
A Formalisation of the
Myhill-Nerode Theorem

based on Regular Expressions

or, Regular Languages Done Right

Christian Urban

joint work with Chunhan Wu and Xingyuan Zhang
from the PLA University of Science and

Technology in Nanjing

Munich, 17 November 2010 � p. 1/18



A Formalisation of the
Myhill-Nerode Theorem

based on Regular Expressions
or, Regular Languages Done Right

Christian Urban

joint work with Chunhan Wu and Xingyuan Zhang
from the PLA University of Science and

Technology in Nanjing

Munich, 17 November 2010 � p. 1/18



In Most Textbooks. . .
A regular language is one where there is a DFA
that recognises it.

I can think of three reasons why this is a good
de�nition:

string matching via DFAs (yacc)

pumping lemma

closure properties of regular languages (closed
under complement)

Munich, 17 November 2010 � p. 2/18



In Most Textbooks. . .
A regular language is one where there is a DFA
that recognises it.

I can think of three reasons why this is a good
de�nition:

string matching via DFAs (yacc)

pumping lemma

closure properties of regular languages (closed
under complement)

Munich, 17 November 2010 � p. 2/18



Really Bad News!
DFAs are bad news for formalisations in theorem
provers. They might be represented as:

graphs

matrices

partial functions

All constructions are messy to reason about.

Munich, 17 November 2010 � p. 3/18



Really Bad News!
DFAs are bad news for formalisations in theorem
provers. They might be represented as:

graphs

matrices

partial functions

All constructions are messy to reason about.

Alexander and Tobias: �. . . automata theory . . . does not come
for free . . . �

Munich, 17 November 2010 � p. 3/18



Really Bad News!
DFAs are bad news for formalisations in theorem
provers. They might be represented as:

graphs

matrices

partial functions

All constructions are messy to reason about.

Constable et al needed (on and off) 18 months for a 3-person
team to formalise automata theory in Nuprl including
Myhill-Nerode. There is only very little other formalised
work on regular languages I know of in Coq, Isabelle and
HOL.

Munich, 17 November 2010 � p. 3/18



Really Bad News!
DFAs are bad news for formalisations in theorem
provers. They might be represented as:

graphs

matrices

partial functions

All constructions are messy to reason about.

typical textbook reasoning goes like: �. . . ifM andN are any
two automata with no inaccessible states . . . �

Munich, 17 November 2010 � p. 3/18



Regular Expressions
. . . are a simple datatype:

rexp ::= NULL
| EMPTY
| CHR c
| ALT rexp rexp
| SEQ rexp rexp
| STAR rexp

Munich, 17 November 2010 � p. 4/18



Regular Expressions
. . . are a simple datatype:

r ::= 0
| []
| c
| r1 + r2

| r1 · r2

| r?

Munich, 17 November 2010 � p. 4/18



Regular Expressions
. . . are a simple datatype:

r ::= 0
| []
| c
| r1 + r2

| r1 · r2

| r?

Induction and recursion principles come for free.

Munich, 17 November 2010 � p. 4/18



Semantics of Rexps
L(0) = ∅
L([]) = {[]}
L(c) = {[c]}

L(r1 + r2) = L(r1) ∪ L(r2)
L(r1 · r2) = L(r1) ; L(r2)

L(r?) = L(r)?

L1;L2
def
= {s1@s2 | s1 ∈ L1 ∧ s2 ∈ L2}

[] ∈ L?

s1 ∈ L s2 ∈ L?

s1@s2 ∈ L?

Munich, 17 November 2010 � p. 5/18



Regular Expression Matching

Harper in JFP'99: �Functional Pearl: Proof-
Directed Debugging�

Yi in JFP'06: �Educational Pearl: `Proof-Directed
Debugging' revisited for a �rst-order version�

Owens et al in JFP'09: �Regular-expression
derivatives re-examined�

�Unfortunately, regular expression derivatives have
been lost in the sands of time, and few computer
scientists are aware of them.�

Munich, 17 November 2010 � p. 6/18



Regular Expression Matching

Harper in JFP'99: �Functional Pearl: Proof-
Directed Debugging�

Yi in JFP'06: �Educational Pearl: `Proof-Directed
Debugging' revisited for a �rst-order version�

Owens et al in JFP'09: �Regular-expression
derivatives re-examined�

�Unfortunately, regular expression derivatives have
been lost in the sands of time, and few computer
scientists are aware of them.�

Munich, 17 November 2010 � p. 6/18



Demo

Munich, 17 November 2010 � p. 7/18



The Myhill-Nerode Theorem

provides necessary and suf�cient conditions for a
language being regular (pumping lemma only
necessary)

will help with closure properties of regular
languages

key is the equivalence relation:

x ≈L y
def

= ∀z. x@z ∈ L⇔ y@z ∈ L

Munich, 17 November 2010 � p. 8/18



The Myhill-Nerode Theorem

provides necessary and suf�cient conditions for a
language being regular (pumping lemma only
necessary)

will help with closure properties of regular
languages

key is the equivalence relation:

x ≈L y
def

= ∀z. x@z ∈ L⇔ y@z ∈ L

Munich, 17 November 2010 � p. 8/18



The Myhill-Nerode Theorem

�nite (UNIV// ≈L) ⇔ L is regular

Munich, 17 November 2010 � p. 9/18



Equivalence Classes
L = [] {

{[]}, UNIV − {[]}
}

L = [c]{
{[]}, {[c]}, UNIV − {[], [c]}

}
L = ∅ {

UNIV
}

Munich, 17 November 2010 � p. 10/18



Regular Languages

L is regular
def

= if there is an automatonM such
that L(M) = L

Myhill-Nerode:

�nite⇒ regular
�nite (UNIV// ≈L)⇒ ∃r.L = L(r)

regular⇒ �nite
�nite (UNIV// ≈L(r))

Munich, 17 November 2010 � p. 11/18



Final States

�nalLX
def

=
X ∈ (UNIV// ≈L) ∧ ∀s ∈ X. s ∈ L

we can prove: L =
⋃
{X. �nalLX}

Munich, 17 November 2010 � p. 12/18



Transitions between
Equivalence Classes

L = {[c]}

R1start

R2

R3

c

Σ− c

Σ

Σ

UNIV// ≈L produces

R1: {[]}
R2: {[c]}
R3: UNIV − {[], [c]}

X
c−→ Y

def

= X; [c] ⊆ Y

Munich, 17 November 2010 � p. 13/18



Transitions between
Equivalence Classes

L = {[c]}

R1start

R2

R3

c

Σ− c

Σ

Σ

UNIV// ≈L produces

R1: {[]}
R2: {[c]}
R3: UNIV − {[], [c]}

X
c−→ Y

def

= X; [c] ⊆ Y

Munich, 17 November 2010 � p. 13/18



Systems of Equations
Inspired by a method of Brzozowski '64, we can
build an equational system characterising the
equivalence classes:

R1start R2

a

b a

b
R1≡R1; b +R2; b

+ λ; []

R2≡R1; a +R2; a

we can prove R1 =R1;L(b) ∪ R2;L(b) ∪ {[]}; {[]}
R2 =R1;L(a) ∪ R2;L(a)

Munich, 17 November 2010 � p. 14/18



Systems of Equations
Inspired by a method of Brzozowski '64, we can
build an equational system characterising the
equivalence classes:

R1start R2

a

b a

b
R1≡R1; b +R2; b + λ; []
R2≡R1; a +R2; a

we can prove R1 =R1;L(b) ∪ R2;L(b) ∪ {[]}; {[]}
R2 =R1;L(a) ∪ R2;L(a)

Munich, 17 November 2010 � p. 14/18



Systems of Equations
Inspired by a method of Brzozowski '64, we can
build an equational system characterising the
equivalence classes:

R1start R2

a

b a

b
R1≡R1; b +R2; b + λ; []
R2≡R1; a +R2; a

we can prove R1 =R1;L(b) ∪ R2;L(b) ∪ {[]}; {[]}
R2 =R1;L(a) ∪ R2;L(a)

Munich, 17 November 2010 � p. 14/18



R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =

by Arden
R1 =R2; b · b? + λ; b?

R2 =R1; a · a?

by substitution
R1 =R1; a · a? · b · b? + λ; b?

R2 =R1; a · a?

by Arden
R1 = λ; b? · (a · a? · b · b?)?

