# HG changeset patch # User urbanc # Date 1312298857 0 # Node ID 560712a29a36cd78a33fb4745964361d67fbe958 # Parent 97090fc7aa9fe850a65adfb0cef95dd81ced3371 a version of the proof which dispenses with the notion of string-subtraction diff -r 97090fc7aa9f -r 560712a29a36 Attic/Prefix_subtract.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Attic/Prefix_subtract.thy Tue Aug 02 15:27:37 2011 +0000 @@ -0,0 +1,60 @@ +theory Prefix_subtract + imports Main "~~/src/HOL/Library/List_Prefix" +begin + + +section {* A small theory of prefix subtraction *} + +text {* + The notion of @{text "prefix_subtract"} makes + the second direction of the Myhill-Nerode theorem + more readable. +*} + +instantiation list :: (type) minus +begin + +fun minus_list :: "'a list \ 'a list \ 'a list" +where + "minus_list [] xs = []" +| "minus_list (x#xs) [] = x#xs" +| "minus_list (x#xs) (y#ys) = (if x = y then minus_list xs ys else (x#xs))" + +instance by default + +end + +lemma [simp]: "x - [] = x" +by (induct x) (auto) + +lemma [simp]: "(x @ y) - x = y" +by (induct x) (auto) + +lemma [simp]: "x - x = []" +by (induct x) (auto) + +lemma [simp]: "x = z @ y \ x - z = y " +by (induct x) (auto) + +lemma diff_prefix: + "\c \ a - b; b \ a\ \ b @ c \ a" +by (auto elim: prefixE) + +lemma diff_diff_append: + "\c < a - b; b < a\ \ (a - b) - c = a - (b @ c)" +apply (clarsimp simp:strict_prefix_def) +by (drule diff_prefix, auto elim:prefixE) + +lemma append_eq_cases: + assumes a: "x @ y = m @ n" + shows "x \ m \ m \ x" +unfolding prefix_def using a +by (auto simp add: append_eq_append_conv2) + +lemma append_eq_dest: + assumes a: "x @ y = m @ n" + shows "(x \ m \ (m - x) @ n = y) \ (m \ x \ (x - m) @ y = n)" +using append_eq_cases[OF a] a +by (auto elim: prefixE) + +end diff -r 97090fc7aa9f -r 560712a29a36 Journal/Paper.thy --- a/Journal/Paper.thy Sun Jul 31 10:27:41 2011 +0000 +++ b/Journal/Paper.thy Tue Aug 02 15:27:37 2011 +0000 @@ -1,6 +1,6 @@ (*<*) theory Paper -imports "../Closures" +imports "../Closures" "../Attic/Prefix_subtract" begin declare [[show_question_marks = false]] @@ -1290,15 +1290,7 @@ % \noindent and \emph{string subtraction}: - % - \begin{center} - \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l} - @{text "[] - y"} & @{text "\"} & @{text "[]"}\\ - @{text "x - []"} & @{text "\"} & @{text "x"}\\ - @{text "cx - dy"} & @{text "\"} & @{text "if c = d then x - y else cx"} - \end{tabular} - \end{center} - % + \noindent where @{text c} and @{text d} are characters, and @{text x} and @{text y} are strings. diff -r 97090fc7aa9f -r 560712a29a36 Myhill_2.thy --- a/Myhill_2.thy Sun Jul 31 10:27:41 2011 +0000 +++ b/Myhill_2.thy Tue Aug 02 15:27:37 2011 +0000 @@ -1,6 +1,6 @@ theory Myhill_2 - imports Myhill_1 Prefix_subtract - "~~/src/HOL/Library/List_Prefix" + imports Myhill_1 + "~~/src/HOL/Library/List_Prefix" begin section {* Direction @{text "regular language \ finite partition"} *} @@ -28,7 +28,6 @@ apply(clarify, simp (no_asm_use)) by metis - lemma finite_eq_tag_rel: assumes rng_fnt: "finite (range tag)" shows "finite (UNIV // =tag=)" @@ -225,72 +224,71 @@ definition "Partitions s \ {(u, v). u @ v = s}" -lemma conc_elim: +lemma conc_partitions_elim: assumes "x \ A \ B" shows "\(u, v) \ Partitions x. u \ A \ v \ B" using assms unfolding