--- a/Slides/Slides1.thy Wed Aug 24 22:21:37 2011 +0000
+++ b/Slides/Slides1.thy Thu Aug 25 06:18:58 2011 +0000
@@ -23,7 +23,7 @@
\begin{tabular}{@ {}c@ {}}
\Large A Formalisation of the\\[-4mm]
\Large Myhill-Nerode Theorem based on\\[-4mm]
- \Large Regular Expressions\\[-4mm]
+ \Large \alert<2>{Regular Expressions}\\[-4mm]
\Large (Proof Pearl)\\[0mm]
\end{tabular}}
@@ -56,10 +56,10 @@
\begin{frame}[c]
\frametitle{}
- \begin{textblock}{12.9}(1.5,3.2)
+ \begin{textblock}{12.9}(1.5,2.0)
\begin{block}{}
\begin{minipage}{12.4cm}\raggedright
- \large I want to teach \alert{students} with
+ \large {\bf Motivation:}\\[2mm]I want to teach \alert{students} with
theorem\\ provers (especially for inductions).
\end{minipage}
\end{block}
@@ -215,9 +215,9 @@
\end{textblock}}
\medskip
- \only<6->{A solution:\;\;use \smath{\text{nat}} \;@{text "\<Rightarrow>"}\; state nodes\medskip}
+ \only<6->{\underline{A solution}:\;\;use \smath{\text{nat}} \;@{text "\<Rightarrow>"}\; state nodes\medskip}
- \only<7->{You have to \alert{\underline{rename}} states!}
+ \only<7->{You have to \alert{rename} states!}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -235,7 +235,7 @@
\end{center}
\begin{itemize}
- \item Kozen's paper proof of Myhill-Nerode:\\
+ \item Kozen's ``paper'' proof of Myhill-Nerode:\\
\hspace{2cm}requires absence of \alert{inaccessible states}
\end{itemize}\bigskip\bigskip
@@ -292,9 +292,7 @@
\begin{itemize}
\item provides necessary and suf\!ficient conditions\\ for a language
- being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\medskip
-
- \item will help with closure properties of regular languages\bigskip\pause
+ being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\bigskip
\item key is the equivalence relation:\smallskip
\begin{center}
@@ -340,11 +338,11 @@
\end{textblock}
\only<2->{%
- \begin{textblock}{5}(9.4,7.2)
+ \begin{textblock}{5}(9.1,7.2)
\begin{tikzpicture}
\node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm]
{@{text "\<lbrakk>x\<rbrakk>"}$_{\approx_{A}}$};
- \draw (0.9,-1.1) node {\begin{tabular}{l}equivalence class\end{tabular}};
+ \draw (0.9,-1.1) node {\begin{tabular}{l}an equivalence class\end{tabular}};
\end{tikzpicture}
\end{textblock}}
@@ -708,9 +706,9 @@
\item \alt<1>{\smath{\text{pders x r \mbox{$=$} pders y r}}}
- {\smath{\underbrace{\text{pders x r \mbox{$=$} pders y r}}_{R_1}}}
+ {\smath{\underbrace{\text{pders x r \mbox{$=$} pders y r}}_{R}}}
refines \textcolor{blue}{x $\approx_{{\cal L}(\text{r})}$ y}\\[16mm]\pause
- \item \smath{\text{finite} (U\!N\!IV /\!/ R_1)} \bigskip\pause
+ \item \smath{\text{finite} (U\!N\!IV /\!/ R)} \bigskip\pause
\item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}. Qed.
\end{itemize}
@@ -760,7 +758,7 @@
\end{block}
\end{minipage}\medskip\pause
- \small(\smath{A \dn \bigcup_n a^n})
+ \small(\smath{B \dn \bigcup_n a^n})
\end{quote}
\end{itemize}