# HG changeset patch # User zhang # Date 1296737086 0 # Node ID 649ff0b8766deb0a999aab5f89290a0837cdb82d # Parent d94209ad2880a343d2b72b5d9cd2eac36dd6d80f Myhill_2.thy added diff -r d94209ad2880 -r 649ff0b8766d Myhill_2.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Myhill_2.thy Thu Feb 03 12:44:46 2011 +0000 @@ -0,0 +1,900 @@ +theory Myhill_2 + imports Myhill_1 +begin + +section {* Direction @{text "regular language \finite partition"} *} + +subsection {* The scheme*} + +text {* + The following convenient notation @{text "x \Lang y"} means: + string @{text "x"} and @{text "y"} are equivalent with respect to + language @{text "Lang"}. + *} + +definition + str_eq :: "string \ lang \ string \ bool" ("_ \_ _") +where + "x \Lang y \ (x, y) \ (\Lang)" + +text {* + The main lemma (@{text "rexp_imp_finite"}) is proved by a structural induction over regular expressions. + While base cases (cases for @{const "NULL"}, @{const "EMPTY"}, @{const "CHAR"}) are quite straight forward, + the inductive cases are rather involved. What we have when starting to prove these inductive caes is that + the partitions induced by the componet language are finite. The basic idea to show the finiteness of the + partition induced by the composite language is to attach a tag @{text "tag(x)"} to every string + @{text "x"}. The tags are made of equivalent classes from the component partitions. Let @{text "tag"} + be the tagging function and @{text "Lang"} be the composite language, it can be proved that + if strings with the same tag are equivalent with respect to @{text "Lang"}, expressed as: + \[ + @{text "tag(x) = tag(y) \ x \Lang y"} + \] + then the partition induced by @{text "Lang"} must be finite. There are two arguments for this. + The first goes as the following: + \begin{enumerate} + \item First, the tagging function @{text "tag"} induces an equivalent relation @{text "(=tag=)"} + (defiintion of @{text "f_eq_rel"} and lemma @{text "equiv_f_eq_rel"}). + \item It is shown that: if the range of @{text "tag"} (denoted @{text "range(tag)"}) is finite, + the partition given rise by @{text "(=tag=)"} is finite (lemma @{text "finite_eq_f_rel"}). + Since tags are made from equivalent classes from component partitions, and the inductive + hypothesis ensures the finiteness of these partitions, it is not difficult to prove + the finiteness of @{text "range(tag)"}. + \item It is proved that if equivalent relation @{text "R1"} is more refined than @{text "R2"} + (expressed as @{text "R1 \ R2"}), + and the partition induced by @{text "R1"} is finite, then the partition induced by @{text "R2"} + is finite as well (lemma @{text "refined_partition_finite"}). + \item The injectivity assumption @{text "tag(x) = tag(y) \ x \Lang y"} implies that + @{text "(=tag=)"} is more refined than @{text "(\Lang)"}. + \item Combining the points above, we have: the partition induced by language @{text "Lang"} + is finite (lemma @{text "tag_finite_imageD"}). + \end{enumerate} +*} + +definition + f_eq_rel ("=_=") +where + "(=f=) = {(x, y) | x y. f x = f y}" + +lemma equiv_f_eq_rel:"equiv UNIV (=f=)" + by (auto simp:equiv_def f_eq_rel_def refl_on_def sym_def trans_def) + +lemma finite_range_image: "finite (range f) \ finite (f ` A)" + by (rule_tac B = "{y. \x. y = f x}" in finite_subset, auto simp:image_def) + +lemma finite_eq_f_rel: + assumes rng_fnt: "finite (range tag)" + shows "finite (UNIV // (=tag=))" +proof - + let "?f" = "op ` tag" and ?A = "(UNIV // (=tag=))" + show ?thesis + proof (rule_tac f = "?f" and A = ?A in finite_imageD) + -- {* + The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}: + *} + show "finite (?f ` ?A)" + proof - + have "\ X. ?f X \ (Pow (range tag))" by (auto simp:image_def Pow_def) + moreover from rng_fnt have "finite (Pow (range tag))" by simp + ultimately have "finite (range ?f)" + by (auto simp only:image_def intro:finite_subset) + from finite_range_image [OF this] show ?thesis . + qed + next + -- {* + The injectivity of @{text "f"}-image is a consequence of the definition of @{text "(=tag=)"}: + *} + show "inj_on ?f ?A" + proof- + { fix X Y + assume X_in: "X \ ?A" + and Y_in: "Y \ ?A" + and tag_eq: "?f X = ?f Y" + have "X = Y" + proof - + from X_in Y_in tag_eq + obtain x y + where x_in: "x \ X" and y_in: "y \ Y" and eq_tg: "tag x = tag y" + unfolding quotient_def Image_def str_eq_rel_def + str_eq_def image_def f_eq_rel_def + apply simp by blast + with X_in Y_in show ?thesis + by (auto simp:quotient_def str_eq_rel_def str_eq_def f_eq_rel_def) + qed + } thus ?thesis unfolding inj_on_def by auto + qed + qed +qed + +lemma finite_image_finite: "\\ x \ A. f x \ B; finite B\ \ finite (f ` A)" + by (rule finite_subset [of _ B], auto) + +lemma refined_partition_finite: + fixes R1 R2 A + assumes fnt: "finite (A // R1)" + and refined: "R1 \ R2" + and eq1: "equiv A R1" and eq2: "equiv A R2" + shows "finite (A // R2)" +proof - + let ?f = "\ X. {R1 `` {x} | x. x \ X}" + and ?A = "(A // R2)" and ?B = "(A // R1)" + show ?thesis + proof(rule_tac f = ?f and A = ?A in finite_imageD) + show "finite (?f ` ?A)" + proof(rule finite_subset [of _ "Pow ?B"]) + from fnt show "finite (Pow (A // R1))" by simp + next + from eq2 + show " ?f ` A // R2 \ Pow ?B" + unfolding image_def Pow_def quotient_def + apply auto + by (rule_tac x = xb in bexI, simp, + unfold equiv_def sym_def refl_on_def, blast) + qed + next + show "inj_on ?f ?A" + proof - + { fix X Y + assume X_in: "X \ ?A" and Y_in: "Y \ ?A" + and eq_f: "?f X = ?f Y" (is "?L = ?R") + have "X = Y" using X_in + proof(rule quotientE) + fix x + assume "X = R2 `` {x}" and "x \ A" with eq2 + have x_in: "x \ X" + unfolding equiv_def quotient_def refl_on_def by auto + with eq_f have "R1 `` {x} \ ?R" by auto + then obtain y where + y_in: "y \ Y" and eq_r: "R1 `` {x} = R1 ``{y}" by auto + have "(x, y) \ R1" + proof - + from x_in X_in y_in Y_in eq2 + have "x \ A" and "y \ A" + unfolding equiv_def quotient_def refl_on_def by auto + from eq_equiv_class_iff [OF eq1 this] and eq_r + show ?thesis by simp + qed + with refined have xy_r2: "(x, y) \ R2" by auto + from quotient_eqI [OF eq2 X_in Y_in x_in y_in this] + show ?thesis . + qed + } thus ?thesis by (auto simp:inj_on_def) + qed + qed +qed + +lemma equiv_lang_eq: "equiv UNIV (\Lang)" + unfolding equiv_def str_eq_rel_def sym_def refl_on_def trans_def + by blast + +lemma tag_finite_imageD: + fixes tag + assumes rng_fnt: "finite (range tag)" + -- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *} + and same_tag_eqvt: "\ m n. tag m = tag (n::string) \ m \Lang n" + -- {* And strings with same tag are equivalent *} + shows "finite (UNIV // (\Lang))" +proof - + let ?R1 = "(=tag=)" + show ?thesis + proof(rule_tac refined_partition_finite [of _ ?R1]) + from finite_eq_f_rel [OF rng_fnt] + show "finite (UNIV // =tag=)" . + next + from same_tag_eqvt + show "(=tag=) \ (\Lang)" + by (auto simp:f_eq_rel_def str_eq_def) + next + from equiv_f_eq_rel + show "equiv UNIV (=tag=)" by blast + next + from equiv_lang_eq + show "equiv UNIV (\Lang)" by blast + qed +qed + +text {* + A more concise, but less intelligible argument for @{text "tag_finite_imageD"} + is given as the following. The basic idea is still using standard library + lemma @{thm [source] "finite_imageD"}: + \[ + @{thm "finite_imageD" [no_vars]} + \] + which says: if the image of injective function @{text "f"} over set @{text "A"} is + finite, then @{text "A"} must be finte, as we did in the lemmas above. + *} + +lemma + fixes tag + assumes rng_fnt: "finite (range tag)" + -- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *} + and same_tag_eqvt: "\ m n. tag m = tag (n::string) \ m \Lang n" + -- {* And strings with same tag are equivalent *} + shows "finite (UNIV // (\Lang))" + -- {* Then the partition generated by @{text "(\Lang)"} is finite. *} +proof - + -- {* The particular @{text "f"} and @{text "A"} used in @{thm [source] "finite_imageD"} are:*} + let "?f" = "op ` tag" and ?A = "(UNIV // \Lang)" + show ?thesis + proof (rule_tac f = "?f" and A = ?A in finite_imageD) + -- {* + The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}: + *} + show "finite (?f ` ?A)" + proof - + have "\ X. ?f X \ (Pow (range tag))" by (auto simp:image_def Pow_def) + moreover from rng_fnt have "finite (Pow (range tag))" by simp + ultimately have "finite (range ?f)" + by (auto simp only:image_def intro:finite_subset) + from finite_range_image [OF