conc_def Partitions_def by auto -lemma conc_intro: +lemma conc_partitions_intro: assumes "(u, v) \ Partitions x \ u \ A \ v \ B" shows "x \ A \ B" using assms unfolding conc_def Partitions_def by auto - -lemma y: - "\x \ A; x \A y\ \ y \ A" -apply(simp add: str_eq_def) -apply(drule_tac x="[]" in spec) -apply(simp) +lemma equiv_class_member: + assumes "x \ A" + and "\A `` {x} = \A `` {y}" + shows "y \ A" +using assms +apply(simp add: Image_def str_eq_def set_eq_iff) +apply(metis append_Nil2) done -definition - tag_Times3a :: "'a lang \ 'a lang \ 'a list \ 'a lang" + +abbreviation + tag_Times_1 :: "'a lang \ 'a lang \ 'a list \ 'a lang" where - "tag_Times3a A B \ (\x. \A `` {x})" + "tag_Times_1 A B \ \x. \A `` {x}" + +abbreviation + tag_Times_2 :: "'a lang \ 'a lang \ 'a list \ ('a lang \ 'a lang) set" +where + "tag_Times_2 A B \ \x. {(\A `` {u}, \B `` {v}) | u v. (u, v) \ Partitions x}" definition - tag_Times3b :: "'a lang \ 'a lang \ 'a list \ ('a lang \ 'a lang) set" + tag_Times :: "'a lang \ 'a lang \ 'a list \ 'a lang \ ('a lang \ 'a lang) set" where - "tag_Times3b A B \ - (\x. ({(\A `` {u}, \B `` {v}) | u v. (u, v) \ Partitions x}))" + "tag_Times A B \ \x. (tag_Times_1 A B x, tag_Times_2 A B x)" -definition - tag_Times3 :: "'a lang \ 'a lang \ 'a list \ 'a lang \ ('a lang \ 'a lang) set" -where - "tag_Times3 A B \ - (\x. (tag_Times3a A B x, tag_Times3b A B x))" - -lemma - assumes a: "tag_Times3a A B x = tag_Times3a A B y" - and b: "tag_Times3b A B x = tag_Times3b A B y" +lemma tag_Times_injI: + assumes a: "tag_Times_1 A B x = tag_Times_1 A B y" + and b: "tag_Times_2 A B x = tag_Times_2 A B y" and c: "x @ z \ A \ B" shows "y @ z \ A \ B" proof - from c obtain u v where h1: "(u, v) \ Partitions (x @ z)" and h2: "u \ A" and - h3: "v \ B" by (auto dest: conc_elim) + h3: "v \ B" by (auto dest: conc_partitions_elim) from h1 have "x @ z = u @ v" unfolding Partitions_def by simp then obtain us where "(x = u @ us \ us @ z = v) \ (x @ us = u \ z = us @ v)" by (auto simp add: append_eq_append_conv2) moreover { assume eq: "x = u @ us" "us @ z = v" - have "(\A `` {u}, \B `` {us}) \ tag_Times3b A B x" - unfolding tag_Times3b_def Partitions_def using eq by auto - then have "(\A `` {u}, \B `` {us}) \ tag_Times3b A B y" + have "(\A `` {u}, \B `` {us}) \ tag_Times_2 A B x" + unfolding Partitions_def using eq by auto + then have "(\A `` {u}, \B `` {us}) \ tag_Times_2 A B y" using b by simp then obtain u' us' where q1: "\A `` {u} = \A `` {u'}" and q2: "\B `` {us} = \B `` {us'}" and - q3: "(u', us') \ Partitions y" - by (auto simp add: tag_Times3b_def) + q3: "(u', us') \ Partitions y" by auto from q1 h2 have "u' \ A" - using y unfolding Image_def str_eq_def by blast + using equiv_class_member by auto moreover from q2 h3 eq have "us' @ z \ B" unfolding Image_def str_eq_def by auto @@ -299,16 +297,14 @@ } moreover { assume eq: "x @ us = u" "z = us @ v" - have "(\A `` {x}) = tag_Times3a A B x" - unfolding tag_Times3a_def by simp - then have "(\A `` {x}) = tag_Times3a A B y" + have "(\A `` {x}) = tag_Times_1 A B x" by simp + then have "(\A `` {x}) = tag_Times_1 A B y" using a by simp - then have "\A `` {x} = \A `` {y}" - unfolding tag_Times3a_def by simp + then have "\A `` {x} = \A `` {y}" by simp moreover have "x @ us \ A" using h2 eq by simp ultimately - have "y @ us \ A" using y + have "y @ us \ A" using equiv_class_member unfolding Image_def str_eq_def by blast then have "(y @ us) @ v \ A \ B" using h3 unfolding conc_def by blast @@ -317,88 +313,24 @@ ultimately show "y @ z \ A \ B" by blast qed -lemma conc_in_cases2: - assumes "x @ z \ A \ B" - shows "(\ x' \ x. x' \ A \ (x - x') @ z \ B) \ - (\ z' \ z. (x @ z') \ A \ (z - z') \ B)" -using assms -unfolding conc_def prefix_def -by (auto simp add: append_eq_append_conv2) - -definition - tag_Times :: "'a lang \ 'a lang \ 'a list \ ('a lang \ 'a lang set)" -where - "tag_Times A B \ - (\x. (\A `` {x}, {(\B `` {x - x'}) | x'. x' \ x \ x' \ A}))" - -lemma tag_Times_injI: - assumes eq_tag: "tag_Times A B x = tag_Times A B y" - shows "x \(A \ B) y" -proof - - { fix x y z - assume xz_in_seq: "x @ z \ A \ B" - and tag_xy: "tag_Times A B x = tag_Times A B y" - have"y @ z \ A \ B" - proof - - { (* first case with x' in A and (x - x') @ z in B *) - fix x' - assume h1: "x' \ x" and h2: "x' \ A" and h3: "(x - x') @ z \ B" - obtain y' - where "y' \ y" - and "y' \ A" - and "(y - y') @ z \ B" - proof - - have "{\B `` {x - x'} |x'. x' \ x \ x' \ A} = - {\B `` {y - y'} |y'. y' \ y \ y' \ A}" (is "?Left = ?Right") - using tag_xy unfolding tag_Times_def by simp - moreover - have "\B `` {x - x'} \ ?Left" using h1 h2 by auto - ultimately - have "\B `` {x - x'} \ ?Right" by simp - then obtain y' - where eq_xy': "\B `` {x - x'} = \B `` {y - y'}" - and pref_y': "y' \ y" and y'_in: "y' \ A" - by simp blast - have "(x - x') \B (y - y')" using eq_xy' - unfolding Image_def str_eq_def by auto - with h3 have "(y - y') @ z \ B" - unfolding str_eq_def by simp - with pref_y' y'_in - show ?thesis using that by blast - qed - then have "y @ z \ A \ B" - unfolding prefix_def by auto - } - moreover - { (* second case with x @ z' in A and z - z' in B *) - fix z' - assume h1: "z' \ z" and h2: "(x @ z') \ A" and h3: "z - z' \ B" - have "\A `` {x} = \A `` {y}" - using tag_xy unfolding tag_Times_def by simp - with h2 have "y @ z' \ A" - unfolding Image_def str_eq_def by auto - with h1 h3 have "y @ z \ A \ B" - unfolding prefix_def conc_def - by (auto) (metis append_assoc) - } - ultimately show "y @ z \ A \ B" - using conc_in_cases2 [OF xz_in_seq] by blast - qed - } - from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] - show "x \(A \ B) y" unfolding str_eq_def by blast -qed - lemma quot_conc_finiteI [intro]: fixes A B::"'a lang" assumes fin1: "finite (UNIV // \A)" and fin2: "finite (UNIV // \B)" shows "finite (UNIV // \(A \ B))" proof (rule_tac tag = "tag_Times A B" in tag_finite_imageD) - show "\x y. tag_Times A B x = tag_Times A B y \ x \(A \ B) y" - by (rule tag_Times_injI) + have "=(tag_Times A B)= \ \(A \ B)" + apply(rule test_refined_intro) + apply(rule tag_Times_injI) + prefer 3 + apply(assumption) + apply(simp add: tag_Times_def tag_eq_def) + apply(simp add: tag_eq_def tag_Times_def) + done + then show "\x y. tag_Times A B x = tag_Times A B y \ x \(A \ B) y" + unfolding tag_eq_def by auto next - have *: "finite ((UNIV // \A) \ (Pow (UNIV // \B)))" + have *: "finite ((UNIV // \A) \ (Pow (UNIV // \A \ UNIV // \B)))" using fin1 fin2 by auto show "finite (range (tag_Times A B))" unfolding tag_Times_def @@ -410,90 +342,29 @@ subsubsection {* The inductive case for @{const "Star"} *} -definition - "SPartitions s \ {(u, v). u @ v = s \ u < s}" - -lemma - assumes "x \ A\" "x \ []" - shows "\(u, v) \ SPartitions x. u \ A\ \ v \ A\" +lemma append_eq_append_conv3: + assumes "xs @ ys = zs @ ts" "zs < xs" + shows "\us. xs = zs @ us \ us @ ys = ts" using assms -apply(subst (asm) star_unfold_left) -apply(simp) -apply(simp add: conc_def) -apply(erule exE)+ -apply(erule conjE)+ -apply(rule_tac x="([], xs @ ys)" in bexI) -apply(simp) -apply(simp add: SPartitions_def) -apply(auto) -apply (metis append_Cons list.exhaust strict_prefix_simps(2)) -by (metis Nil_is_append_conv Nil_prefix xt1(11)) - -lemma - assumes "x @ z \ A\" "x \ []" - shows "\(u, v) \ SPartitions x. u \ A\ \ v @ z \ A\" -using assms -apply(subst (asm) star_unfold_left) -apply(simp) -apply(simp add: conc_def) -apply(erule exE)+ -apply(erule conjE)+ -apply(rule_tac x="([], x)" in bexI) -apply(simp) -apply(simp add: SPartitions_def) -by (metis Nil_prefix xt1(11)) - -lemma finite_set_has_max: - "\finite A; A \ {}\ \ \ max \ A. \ a \ A. length a \ length max" -apply (induct rule:finite.induct) -apply(simp) -by (metis (full_types) all_not_in_conv insertI1 insert_iff linorder_linear order_eq_iff order_trans prefix_length_le) - +apply(auto simp add: append_eq_append_conv2 strict_prefix_def) +done - -definition - tag_Star3 :: "'a lang \ 'a list \ (bool \ 'a lang) set" -where - "tag_Star3 A \ - (\x. ({(u \ A\, \A `` {v}) | u v. (u, v) \ Partitions x}))" - - - - -definition - tag_Star :: "'a lang \ 'a list \ ('a lang) set" -where - "tag_Star A \ (\x. {\A `` {x - xa} | xa. xa < x \ xa \ A\})" - -text {* A technical lemma. *} -lemma finite_set_has_max: "\finite A; A \ {}\ \ - (\ max \ A. \ a \ A. f a <= (f max :: nat))" -proof (induct rule:finite.induct) - case emptyI thus ?case by simp -next - case (insertI A a) - show ?case - proof (cases "A = {}") - case True thus ?thesis by (rule_tac x = a in bexI, auto) - next - case False - with insertI.hyps and False - obtain max - where h1: "max \ A" - and h2: "\a\A. f a \ f max" by blast - show ?thesis - proof (cases "f a \ f max") - assume "f a \ f max" - with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto) - next - assume "\ (f a \ f max)" - thus ?thesis using h2 by (rule_tac x = a in bexI, auto) - qed - qed +lemma star_spartitions_elim: + assumes "x @ z \ A\" "x \ []" + shows "\(u, v) \ Partitions (x @ z). u < x \ u \ A\ \ v \ A\" +proof - + have "([], x @ z) \ Partitions (x @ z)" "[] < x" "[] \ A\" "x @ z \ A\" + using assms by (auto simp add: Partitions_def strict_prefix_def) + then show "\(u, v) \ Partitions (x @ z). u < x \ u \ A\ \ v \ A\" + by blast qed -text {* The following is a technical lemma, which helps to show the range finiteness of tag function. *} +lemma finite_set_has_max2: + "\finite A; A \ {}\ \ \ max \ A. \ a \ A. length a \ length max" +apply(induct rule:finite.induct) +apply(simp) +by (metis (full_types) all_not_in_conv insert_iff linorder_linear order_trans) lemma finite_strict_prefix_set: shows "finite {xa. xa < (x::'a list)}" @@ -501,119 +372,162 @@ apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \ {xs}") by (auto simp:strict_prefix_def) +lemma append_eq_cases: + assumes a: "x @ y = m @ n" "m \ []" + shows "x \ m \ m < x" +unfolding prefix_def strict_prefix_def using a +by (auto simp add: append_eq_append_conv2) + +lemma star_spartitions_elim2: + assumes a: "x @ z \ A\" + and b: "x \ []" + shows "\(u, v) \ Partitions x. \ (u', v') \ Partitions z. u < x \ u \ A\ \ v @ u' \ A \ v' \ A\" +proof - + def S \ "{u | u v. (u, v) \ Partitions x \ u < x \ u \ A\ \ v @ z \ A\}" + have "finite {u. u < x}" by (rule finite_strict_prefix_set) + then have "finite S" unfolding S_def + by (rule rev_finite_subset) (auto) + moreover + have "S \ {}" using a b unfolding S_def Partitions_def + by (auto simp: strict_prefix_def) + ultimately have "\ u_max \ S. \ u \ S. length u \ length u_max" + using finite_set_has_max2 by blast + then obtain u_max v + where h0: "(u_max, v) \ Partitions x" + and h1: "u_max < x" + and h2: "u_max \ A\" + and h3: "v @ z \ A\" + and h4: "\ u v. (u, v) \ Partitions x \ u < x \ u \ A\ \ v @ z \ A\ \ length u \ length u_max" + unfolding S_def Partitions_def by blast + have q: "v \ []" using h0 h1 b unfolding Partitions_def by auto + from h3 obtain a b + where i1: "(a, b) \ Partitions (v @ z)" + and i2: "a \ A" + and i3: "b \ A\" + and i4: "a \ []" + unfolding Partitions_def + using q by (auto dest: star_decom) + have "v \ a" + proof (rule ccontr) + assume a: "\(v \ a)" + from i1 have i1': "a @ b = v @ z" unfolding Partitions_def by simp + then have "a \ v \ v < a" using append_eq_cases q by blast + then have q: "a < v" using a unfolding strict_prefix_def prefix_def by auto + then obtain as where eq: "a @ as = v" unfolding strict_prefix_def prefix_def by auto + have "(u_max @ a, as) \ Partitions x" using eq h0 unfolding Partitions_def by auto + moreover + have "u_max @ a < x" using h0 eq q unfolding Partitions_def strict_prefix_def prefix_def by auto + moreover + have "u_max @ a \ A\" using i2 h2 by simp + moreover + have "as @ z \ A\" using i1' i2 i3 eq by auto + ultimately have "length (u_max @ a) \ length u_max" using h4 by blast + moreover + have "a \ []" using i4 . + ultimately show "False" by auto + qed + with i1 obtain za zb + where k1: "v @ za = a" + and k2: "(za, zb) \ Partitions z" + and k4: "zb = b" + unfolding Partitions_def prefix_def + by (auto simp add: append_eq_append_conv2) + show "\ (u, v) \ Partitions x. \ (u', v') \ Partitions z. u < x \ u \ A\ \ v @ u' \ A \ v' \ A\" + using h0 k2 h1 h2 i2 k1 i3 k4 unfolding Partitions_def by blast +qed + + +definition + tag_Star :: "'a lang \ 'a list \ ('a lang) set" +where + "tag_Star A \ (\x. {\A `` {v} | u v. u < x \ u \ A\ \ (u, v) \ Partitions x})" + lemma tag_Star_injI: - fixes L\<^isub>1::"('a::finite) lang" - assumes eq_tag: "tag_Star L\<^isub>1 v = tag_Star L\<^isub>1 w" - shows "v \(L\<^isub>1\) w" -proof- - { fix x y z - assume xz_in_star: "x @ z \ L\<^isub>1\" - and tag_xy: "tag_Star L\<^isub>1 x = tag_Star L\<^isub>1 y" - have "y @ z \ L\<^isub>1\" - proof(cases "x = []") - case True - with tag_xy have "y = []" - by (auto simp add: tag_Star_def strict_prefix_def) - thus ?thesis using xz_in_star True by simp - next - case False - let ?S = "{xa::('a::finite) list. xa < x \ xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\}" - have "finite ?S" - by (rule_tac B = "{xa. xa < x}" in finite_subset) - (auto simp: finite_strict_prefix_set) - moreover have "?S \ {}" using