R2 =R1; a · a?

by substitution
R1 = λ; b? · (a · a? · b · b?)?

R2 = λ; b? · (a · a? · b · b?)? · a · a?

Munich, 17 November 2010 � p. 15/18



A Variant of Arden’s Lemma

Arden's Lemma:

If [] 6∈ A then

X = X;A + something

has the (unique) solution

X = something;A?

Munich, 17 November 2010 � p. 16/18



R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =

by Arden
R1 =R2; b · b? + λ; b?

R2 =R1; a · a?

by substitution
R1 =R1; a · a? · b · b? + λ; b?

R2 =R1; a · a?

by Arden
R1 = λ; b? · (a · a? · b · b?)?

R2 =R1; a · a?

by substitution
R1 = λ; b? · (a · a? · b · b?)?

R2 = λ; b? · (a · a? · b · b?)? · a · a?

Munich, 17 November 2010 � p. 17/18



R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R2; b · b? + λ; b?

R2 =R1; a · a?

by substitution
R1 =R1; a · a? · b · b? + λ; b?

R2 =R1; a · a?

by Arden
R1 = λ; b? · (a · a? · b · b?)?

R2 =R1; a · a?

by substitution
R1 = λ; b? · (a · a? · b · b?)?

R2 = λ; b? · (a · a? · b · b?)? · a · a?

Munich, 17 November 2010 � p. 17/18



R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =R1; a · a?

by Arden
R1 =R2; b · b? + λ; b?

R2 =R1; a · a?

by substitution
R1 =R1; a · a? · b · b? + λ; b?

R2 =R1; a · a?

by Arden
R1 = λ; b? · (a · a? · b · b?)?

R2 =R1; a · a?

by substitution
R1 = λ; b? · (a · a? · b · b?)?

R2 = λ; b? · (a · a? · b · b?)? · a · a?

Munich, 17 November 2010 � p. 17/18



R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =R1; a · a?

by Arden
R1 =R2; b · b? + λ; b?

R2 =R1; a · a?

by substitution
R1 =R1; a · a? · b · b? + λ; b?

R2 =R1; a · a?

by Arden
R1 = λ; b? · (a · a? · b · b?)?

R2 =R1; a · a?

by substitution
R1 = λ; b? · (a · a? · b · b?)?

R2 = λ; b? · (a · a? · b · b?)? · a · a?

Munich, 17 November 2010 � p. 17/18



R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =R1; a · a?

by Arden
R1 =R2; b · b? + λ; b?

R2 =R1; a · a?

by substitution
R1 =R1; a · a? · b · b? + λ; b?

R2 =R1; a · a?

by Arden
R1 = λ; b? · (a · a? · b · b?)?

R2 =R1; a · a?

by substitution
R1 = λ; b? · (a · a? · b · b?)?

R2 = λ; b? · (a · a? · b · b?)? · a · a?

Munich, 17 November 2010 � p. 17/18



R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =R1; a · a?

by Arden
R1 =R2; b · b? + λ; b?

R2 =R1; a · a?

by substitution
R1 =R1; a · a? · b · b? + λ; b?

R2 =R1; a · a?

by Arden
R1 = λ; b? · (a · a? · b · b?)?

R2 =R1; a · a?

by substitution
R1 = λ; b? · (a · a? · b · b?)?

R2 = λ; b? · (a · a? · b · b?)? · a · a?

Munich, 17 November 2010 � p. 17/18



R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =R1; a · a?

by Arden
R1 =R2; b · b? + λ; b?

R2 =R1; a · a?

by substitution
R1 =R1; a · a? · b · b? + λ; b?

R2 =R1; a · a?

by Arden
R1 = λ; b? · (a · a? · b · b?)?

R2 =R1; a · a?

by substitution
R1 = λ; b? · (a · a? · b · b?)?

R2 = λ; b? · (a · a? · b · b?)? · a · a?

Munich, 17 November 2010 � p. 17/18



R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =R1; a · a?

by Arden
R1 =R2; b · b? + λ; b?

R2 =R1; a · a?

by substitution
R1 =R1; a · a? · b · b? + λ; b?

R2 =R1; a · a?

by Arden
R1 = λ; b? · (a · a? · b · b?)?

R2 =R1; a · a?

by substitution
R1 = λ; b? · (a · a? · b · b?)?

R2 = λ; b? · (a · a? · b · b?)? · a · a?

Munich, 17 November 2010 � p. 17/18

R1start R2

a

b a

b



The Equ’s Solving Algorithm

The algorithm must terminate: Arden makes one
equation smaller; substitution deletes one
variable from the right-hand sides.

We need to maintain the invariant that Arden is
applicable (if [] 6∈ A then . . . ):

R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =R1; a · a?

Munich, 17 November 2010 � p. 18/18



The Equ’s Solving Algorithm

The algorithm is still a bit hairy to formalise
because of our set-representation for equations:{

(X, {(Y1, r1), (Y2, r2), . . .}),
. . . }

they are generated from UNIV// ≈L

Munich, 17 November 2010 � p. 19/18



The Equ’s Solving Algorithm

The algorithm is still a bit hairy to formalise
because of our set-representation for equations:{

(X, {(Y1, r1), (Y2, r2), . . .}),
. . . }

they are generated from UNIV// ≈L

Munich, 17 November 2010 � p. 19/18



Other Direction
One has to prove

�nite(UNIV// ≈L(r))

by induction on r. Not trivial, but after a bit of
thinking (by Chunhan), one can prove that if

�nite(UNIV// ≈L(r1)) �nite(UNIV// ≈L(r2))

then

�nite(UNIV// ≈L(r1)∪L(r2))

Munich, 17 November 2010 � p. 20/18



What Have We Achieved?

�nite (UNIV// ≈L) ⇔ L is regular

regular languages are closed under
complementation; this is easy

UNIV// ≈L = UNIV// ≈−L

if you want to do regular expression matching
(see Scott's paper)

I cannot yet give de�nite numbers

Munich, 17 November 2010 � p. 21/18



What Have We Achieved?

�nite (UNIV// ≈L) ⇔ L is regular

regular languages are closed under
complementation; this is easy

UNIV// ≈L = UNIV// ≈−L

if you want to do regular expression matching
(see Scott's paper)

I cannot yet give de�nite numbers

Munich, 17 November 2010 � p. 21/18

x ≈L y
def
= ∀z. x@z ∈ L⇔ y@z ∈ L



What Have We Achieved?

�nite (UNIV// ≈L) ⇔ L is regular

regular languages are closed under
complementation; this is easy

UNIV// ≈L = UNIV// ≈−L

if you want to do regular expression matching
(see Scott's paper)

I cannot yet give de�nite numbers

Munich, 17 November 2010 � p. 21/18



What Have We Achieved?

�nite (UNIV// ≈L) ⇔ L is regular

regular languages are closed under
complementation; this is easy

UNIV// ≈L = UNIV// ≈−L

if you want to do regular expression matching
(see Scott's paper)

I cannot yet give de�nite numbers

Munich, 17 November 2010 � p. 21/18



Examples
L ≡ Σ?0Σ is regular

A1 = Σ?00
A2 = Σ?01
A3 = Σ?10 ∪ {0}
A4 = Σ?11 ∪ {1} ∪ {[]}

L ≡ {0n1n |n ≥ 0} is not regular
B0 = {0n1n |n ≥ 0}
B1 = {0n1(n−1) |n ≥ 1}
B2 = {0n1(n−2) |n ≥ 2}
B3 = {0n1(n−3) |n ≥ 3}

...

Munich, 17 November 2010 � p. 22/18



What We Have Not Achieved

regular expressions are not good if you look for a
minimal one for a language (DFAs have this notion)

Is there anything to be said about context free
languages:

A context free language is where every
string can be recognised by a pushdown
automaton.

Munich, 17 November 2010 � p. 23/18



What We Have Not Achieved

regular expressions are not good if you look for a
minimal one for a language (DFAs have this notion)

Is there anything to be said about context free
languages:

A context free language is where every
string can be recognised by a pushdown
automaton.

Munich, 17 November 2010 � p. 23/18



Conclusion
on balance regular expression are superior to
DFAs, in my opinion

I cannot think of a reason to not teach regular
languages to students this way (!?)

I have never ever seen a proof of Myhill-Nerode
based on regular expressions

no application, but lots of fun

great source of examples

Munich, 17 November 2010 � p. 24/18