this] show ?thesis . + qed + next + -- {* + The injectivity of @{text "f"} is the consequence of assumption @{text "same_tag_eqvt"}: + *} + show "inj_on ?f ?A" + proof- + { fix X Y + assume X_in: "X \ ?A" + and Y_in: "Y \ ?A" + and tag_eq: "?f X = ?f Y" + have "X = Y" + proof - + from X_in Y_in tag_eq + obtain x y where x_in: "x \ X" and y_in: "y \ Y" and eq_tg: "tag x = tag y" + unfolding quotient_def Image_def str_eq_rel_def str_eq_def image_def + apply simp by blast + from same_tag_eqvt [OF eq_tg] have "x \Lang y" . + with X_in Y_in x_in y_in + show ?thesis by (auto simp:quotient_def str_eq_rel_def str_eq_def) + qed + } thus ?thesis unfolding inj_on_def by auto + qed + qed +qed + +subsection {* The proof*} + +text {* + Each case is given in a separate section, as well as the final main lemma. Detailed explainations accompanied by + illustrations are given for non-trivial cases. + + For ever inductive case, there are two tasks, the easier one is to show the range finiteness of + of the tagging function based on the finiteness of component partitions, the + difficult one is to show that strings with the same tag are equivalent with respect to the + composite language. Suppose the composite language be @{text "Lang"}, tagging function be + @{text "tag"}, it amounts to show: + \[ + @{text "tag(x) = tag(y) \ x \Lang y"} + \] + expanding the definition of @{text "\Lang"}, it amounts to show: + \[ + @{text "tag(x) = tag(y) \ (\ z. x@z \ Lang \ y@z \ Lang)"} + \] + Because the assumed tag equlity @{text "tag(x) = tag(y)"} is symmetric, + it is suffcient to show just one direction: + \[ + @{text "\ x y z. \tag(x) = tag(y); x@z \ Lang\ \ y@z \ Lang"} + \] + This is the pattern followed by every inductive case. + *} + +subsubsection {* The base case for @{const "NULL"} *} + +lemma quot_null_eq: + shows "(UNIV // \{}) = ({UNIV}::lang set)" + unfolding quotient_def Image_def str_eq_rel_def by auto + +lemma quot_null_finiteI [intro]: + shows "finite ((UNIV // \{})::lang set)" +unfolding quot_null_eq by simp + + +subsubsection {* The base case for @{const "EMPTY"} *} + + +lemma quot_empty_subset: + "UNIV // (\{[]}) \ {{[]}, UNIV - {[]}}" +proof + fix x + assume "x \ UNIV // \{[]}" + then obtain y where h: "x = {z. (y, z) \ \{[]}}" + unfolding quotient_def Image_def by blast + show "x \ {{[]}, UNIV - {[]}}" + proof (cases "y = []") + case True with h + have "x = {[]}" by (auto simp: str_eq_rel_def) + thus ?thesis by simp + next + case False with h + have "x = UNIV - {[]}" by (auto simp: str_eq_rel_def) + thus ?thesis by simp + qed +qed + +lemma quot_empty_finiteI [intro]: + shows "finite (UNIV // (\{[]}))" +by (rule finite_subset[OF quot_empty_subset]) (simp) + + +subsubsection {* The base case for @{const "CHAR"} *} + +lemma quot_char_subset: + "UNIV // (\{[c]}) \ {{[]},{[c]}, UNIV - {[], [c]}}" +proof + fix x + assume "x \ UNIV // \{[c]}" + then obtain y where h: "x = {z. (y, z) \ \{[c]}}" + unfolding quotient_def Image_def by blast + show "x \ {{[]},{[c]}, UNIV - {[], [c]}}" + proof - + { assume "y = []" hence "x = {[]}" using h + by (auto simp:str_eq_rel_def) + } moreover { + assume "y = [c]" hence "x = {[c]}" using h + by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def) + } moreover { + assume "y \ []" and "y \ [c]" + hence "\ z. (y @ z) \ [c]" by (case_tac y, auto) + moreover have "\ p. (p \ [] \ p \ [c]) = (\ q. p @ q \ [c])" + by (case_tac p, auto) + ultimately have "x = UNIV - {[],[c]}" using h + by (auto simp add:str_eq_rel_def) + } ultimately show ?thesis by blast + qed +qed + +lemma quot_char_finiteI [intro]: + shows "finite (UNIV // (\{[c]}))" +by (rule finite_subset[OF quot_char_subset]) (simp) + + +subsubsection {* The inductive case for @{const ALT} *} + +definition + tag_str_ALT :: "lang \ lang \ string \ (lang \ lang)" +where + "tag_str_ALT L1 L2 = (\x. (\L1 `` {x}, \L2 `` {x}))" + +lemma quot_union_finiteI [intro]: + fixes L1 L2::"lang" + assumes finite1: "finite (UNIV // \L1)" + and finite2: "finite (UNIV // \L2)" + shows "finite (UNIV // \(L1 \ L2))" +proof (rule_tac tag = "tag_str_ALT L1 L2" in tag_finite_imageD) + show "\x y. tag_str_ALT L1 L2 x = tag_str_ALT L1 L2 y \ x \(L1 \ L2) y" + unfolding