False xz_in_star - by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def) - ultimately have "\ xa_max \ ?S. \ xa \ ?S. length xa \ length xa_max" - using finite_set_has_max by blast - then obtain xa_max - where h1: "xa_max < x" - and h2: "xa_max \ L\<^isub>1\" - and h3: "(x - xa_max) @ z \ L\<^isub>1\" - and h4:"\ xa < x. xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\ - \ length xa \ length xa_max" - by blast - obtain ya - where h5: "ya < y" and h6: "ya \ L\<^isub>1\" - and eq_xya: "(x - xa_max) \L\<^isub>1 (y - ya)" - proof- - from tag_xy have "{\L\<^isub>1 `` {x - xa} |xa. xa < x \ xa \ L\<^isub>1\} = - {\L\<^isub>1 `` {y - xa} |xa. xa < y \ xa \ L\<^isub>1\}" (is "?left = ?right") - by (auto simp:tag_Star_def) - moreover have "\L\<^isub>1 `` {x - xa_max} \ ?left" using h1 h2 by auto - ultimately have "\L\<^isub>1 `` {x - xa_max} \ ?right" by simp - thus ?thesis using that - apply (simp add: Image_def str_eq_def) by blast - qed - have "(y - ya) @ z \ L\<^isub>1\" - proof- - obtain za zb where eq_zab: "z = za @ zb" - and l_za: "(y - ya)@za \ L\<^isub>1" and ls_zb: "zb \ L\<^isub>1\" - proof - - from h1 have "(x - xa_max) @ z \ []" - unfolding strict_prefix_def prefix_def by auto - from star_decom [OF h3 this] - obtain a b where a_in: "a \ L\<^isub>1" - and a_neq: "a \ []" and b_in: "b \ L\<^isub>1\" - and ab_max: "(x - xa_max) @ z = a @ b" by blast - let ?za = "a - (x - xa_max)" and ?zb = "b" - have pfx: "(x - xa_max) \ a" (is "?P1") - and eq_z: "z = ?za @ ?zb" (is "?P2") - proof - - have "((x - xa_max) \ a \ (a - (x - xa_max)) @ b = z) \ - (a < (x - xa_max) \ ((x - xa_max) - a) @ z = b)" - using append_eq_dest[OF ab_max] by (auto simp:strict_prefix_def) - moreover { - assume np: "a < (x - xa_max)" - and b_eqs: "((x - xa_max) - a) @ z = b" - have "False" - proof - - let ?xa_max' = "xa_max @ a" - have "?xa_max' < x" - using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) - moreover have "?xa_max' \ L\<^isub>1\" - using a_in h2 by (auto) - moreover have "(x - ?xa_max') @ z \ L\<^isub>1\" - using b_eqs b_in np h1 by (simp add:diff_diff_append) - moreover have "\ (length ?xa_max' \ length xa_max)" - using a_neq by simp - ultimately show ?thesis using h4 by blast - qed } - ultimately show ?P1 and ?P2 by auto - qed - hence "(x - xa_max)@?za \ L\<^isub>1" using a_in unfolding prefix_def by auto - with eq_xya have "(y - ya) @ ?za \ L\<^isub>1" - by (auto simp: str_eq_def) - with eq_z and b_in - show ?thesis using that by blast - qed - have "((y - ya) @ za) @ zb \ L\<^isub>1\" using l_za ls_zb - by (rule_tac append_in_starI) (auto) - with eq_zab show ?thesis by simp - qed - with h5 h6 show ?thesis - unfolding strict_prefix_def prefix_def by auto - qed - } - from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] - show ?thesis unfolding str_eq_def by blast -qed + fixes x::"'a list" + assumes a: "tag_Star A x = tag_Star A y" + and c: "x @ z \ A\" + and d: "x \ []" + shows "y @ z \ A\" +using c d +apply(drule_tac star_spartitions_elim2) +apply(simp) +apply(simp add: Partitions_def) +apply(erule exE | erule conjE)+ +apply(subgoal_tac "((\A) `` {b}) \ tag_Star A x") +apply(simp add: a) +apply(simp add: tag_Star_def) +apply(erule exE | erule conjE)+ +apply(simp add: test) +apply(simp add: Partitions_def) +apply(subgoal_tac "v @ aa \ A\") +prefer 2 +apply(simp add: str_eq_def) +apply(subgoal_tac "(u @ v) @ aa @ ba \ A\") +apply(simp) +apply(simp (no_asm_use)) +apply(rule append_in_starI) +apply(simp) +apply(simp (no_asm) only: append_assoc[symmetric]) +apply(rule append_in_starI) +apply(simp) +apply(simp) +apply(simp add: tag_Star_def) +apply(rule_tac x="a" in exI) +apply(rule_tac x="b" in exI) +apply(simp) +apply(simp add: Partitions_def) +done + +lemma tag_Star_injI2: + fixes x::"'a list" + assumes a: "tag_Star A x = tag_Star A y" + and c: "x @ z \ A\" + and d: "x = []" + shows "y @ z \ A\" +using c d +apply(simp) +using a +apply(simp add: tag_Star_def strict_prefix_def) +apply(auto simp add: prefix_def Partitions_def) +by (metis Nil_in_star append_self_conv2) + lemma quot_star_finiteI [intro]: fixes A::"('a::finite) lang" assumes finite1: "finite (UNIV // \A)" shows "finite (UNIV // \(A\))" proof (rule_tac tag = "tag_Star A" in tag_finite_imageD) - show "\x y. tag_Star A x = tag_Star A y \ x \(A\) y" - by (rule tag_Star_injI) + have "=(tag_Star A)= \ \(A\)" + apply(rule test_refined_intro) + apply(case_tac "x=[]") + apply(rule tag_Star_injI2) + prefer 3 + apply(assumption) + prefer 2 + apply(assumption) + apply(simp add: tag_eq_def) + apply(rule tag_Star_injI) + prefer 3 + apply(assumption) + prefer 2 + apply(assumption) + unfolding tag_eq_def + apply(simp) + done + then show "\x y. tag_Star A x = tag_Star A y \ x \(A\) y" + apply(simp add: tag_eq_def) + apply(auto) + done next have *: "finite (Pow (UNIV // \A))" - using finite1 by auto + using finite1 by auto show "finite (range (tag_Star A))" unfolding tag_Star_def apply(rule finite_subset[OF _ *]) unfolding quotient_def - by auto + apply(auto) + done qed subsubsection{* The conclusion *} diff -r 97090fc7aa9f -r 560712a29a36 Prefix_subtract.thy --- a/Prefix_subtract.thy Sun Jul 31 10:27:41 2011 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,60 +0,0 @@ -theory Prefix_subtract - imports Main "~~/src/HOL/Library/List_Prefix" -begin - - -section {* A small theory of prefix subtraction *} - -text {* - The notion of @{text "prefix_subtract"} makes - the second direction of the Myhill-Nerode theorem - more readable. -*} - -instantiation list :: (type) minus -begin - -fun minus_list :: "'a list \ 'a list \ 'a list" -where - "minus_list [] xs = []" -| "minus_list (x#xs) [] = x#xs" -| "minus_list (x#xs) (y#ys) = (if x = y then minus_list xs ys else (x#xs))" - -instance by default - -end - -lemma [simp]: "x - [] = x" -by (induct x) (auto) - -lemma [simp]: "(x @ y) - x = y" -by (induct x) (auto) - -lemma [simp]: "x - x = []" -by (induct x) (auto) - -lemma [simp]: "x = z @ y \ x - z = y " -by (induct x) (auto) - -lemma diff_prefix: - "\c \ a - b; b \ a\ \ b @ c \ a" -by (auto elim: prefixE) - -lemma diff_diff_append: - "\c < a - b; b < a\ \ (a - b) - c = a - (b @ c)" -apply (clarsimp simp:strict_prefix_def) -by (drule diff_prefix, auto elim:prefixE) - -lemma append_eq_cases: - assumes a: "x @ y = m @ n" - shows "x \ m \ m \ x" -unfolding prefix_def using a -by (auto simp add: append_eq_append_conv2) - -lemma append_eq_dest: - assumes a: "x @ y = m @ n" - shows "(x \ m \ (m - x) @ n = y) \ (m \ x \ (x - m) @ y = n)" -using append_eq_cases[OF a] a -by (auto elim: prefixE) - -end