forall> X \<in> (UNIV // (\<approx>Lang)). \<exists> (reg::rexp). X = L reg"
using finite_CS every_eqcl_has_reg by blast
--- a/Paper/Paper.thy Sun Jan 30 17:24:37 2011 +0000
+++ b/Paper/Paper.thy Mon Jan 31 12:54:31 2011 +0000
@@ -5,13 +5,18 @@
declare [[show_question_marks = false]]
+consts
+ REL :: "(string \<times> string) \<Rightarrow> bool"
+
+
notation (latex output)
str_eq_rel ("\<approx>\<^bsub>_\<^esub>") and
Seq (infixr "\<cdot>" 100) and
Star ("_\<^bsup>\<star>\<^esup>") and
pow ("_\<^bsup>_\<^esup>" [100, 100] 100) and
- Suc ("_+1" [100] 100) and
- quotient ("_ \<^raw:\ensuremath{\sslash}> _ " [90, 90] 90)
+ Suc ("_+1>" [100] 100) and
+ quotient ("_ \<^raw:\ensuremath{\!\sslash\!}> _" [90, 90] 90) and
+ REL ("\<approx>")
(*>*)
@@ -19,12 +24,53 @@
section {* Introduction *}
text {*
+
+ Therefore instead of defining a regular language as being one where there exists an
+ automata that regognises all of its strings, we define
+
+ \begin{definition}[A Regular Language]
+ A language @{text A} is regular, if there is a regular expression that matches all
+ strings of @{text "A"}.
+ \end{definition}
+
+ \noindent
+ {\bf Contributions:} A proof of the Myhil-Nerode Theorem based on regular expressions. The
+ finiteness part of this theorem is proved using tagging-functions (which to our knowledge
+ are novel in this context).
*}
section {* Preliminaries *}
text {*
+ Strings in Isabelle/HOL are lists of characters. Therefore the
+ \emph{empty string} is represented by the empty list, written @{term "[]"}. \emph{Languages} are sets of
+ strings. The language containing all strings is abbreviated as @{term "UNIV::string set"}
+ and the notation for the quotient of a language @{text A} according to a relation @{term REL} is
+ @{term "A // REL"}.
+
+ Set operations
+
+ \begin{center}
+ @{thm Seq_def}
+ \end{center}
+
+ \noindent
+ where @{text "@"} is the usual list-append operation.
+
+ \noindent
+ Regular expressions are defined as the following datatype
+
+ \begin{center}
+ @{text r} @{text "::="}
+ @{term NULL}\hspace{1.5mm}@{text"|"}\hspace{1.5mm}
+ @{term EMPTY}\hspace{1.5mm}@{text"|"}\hspace{1.5mm}
+ @{term "CHAR c"}\hspace{1.5mm}@{text"|"}\hspace{1.5mm}
+ @{term "SEQ r r"}\hspace{1.5mm}@{text"|"}\hspace{1.5mm}
+ @{term "ALT r r"}\hspace{1.5mm}@{text"|"}\hspace{1.5mm}
+ @{term "STAR r"}
+ \end{center}
+
Central to our proof will be the solution of equational systems
involving regular expressions. For this we will use the following ``reverse''
version of Arden's lemma.
@@ -63,13 +109,22 @@
\end{proof}
*}
-section {* Regular expressions have finitely many partitions *}
+section {* Finite Partitions Imply Regularity of a Language *}
+
+text {*
+ \begin{theorem}
+ Given a language @{text A}.
+ @{thm[mode=IfThen] hard_direction[where Lang="A"]}
+ \end{theorem}
+*}
+
+section {* Regular Expressions Generate Finitely Many Partitions *}
text {*
- \begin{lemma}
+ \begin{theorem}
Given @{text "r"} is a regular expressions, then @{thm rexp_imp_finite}.
- \end{lemma}
+ \end{theorem}
\begin{proof}
By induction on the structure of @{text r}. The cases for @{const NULL}, @{const EMPTY}
@@ -83,13 +138,12 @@
\end{tabular}
\end{center}
-
-
\end{proof}
-
*}
+section {* Conclusion and Related Work *}
+
(*<*)
end
(*>*)
\ No newline at end of file
--- a/Paper/document/root.tex Sun Jan 30 17:24:37 2011 +0000
+++ b/Paper/document/root.tex Mon Jan 31 12:54:31 2011 +0000
@@ -24,7 +24,8 @@
\begin{document}
-\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular Expressions}
+\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular
+ Expressions (Proof Pearl)}
\author{Chunhan Wu\inst{1} \and Xingjuan Zhang\inst{1} \and Christian Urban\inst{2}}
\institute{PLA University, China \and TU Munich, Germany}
\maketitle
Binary file tphols-2011/myhill.pdf has changed