tag_str_ALT_def + unfolding str_eq_def + unfolding Image_def + unfolding str_eq_rel_def + by auto +next + have *: "finite ((UNIV // \L1) \ (UNIV // \L2))" + using finite1 finite2 by auto + show "finite (range (tag_str_ALT L1 L2))" + unfolding tag_str_ALT_def + apply(rule finite_subset[OF _ *]) + unfolding quotient_def + by auto +qed + +subsubsection {* The inductive case for @{text "SEQ"}*} + +text {* + For case @{const "SEQ"}, the language @{text "L"} is @{text "L\<^isub>1 ;; L\<^isub>2"}. + Given @{text "x @ z \ L\<^isub>1 ;; L\<^isub>2"}, according to the defintion of @{text " L\<^isub>1 ;; L\<^isub>2"}, + string @{text "x @ z"} can be splitted with the prefix in @{text "L\<^isub>1"} and suffix in @{text "L\<^isub>2"}. + The split point can either be in @{text "x"} (as shown in Fig. \ref{seq_first_split}), + or in @{text "z"} (as shown in Fig. \ref{seq_snd_split}). Whichever way it goes, the structure + on @{text "x @ z"} cn be transfered faithfully onto @{text "y @ z"} + (as shown in Fig. \ref{seq_trans_first_split} and \ref{seq_trans_snd_split}) with the the help of the assumed + tag equality. The following tag function @{text "tag_str_SEQ"} is such designed to facilitate + such transfers and lemma @{text "tag_str_SEQ_injI"} formalizes the informal argument above. The details + of structure transfer will be given their. +\input{fig_seq} + + *} + +definition + tag_str_SEQ :: "lang \ lang \ string \ (lang \ lang set)" +where + "tag_str_SEQ L1 L2 = + (\x. (\L1 `` {x}, {(\L2 `` {x - xa}) | xa. xa \ x \ xa \ L1}))" + +text {* The following is a techical lemma which helps to split the @{text "x @ z \ L\<^isub>1 ;; L\<^isub>2"} mentioned above.*} + +lemma append_seq_elim: + assumes "x @ y \ L\<^isub>1 ;; L\<^isub>2" + shows "(\ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ y \ L\<^isub>2) \ + (\ ya \ y. (x @ ya) \ L\<^isub>1 \ (y - ya) \ L\<^isub>2)" +proof- + from assms obtain s\<^isub>1 s\<^isub>2 + where eq_xys: "x @ y = s\<^isub>1 @ s\<^isub>2" + and in_seq: "s\<^isub>1 \ L\<^isub>1 \ s\<^isub>2 \ L\<^isub>2" + by (auto simp:Seq_def) + from app_eq_dest [OF eq_xys] + have + "(x \ s\<^isub>1 \ (s\<^isub>1 - x) @ s\<^isub>2 = y) \ (s\<^isub>1 \ x \ (x - s\<^isub>1) @ y = s\<^isub>2)" + (is "?Split1 \ ?Split2") . + moreover have "?Split1 \ \ ya \ y. (x @ ya) \ L\<^isub>1 \ (y - ya) \ L\<^isub>2" + using in_seq by (rule_tac x = "s\<^isub>1 - x" in exI, auto elim:prefixE) + moreover have "?Split2 \ \ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ y \ L\<^isub>2" + using in_seq by (rule_tac x = s\<^isub>1 in exI, auto) + ultimately show ?thesis by blast +qed + + +lemma tag_str_SEQ_injI: + fixes v w + assumes eq_tag: "tag_str_SEQ L\<^isub>1 L\<^isub>2 v = tag_str_SEQ L\<^isub>1 L\<^isub>2 w" + shows "v \(L\<^isub>1 ;; L\<^isub>2) w" +proof- + -- {* As explained before, a pattern for just one direction needs to be dealt with:*} + { fix x y z + assume xz_in_seq: "x @ z \ L\<^isub>1 ;; L\<^isub>2" + and tag_xy: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y" + have"y @ z \ L\<^isub>1 ;; L\<^isub>2" + proof- + -- {* There are two ways to split @{text "x@z"}: *} + from append_seq_elim [OF xz_in_seq] + have "(\ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ z \ L\<^isub>2) \ + (\ za \ z. (x @ za) \ L\<^isub>1 \ (z - za) \ L\<^isub>2)" . + -- {* It can be shown that @{text "?thesis"} holds in either case: *} + moreover { + -- {* The case for the first split:*} + fix xa + assume h1: "xa \ x" and h2: "xa \ L\<^isub>1" and h3: "(x - xa) @ z \ L\<^isub>2" + -- {* The following subgoal implements the structure transfer:*} + obtain ya + where "ya \ y" + and "ya \ L\<^isub>1" + and "(y - ya) @ z \ L\<^isub>2" + proof - + -- {* + \begin{minipage}{0.8\textwidth} + By expanding the definition of + @{thm [display] "tag_xy"} + and extracting the second compoent, we get: + \end{minipage} + *} + have "{\L\<^isub>2 `` {x - xa} |xa. xa \ x \ xa \ L\<^isub>1} = + {\L\<^isub>2 `` {y - ya} |ya. ya \ y \ ya \ L\<^isub>1}" (is "?Left = ?Right") + using tag_xy unfolding tag_str_SEQ_def by simp + -- {* Since @{thm "h1"} and @{thm "h2"} hold, it is not difficult to show: *} + moreover have "\L\<^isub>2 `` {x - xa} \ ?Left" using h1 h2 