--- a/Slides/Slides1.thy Wed Aug 24 07:24:22 2011 +0000
+++ b/Slides/Slides1.thy Wed Aug 24 08:03:42 2011 +0000
@@ -13,7 +13,9 @@
text_raw {*
%\renewcommand{\slidecaption}{Cambridge, 9 November 2010}
\renewcommand{\slidecaption}{Nijmegen, 25 August 2011}
- \renewcommand{\ULthickness}{2pt}
+ %%\renewcommand{\ULthickness}{2pt}
+ \newcommand{\sout}[1]{\tikz[baseline=(X.base), inner sep=0pt, outer sep=0pt]
+ \node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}
@@ -32,7 +34,6 @@
\end{tabular}
\end{center}
-
\begin{center}
\small joint work with Chunhan Wu and Xingyuan Zhang from the PLA
University of Science and Technology in Nanjing
@@ -58,8 +59,8 @@
\begin{textblock}{12.9}(1.5,3.2)
\begin{block}{}
\begin{minipage}{12.4cm}\raggedright
- \large I want to teach \alert{students}\\
- with theorem provers (induction).
+ \large I want to teach \alert{students} with\\
+ theorem provers (especially inductions).
\end{minipage}
\end{block}
\end{textblock}\pause
@@ -68,8 +69,7 @@
\begin{itemize}
\item \only<2>{\smath{\text{fib}}, \smath{\text{even}} and \smath{\text{odd}}}%
- \only<3->{\textcolor{red}{\sout{\textcolor{black}%
- {\smath{\text{fib}}, \smath{\text{even}} and \smath{\text{odd}}}}}}\medskip
+ \only<3->{\sout{\smath{\text{fib}}, \smath{\text{even}} and \smath{\text{odd}}}}\medskip
\item<3-> formal language theory \\
\mbox{}\;\;@{text "\<Rightarrow>"} nice textbooks: Kozen, Hopcroft \& Ullman
\end{itemize}
@@ -217,7 +217,7 @@
\only<6->{A solution:\;\;\smath{\text{nat}} \;@{text "\<Rightarrow>"}\; state nodes\medskip}
- \only<7->{You have to \alert{\uline{rename}} states!}
+ \only<7->{You have to \alert{\underline{rename}} states!}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -261,7 +261,7 @@
{\bf Definition:}\smallskip\\
A language \smath{A} is \alert{regular}, provided there exists a\\
- regular expression that matches all strings of \smath{A}.
+ \alert{regular expression} that matches all strings of \smath{A}.
\end{minipage}
\end{block}
\end{textblock}\pause
@@ -273,7 +273,7 @@
\item pumping lemma\pause
\item closure under complementation\pause
\item \only<6>{regular expression matching}%
- \only<7->{\textcolor{red}{\sout{\textcolor{black}{regular expression matching}}}}
+ \only<7->{\sout{regular expression matching}}
\item<8-> most textbooks are about automata
\end{itemize}
@@ -291,8 +291,8 @@
\frametitle{\LARGE The Myhill-Nerode Theorem}
\begin{itemize}
- \item provides necessary and suf\!ficient conditions for a language
- being regular (pumping lemma only necessary)\medskip
+ \item provides necessary and suf\!ficient conditions\\ for a language
+ being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\medskip
\item will help with closure properties of regular languages\bigskip\pause
@@ -413,8 +413,7 @@
\begin{frame}[c]
\frametitle{\LARGE Systems of Equations}
- Inspired by a method of Brzozowski\;'64, we can build an equational system
- characterising the equivalence classes:
+ Inspired by a method of Brzozowski\;'64:\bigskip\bigskip
\begin{center}
\begin{tabular}{@ {\hspace{-20mm}}c}
@@ -447,10 +446,11 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*}
+
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
- \begin{frame}<1>[t]
+ \begin{frame}<1-2,4->[t]
\small
\begin{center}
@@ -465,87 +465,7 @@
\onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}}
& \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
\onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}}
- & \only<2>{\smath{R_1; a + R_2; a}}%
- \only<3->{\smath{R_1; a\cdot a^\star}}\\
-
- & & & \onslide<4->{by Arden}\\
-
- \onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}}
- & \onslide<4->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\
- \onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}}
- & \onslide<4->{\smath{R_1; a\cdot a^\star}}\\
-
- & & & \onslide<5->{by substitution}\\
-
- \onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}}
- & \onslide<5->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\
- \onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}}
- & \onslide<5->{\smath{R_1; a\cdot a^\star}}\\
-
- & & & \onslide<6->{by Arden}\\
-
- \onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}}
- & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
- \onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}}
- & \onslide<6->{\smath{R_1; a\cdot a^\star}}\\
-
- & & & \onslide<7->{by substitution}\\
-
- \onslide<7->{\smath{R_1}} & \onslide<7->{\smath{=}}
- & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\
- \onslide<7->{\smath{R_2}} & \onslide<7->{\smath{=}}
- & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star
- \cdot a\cdot a^\star}}\\
- \end{tabular}
- \end{center}
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}[c]
- \frametitle{\LARGE A Variant of Arden's Lemma}
-
- {\bf ``Reversed'' Arden's Lemma:}\medskip
-
- If \smath{[] \not\in A} then
- \begin{center}
- \smath{X = X; A + \text{something}}
- \end{center}
- has the (unique) solution
- \begin{center}
- \smath{X = \text{something} ; A^\star}
- \end{center}
-
-
- \end{frame}}
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-*}
-
-
-text_raw {*
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- \mode<presentation>{
- \begin{frame}<1->[t]
- \small
-
- \begin{center}
- \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll}
- \onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}}
- & \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
- \onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}}
- & \onslide<1->{\smath{R_1; a + R_2; a}}\\
-
- & & & \onslide<2->{by Arden}\\
-
- \onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}}
- & \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\
- \onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}}
- & \only<2>{\smath{R_1; a + R_2; a}}%
- \only<3->{\smath{R_1; a\cdot a^\star}}\\
+ & \only<2->{\smath{R_1; a\cdot a^\star}}\\
& & & \onslide<4->{by Arden}\\
@@ -719,7 +639,7 @@
\frametitle{\LARGE Conclusion}
\begin{itemize}
- \item We have never ever seen a proof of Myhill-Nerode based on
+ \item We have never seen a proof of Myhill-Nerode based on
regular expressions.\smallskip\pause
\item great source of examples (inductions)\smallskip\pause
--- a/Slides/document/root.tex Wed Aug 24 07:24:22 2011 +0000
+++ b/Slides/document/root.tex Wed Aug 24 08:03:42 2011 +0000
@@ -1,4 +1,5 @@
\usepackage{beamerthemeplaincu}
+%%\usepackage{ulem}
\usepackage[T1]{fontenc}
\usepackage{proof}
\usepackage[latin1]{inputenc}
@@ -9,7 +10,6 @@
\usepackage{proof}
\usepackage{ifthen}
\usepackage{animate}
-\usepackage{ulem}
\usepackage{tikz}
\usepackage{pgf}
\usetikzlibrary{arrows}