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In Most Textbooks. . .
A regular language is one where there is a DFA
that recognises it.

I can think of three reasons why this is a good
de�nition:

string matching via DFAs (yacc)

pumping lemma

closure properties of regular languages (closed
under complement)
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Really Bad News!
DFAs are bad news for formalisations in theorem
provers. They might be represented as:

graphs

matrices

partial functions

All constructions are messy to reason about.
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Really Bad News!
DFAs are bad news for formalisations in theorem
provers. They might be represented as:

graphs

matrices

partial functions

All constructions are messy to reason about.

Constable et al needed (on and off) 18 months for a 3-person
team to formalise automata theory in Nuprl including
Myhill-Nerode. There is only very little other formalised
work on regular languages I know of in Coq, Isabelle and
HOL.
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Really Bad News!
DFAs are bad news for formalisations in theorem
provers. They might be represented as:

graphs

matrices

partial functions

All constructions are messy to reason about.

typical textbook reasoning goes like: �. . . ifM andN are any
two automata with no inaccessible states . . . �
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Regular Expressions
. . . are a simple datatype:

rexp ::= NULL
| EMPTY
| CHR c
| ALT rexp rexp
| SEQ rexp rexp
| STAR rexp
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Regular Expressions
. . . are a simple datatype:

r ::= 0
| []
| c
| r1 + r2

| r1 · r2

| r?
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Regular Expressions
. . . are a simple datatype:

r ::= 0
| []
| c
| r1 + r2

| r1 · r2

| r?

Induction and recursion principles come for free.
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Semantics of Rexps
L(0) = ∅
L([]) = {[]}
L(c) = {[c]}

L(r1 + r2) = L(r1) ∪ L(r2)
L(r1 · r2) = L(r1) ; L(r2)

L(r?) = L(r)?

L1;L2
def
= {s1@s2 | s1 ∈ L1 ∧ s2 ∈ L2}

[] ∈ L?

s1 ∈ L s2 ∈ L?

s1@s2 ∈ L?
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Regular Expression Matching

Harper in JFP'99: �Functional Pearl: Proof-
Directed Debugging�

Yi in JFP'06: �Educational Pearl: `Proof-Directed
Debugging' revisited for a �rst-order version�

Owens et al in JFP'09: �Regular-expression
derivatives re-examined�

�Unfortunately, regular expression derivatives have
been lost in the sands of time, and few computer
scientists are aware of them.�
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Demo
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The Myhill-Nerode Theorem

provides necessary and suf�cient conditions for a
language being regular (pumping lemma only
necessary)

will help with closure properties of regular
languages

key is the equivalence relation:

x ≈L y
def

= ∀z. x@z ∈ L⇔ y@z ∈ L
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The Myhill-Nerode Theorem

�nite (UNIV// ≈L) ⇔ L is regular
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Equivalence Classes
L = [] {

{[]}, UNIV − {[]}
}

L = [c]{
{[]}, {[c]}, UNIV − {[], [c]}

}
L = ∅ {

UNIV
}
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Regular Languages

L is regular
def

= if there is an automatonM such
that L(M) = L

Myhill-Nerode:

�nite⇒ regular
�nite (UNIV// ≈L)⇒ ∃r.L = L(r)

regular⇒ �nite
�nite (UNIV// ≈L(r))
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Final States

�nalLX
def

=
X ∈ (UNIV// ≈L) ∧ ∀s ∈ X. s ∈ L

we can prove: L =
⋃
{X. �nalLX}
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Transitions between
Equivalence Classes

L = {[c]}

R1start

R2

R3

c

Σ− c

Σ

Σ

UNIV// ≈L produces

R1: {[]}
R2: {[c]}
R3: UNIV − {[], [c]}

X
c−→ Y

def

= X; [c] ⊆ Y
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Systems of Equations
Inspired by a method of Brzozowski '64, we can
build an equational system characterising the
equivalence classes:

R1start R2

a

b a

b
R1≡R1; b +R2; b

+ λ; []

R2≡R1; a +R2; a

we can prove R1 =R1;L(b) ∪ R2;L(b) ∪ {[]}; {[]}
R2 =R1;L(a) ∪ R2;L(a)
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R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =

by Arden
R1 =R2; b · b? + λ; b?

R2 =R1; a · a?

by substitution
R1 =R1; a · a? · b · b? + λ; b?

R2 =R1; a · a?

by Arden
R1 = λ; b? · (a · a? · b · b?)?

R2 =R1; a · a?

by substitution
R1 = λ; b? · (a · a? · b · b?)?

R2 = λ; b? · (a · a? · b · b?)? · a · a?
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A Variant of Arden’s Lemma

Arden's Lemma:

If [] 6∈ A then

X = X;A + something

has the (unique) solution

X = something;A?
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The Equ’s Solving Algorithm

The algorithm must terminate: Arden makes one
equation smaller; substitution deletes one
variable from the right-hand sides.

We need to maintain the invariant that Arden is
applicable (if [] 6∈ A then . . . ):

R1 =R1; b +R2; b + λ; []
R2 =R1; a +R2; a

by Arden
R1 =R1; b +R2; b + λ; []
R2 =R1; a · a?
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The Equ’s Solving Algorithm

The algorithm is still a bit hairy to formalise
because of our set-representation for equations:{

(X, {(Y1, r1), (Y2, r2), . . .}),
. . . }

they are generated from UNIV// ≈L
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Other Direction
One has to prove

�nite(UNIV// ≈L(r))

by induction on r. Not trivial, but after a bit of
thinking (by Chunhan), one can prove that if

�nite(UNIV// ≈L(r1)) �nite(UNIV// ≈L(r2))

then

�nite(UNIV// ≈L(r1)∪L(r2))
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What Have We Achieved?

�nite (UNIV// ≈L) ⇔ L is regular

regular languages are closed under
complementation; this is easy

UNIV// ≈L = UNIV// ≈−L

if you want to do regular expression matching
(see Scott's paper)

I cannot yet give de�nite numbers
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Examples
L ≡ Σ?0Σ is regular

A1 = Σ?00
A2 = Σ?01
A3 = Σ?10 ∪ {0}
A4 = Σ?11 ∪ {1} ∪ {[]}

L ≡ {0n1n |n ≥ 0} is not regular
B0 = {0n1n |n ≥ 0}
B1 = {0n1(n−1) |n ≥ 1}
B2 = {0n1(n−2) |n ≥ 2}
B3 = {0n1(n−3) |n ≥ 3}

...
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What We Have Not Achieved

regular expressions are not good if you look for a
minimal one for a language (DFAs have this notion)

Is there anything to be said about context free
languages:

A context free language is where every
string can be recognised by a pushdown
automaton.
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Conclusion
on balance regular expression are superior to
DFAs, in my opinion

I cannot think of a reason to not teach regular
languages to students this way (!?)

I have never ever seen a proof of Myhill-Nerode
based on regular expressions

no application, but lots of fun

great source of examples
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