by auto + -- {* + \begin{minipage}{0.7\textwidth} + Through tag equality, equivalent class @{term "\L\<^isub>2 `` {x - xa}"} also + belongs to the @{text "?Right"}: + \end{minipage} + *} + ultimately have "\L\<^isub>2 `` {x - xa} \ ?Right" by simp + -- {* From this, the counterpart of @{text "xa"} in @{text "y"} is obtained:*} + then obtain ya + where eq_xya: "\L\<^isub>2 `` {x - xa} = \L\<^isub>2 `` {y - ya}" + and pref_ya: "ya \ y" and ya_in: "ya \ L\<^isub>1" + by simp blast + -- {* It can be proved that @{text "ya"} has the desired property:*} + have "(y - ya)@z \ L\<^isub>2" + proof - + from eq_xya have "(x - xa) \L\<^isub>2 (y - ya)" + unfolding Image_def str_eq_rel_def str_eq_def by auto + with h3 show ?thesis unfolding str_eq_rel_def str_eq_def by simp + qed + -- {* Now, @{text "ya"} has all properties to be a qualified candidate:*} + with pref_ya ya_in + show ?thesis using that by blast + qed + -- {* From the properties of @{text "ya"}, @{text "y @ z \ L\<^isub>1 ;; L\<^isub>2"} is derived easily.*} + hence "y @ z \ L\<^isub>1 ;; L\<^isub>2" by (erule_tac prefixE, auto simp:Seq_def) + } moreover { + -- {* The other case is even more simpler: *} + fix za + assume h1: "za \ z" and h2: "(x @ za) \ L\<^isub>1" and h3: "z - za \ L\<^isub>2" + have "y @ za \ L\<^isub>1" + proof- + have "\L\<^isub>1 `` {x} = \L\<^isub>1 `` {y}" + using tag_xy unfolding tag_str_SEQ_def by simp + with h2 show ?thesis + unfolding Image_def str_eq_rel_def str_eq_def by auto + qed + with h1 h3 have "y @ z \ L\<^isub>1 ;; L\<^isub>2" + by (drule_tac A = L\<^isub>1 in seq_intro, auto elim:prefixE) + } + ultimately show ?thesis by blast + qed + } + -- {* + \begin{minipage}{0.8\textwidth} + @{text "?thesis"} is proved by exploiting the symmetry of + @{thm [source] "eq_tag"}: + \end{minipage} + *} + from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] + show ?thesis unfolding str_eq_def str_eq_rel_def by blast +qed + +lemma quot_seq_finiteI [intro]: + fixes L1 L2::"lang" + assumes fin1: "finite (UNIV // \L1)" + and fin2: "finite (UNIV // \L2)" + shows "finite (UNIV // \(L1 ;; L2))" +proof (rule_tac tag = "tag_str_SEQ L1 L2" in tag_finite_imageD) + show "\x y. tag_str_SEQ L1 L2 x = tag_str_SEQ L1 L2 y \ x \(L1 ;; L2) y" + by (rule tag_str_SEQ_injI) +next + have *: "finite ((UNIV // \L1) \ (Pow (UNIV // \L2)))" + using fin1 fin2 by auto + show "finite (range (tag_str_SEQ L1 L2))" + unfolding tag_str_SEQ_def + apply(rule finite_subset[OF _ *]) + unfolding quotient_def + by auto +qed + +subsubsection {* The inductive case for @{const "STAR"} *} + +text {* + This turned out to be the trickiest case. The essential goal is + to proved @{text "y @ z \ L\<^isub>1*"} under the assumptions that @{text "x @ z \ L\<^isub>1*"} + and that @{text "x"} and @{text "y"} have the same tag. The reasoning goes as the following: + \begin{enumerate} + \item Since @{text "x @ z \ L\<^isub>1*"} holds, a prefix @{text "xa"} of @{text "x"} can be found + such that @{text "xa \ L\<^isub>1*"} and @{text "(x - xa)@z \ L\<^isub>1*"}, as shown in Fig. \ref{first_split}. + Such a prefix always exists, @{text "xa = []"}, for example, is one. + \item There could be many but fintie many of such @{text "xa"}, from which we can find the longest + and name it @{text "xa_max"}, as shown in Fig. \ref{max_split}. + \item The next step is to split @{text "z"} into @{text "za"} and @{text "zb"} such that + @{text "(x - xa_max) @ za \ L\<^isub>1"} and @{text "zb \ L\<^isub>1*"} as shown in Fig. \ref{last_split}. + Such a split always exists because: + \begin{enumerate} + \item Because @{text "(x - x_max) @ z \ L\<^isub>1*"}, it can always be splitted into prefix @{text "a"} + and suffix @{text "b"}, such that @{text "a \ L\<^isub>1"} and @{text "b \ L\<^isub>1*"}, + as shown in Fig. \ref{ab_split}. + \item But the prefix @{text "a"} CANNOT be shorter than @{text "x - xa_max"} + (as shown in Fig. \ref{ab_split_wrong}), becasue otherwise, + @{text "ma_max@a"} would be in the same kind as @{text "xa_max"} but with + a larger size, conflicting with the fact that @{text "xa_max"} is the longest. + \end{enumerate} + \item \label{tansfer_step} + By the assumption that @{text "x"} and @{text "y"} have the same tag, the structure on @{text "x @ z"} + can be transferred to @{text "y @ z"} as shown in Fig. \ref{trans_split}. The detailed steps are: + \begin{enumerate} + \item A @{text "y"}-prefix @{text "ya"} corresponding to @{text "xa"} can be found, + which satisfies conditions: @{text "ya \ L\<^isub>1*"} and @{text "(y - ya)@za \ L\<^isub>1"}. + \item Since we already know @{text "zb \ L\<^isub>1*"}, we get @{text "(y - ya)@za@zb \ L\<^isub>1*"}, + and this is just @{text "(y - ya)@z \ L\<^isub>1*"}. + \item With fact @{text "ya \ L\<^isub>1*"}, we finally get @{text "y@z \ L\<^isub>1*"}. + \end{enumerate} + \end{enumerate} + + The formal proof of lemma @{text "tag_str_STAR_injI"} faithfully follows this informal argument + while the tagging function @{text "tag_str_STAR"} is defined to make the transfer in step + \ref{ansfer_step} feasible. + + \input{fig_star} +*} + +definition + tag_str_STAR :: "lang \ string \ lang set" +where + "tag_str_STAR L1 = (\x. {\L1 `` {x - xa} | xa. xa < x \ xa \ L1\})" + +text {* A technical lemma. *} +lemma finite_set_has_max: "\finite A; A \ {}\ \ + (\ max \ A. \ a \ A. f a <= (f max :: nat))" +proof (induct rule:finite.induct) + case emptyI thus ?case by simp +next + case (insertI A a) + show ?case + proof (cases "A = {}") + case True thus ?thesis by (rule_tac x = a in bexI, auto) + next + case False + with insertI.hyps and False + obtain max + where h1: "max \ A" + and h2: "\a\A. f a \ f max" by blast + show ?thesis + proof (cases "f a \ f max") + assume "f a \ f max" + with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto) + next + assume "\ (f a \ f max)" + thus ?thesis using h2 by (rule_tac x = a in bexI, auto) + qed + qed +qed + + +text {* The following is a technical lemma.which helps to show the range finiteness of tag function. *} +lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}" +apply (induct x rule:rev_induct, simp) +apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \ {xs}") +by (auto simp:strict_prefix_def) + + +lemma tag_str_STAR_injI: + fixes v w + assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w" + shows "(v::string) \(L\<^isub>1\) w" +proof- + -- {* As explained before, a pattern for just one direction needs to be dealt with:*} + { fix x y z + assume xz_in_star: "x @ z \ L\<^isub>1\" + and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y" + have "y @ z \ L\<^isub>1\" + proof(cases "x = []") + -- {* + The degenerated case when @{text "x"} is a null string is easy to prove: + *} + case True + with tag_xy have "y = []" + by (auto simp add: tag_str_STAR_def strict_prefix_def) + thus ?thesis using xz_in_star True by simp + next + -- {* The nontrival case: + *} + case False + -- {* + \begin{minipage}{0.8\textwidth} + Since @{text "x @ z \ L\<^isub>1\"}, @{text "x"} can always be splitted + by a prefix @{text "xa"} together with its suffix @{text "x - xa"}, such + that both @{text "xa"} and @{text "(x - xa) @ z"} are in @{text "L\<^isub>1\"}, + and there could be many such splittings.Therefore, the following set @{text "?S"} + is nonempty, and finite as well: + \end{minipage} + *} + let ?S = "{xa. xa < x \ xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\}" + have "finite ?S" + by (rule_tac B = "{xa. xa < x}" in finite_subset, + auto simp:finite_strict_prefix_set) + moreover have "?S \ {}" using False xz_in_star + by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def) + -- {* \begin{minipage}{0.7\textwidth} + Since @{text "?S"} is finite, we can always single out the longest and name it @{text "xa_max"}: + \end{minipage} + *} + ultimately have "\ xa_max \ ?S. \ xa \ ?S. length xa \ length xa_max" + using finite_set_has_max by blast + then obtain xa_max + where h1: "xa_max < x" + and h2: "xa_max \ L\<^isub>1\" + and h3: "(x - xa_max) @ z \ L\<^isub>1\" + and h4:"\ xa < x. xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\ + \ length xa \ length xa_max" + by blast + -- {* + \begin{minipage}{0.8\textwidth} + By the equality of tags, the counterpart of @{text "xa_max"} among + @{text "y"}-prefixes, named @{text "ya"}, can be found: + \end{minipage} + *} + obtain ya + where h5: "ya < y" and h6: "ya \ L\<^isub>1\" + and