
Fast parsing for Boolean grammars:
a generalization of Valiant’s algorithm

Alexander Okhotin?

Department of Mathematics, University of Turku, Turku FI–20014, Finland
Academy of Finland

alexander.okhotin@utu.fi

Abstract. The well-known parsing algorithm for the context-free gram-
mars due to Valiant (“General context-free recognition in less than cubic
time”, