--- a/Closures.thy Fri Sep 02 13:29:46 2011 +0000
+++ b/Closures.thy Fri Sep 02 13:30:17 2011 +0000
@@ -199,7 +199,7 @@
qed
lemma cofinite_regular:
- fixes A::"('a::finite list) set"
+ fixes A::"'a::finite lang"
assumes "finite (- A)"
shows "regular A"
proof -
@@ -278,9 +278,8 @@
def B\<equiv>"\<Union>n. {CHR ''a'' ^^^ n}"
have b: "infinite B"
unfolding infinite_iff_countable_subset
- apply(rule_tac x="\<lambda>n. CHR ''a'' ^^^ n" in exI)
- apply(auto simp add: inj_on_def B_def)
- done
+ unfolding inj_on_def B_def
+ by (rule_tac x="\<lambda>n. CHR ''a'' ^^^ n" in exI) (auto)
moreover
have "\<forall>x \<in> B. \<forall>y \<in> B. x \<noteq> y \<longrightarrow> \<not> (x \<approx>A y)"
apply(auto simp add: B_def A_def)