eq_xya: "(x - xa_max) \L\<^isub>1 (y - ya)" + proof- + from tag_xy have "{\L\<^isub>1 `` {x - xa} |xa. xa < x \ xa \ L\<^isub>1\} = + {\L\<^isub>1 `` {y - xa} |xa. xa < y \ xa \ L\<^isub>1\}" (is "?left = ?right") + by (auto simp:tag_str_STAR_def) + moreover have "\L\<^isub>1 `` {x - xa_max} \ ?left" using h1 h2 by auto + ultimately have "\L\<^isub>1 `` {x - xa_max} \ ?right" by simp + thus ?thesis using that + apply (simp add:Image_def str_eq_rel_def str_eq_def) by blast + qed + -- {* + \begin{minipage}{0.8\textwidth} + The @{text "?thesis"}, @{prop "y @ z \ L\<^isub>1\"}, is a simple consequence + of the following proposition: + \end{minipage} + *} + have "(y - ya) @ z \ L\<^isub>1\" + proof- + -- {* The idea is to split the suffix @{text "z"} into @{text "za"} and @{text "zb"}, + such that: *} + obtain za zb where eq_zab: "z = za @ zb" + and l_za: "(y - ya)@za \ L\<^isub>1" and ls_zb: "zb \ L\<^isub>1\" + proof - + -- {* + \begin{minipage}{0.8\textwidth} + Since @{thm "h1"}, @{text "x"} can be splitted into + @{text "a"} and @{text "b"} such that: + \end{minipage} + *} + from h1 have "(x - xa_max) @ z \ []" + by (auto simp:strict_prefix_def elim:prefixE) + from star_decom [OF h3 this] + obtain a b where a_in: "a \ L\<^isub>1" + and a_neq: "a \ []" and b_in: "b \ L\<^isub>1\" + and ab_max: "(x - xa_max) @ z = a @ b" by blast + -- {* Now the candiates for @{text "za"} and @{text "zb"} are found:*} + let ?za = "a - (x - xa_max)" and ?zb = "b" + have pfx: "(x - xa_max) \ a" (is "?P1") + and eq_z: "z = ?za @ ?zb" (is "?P2") + proof - + -- {* + \begin{minipage}{0.8\textwidth} + Since @{text "(x - xa_max) @ z = a @ b"}, string @{text "(x - xa_max) @ z"} + can be splitted in two ways: + \end{minipage} + *} + have "((x - xa_max) \ a \ (a - (x - xa_max)) @ b = z) \ + (a < (x - xa_max) \ ((x - xa_max) - a) @ z = b)" + using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def) + moreover { + -- {* However, the undsired way can be refuted by absurdity: *} + assume np: "a < (x - xa_max)" + and b_eqs: "((x - xa_max) - a) @ z = b" + have "False" + proof - + let ?xa_max' = "xa_max @ a" + have "?xa_max' < x" + using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) + moreover have "?xa_max' \ L\<^isub>1\" + using a_in h2 by (simp add:star_intro3) + moreover have "(x - ?xa_max') @ z \ L\<^isub>1\" + using b_eqs b_in np h1 by (simp add:diff_diff_appd) + moreover have "\ (length ?xa_max' \ length xa_max)" + using a_neq by simp + ultimately show ?thesis using h4 by blast + qed } + -- {* Now it can be shown that the splitting goes the way we desired. *} + ultimately show ?P1 and ?P2 by auto + qed + hence "(x - xa_max)@?za \ L\<^isub>1" using a_in by (auto elim:prefixE) + -- {* Now candidates @{text "?za"} and @{text "?zb"} have all the requred properteis. *} + with eq_xya have "(y - ya) @ ?za \ L\<^isub>1" + by (auto simp:str_eq_def str_eq_rel_def) + with eq_z and b_in + show ?thesis using that by blast + qed + -- {* + @{text "?thesis"} can easily be shown using properties of @{text "za"} and @{text "zb"}: + *} + have "((y - ya) @ za) @ zb \ L\<^isub>1\" using l_za ls_zb by blast + with eq_zab show ?thesis by simp + qed + with h5 h6 show ?thesis + by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE) + qed + } + -- {* By instantiating the reasoning pattern just derived for both directions:*} + from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] + -- {* The thesis is proved as a trival consequence: *} + show ?thesis unfolding str_eq_def str_eq_rel_def by blast +qed + +lemma -- {* The oringal version with less explicit details. *} + fixes v w + assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w" + shows "(v::string) \(L\<^isub>1\) w" +proof- + -- {* + \begin{minipage}{0.8\textwidth} + According to the definition of @{text "\Lang"}, + proving @{text "v \(L\<^isub>1\) w"} amounts to + showing: for any string @{text "u"}, + if @{text "v @ u \ (L\<^isub>1\)"} then @{text "w @ u \ (L\<^isub>1\)"} and vice versa. + The reasoning pattern for both directions are the same, as derived + in the following: + \end{minipage} + *} + { fix x y z + assume xz_in_star: "x @ z \ L\<^isub>1\" + and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y" + have "y @ z \ L\<^isub>1\" + proof(cases "x = []") + -- {* + The degenerated case when @{text "x"} is a null string is easy to prove: + *} + case True + with tag_xy have "y = []" + by (auto simp:tag_str_STAR_def strict_prefix_def) + thus ?thesis using xz_in_star True by simp + next + -- {* + \begin{minipage}{0.8\textwidth} + The case when @{text "x"} is not null, and + @{text "x @ z"} is in @{text "L\<^isub>1\"}, + \end{minipage} + *} + case False + obtain x_max + where h1: "x_max < x" + and h2: "x_max \ L\<^isub>1\" + and h3: "(x - x_max) @ z \ L\<^isub>1\" + and h4:"\ xa < x. xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\ + \ length xa \ length x_max" + proof- + let ?S = "{xa. xa < x \ xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\}" + have "finite ?S" + by (rule_tac B = "{xa. xa < x}" in finite_subset, + auto simp:finite_strict_prefix_set) + moreover have "?S \ {}" using False xz_in_star + by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def) + ultimately have "\ max \ ?S. \ a \ ?S. length a \ length max" + using finite_set_has_max by blast + thus ?thesis using that by blast + qed + obtain ya + where h5: "ya < y" and h6: "ya \ L\<^isub>1\" and h7: "(x - x_max) \L\<^isub>1 (y - ya)" + proof- + from tag_xy have "{\L\<^isub>1 `` {x - xa} |xa. xa < x \ xa \ L\<^isub>1\} = + {\L\<^isub>1 `` {y - xa} |xa. xa < y \ xa \ L\<^isub>1\}" (is "?left = ?right") + by (auto simp:tag_str_STAR_def) + moreover have "\L\<^isub>1 `` {x - x_max} \ ?left" using h1 h2 by auto + ultimately have "\L\<^isub>1 `` {x - x_max} \ ?right" by simp + with that show ?thesis apply + (simp add:Image_def str_eq_rel_def str_eq_def) by blast + qed + have "(y - ya) @ z \ L\<^isub>1\" + proof- + from h3 h1 obtain a b where a_in: "a \ L\<^isub>1" + and a_neq: "a \ []" and b_in: "b \ L\<^isub>1\" + and ab_max: "(x - x_max) @ z = a @ b" + by (drule_tac star_decom, auto simp:strict_prefix_def elim:prefixE) + have "(x - x_max) \ a \ (a - (x - x_max)) @ b = z" + proof - + have "((x - x_max) \ a \ (a - (x - x_max)) @ b = z) \ + (a < (x - x_max) \ ((x - x_max) - a) @ z = b)" + using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def) + moreover { + assume np: "a < (x - x_max)" and b_eqs: " ((x - x_max) - a) @ z = b" + have "False" + proof - + let ?x_max' = "x_max @ a" + have "?x_max' < x" + using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) + moreover have "?x_max' \ L\<^isub>1\" + using a_in h2 by (simp add:star_intro3) + moreover have "(x - ?x_max') @ z \ L\<^isub>1\" + using b_eqs b_in np h1 by (simp add:diff_diff_appd) + moreover have "\ (length ?x_max' \ length x_max)" + using a_neq by simp + ultimately show ?thesis using h4 by blast + qed + } ultimately show ?thesis by blast + qed + then obtain za where z_decom: "z = za @ b" + and x_za: "(x - x_max) @ za \ L\<^isub>1" + using a_in by (auto elim:prefixE) + from x_za h7 have "(y - ya) @ za \ L\<^isub>1" + by (auto simp:str_eq_def str_eq_rel_def) + with b_in have "((y - ya) @ za) @ b \ L\<^isub>1\" by blast + with z_decom show ?thesis by auto + qed + with h5 h6 show ?thesis + by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE) + qed + } + -- {* By instantiating the reasoning pattern just derived for both directions:*} + from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] + -- {* The thesis is proved as a trival consequence: *} + show ?thesis unfolding str_eq_def str_eq_rel_def by blast +qed + +lemma quot_star_finiteI [intro]: + fixes L1::"lang" + assumes finite1: "finite (UNIV // \L1)" + shows "finite (UNIV // \(L1\))" +proof (rule_tac tag = "tag_str_STAR L1" in tag_finite_imageD) + show "\x y. tag_str_STAR L1 x = tag_str_STAR L1 y \ x \(L1\) y" + by (rule tag_str_STAR_injI) +next + have *: "finite (Pow (UNIV // \L1))" + using finite1 by auto + show "finite (range (tag_str_STAR L1))" + unfolding tag_str_STAR_def + apply(rule finite_subset[OF _ *]) + unfolding quotient_def + by auto +qed + +subsubsection{* The conclusion *} + +lemma rexp_imp_finite: + fixes r::"rexp" + shows "finite (UNIV // \(L r))" +by (induct r) (auto) + +end diff -r d94209ad2880 -r 649ff0b8766d tphols-2011/myhill.pdf Binary file tphols-2011/myhill.pdf has changed