set -> language
authorurbanc
Thu, 15 Sep 2011 12:46:00 +0000
changeset 256 acbae3a11fb5
parent 255 871df606526a
child 257 f512026d5d6e
set -> language
Journal/Paper.thy
--- a/Journal/Paper.thy	Wed Sep 14 21:14:50 2011 +0000
+++ b/Journal/Paper.thy	Thu Sep 15 12:46:00 2011 +0000
@@ -2154,7 +2154,7 @@
   is restricted to 2-letter alphabets,
   which means also our formalisation of Theorem~\ref{subseqreg} is `tainted' with 
   this constraint. However our methodology is applicable to any alphabet of finite size.} 
-  Higman's Lemma allows us to infer that every set @{text A} of antichains, satisfying
+  Higman's Lemma allows us to infer that every language @{text A} of antichains, satisfying
 
   \begin{equation}\label{higman}
   @{text "\<forall>x, y \<in> A."}~@{term "x \<noteq> y \<longrightarrow> \<not>(x \<preceq> y) \<and> \<not>(y \<preceq> x)"}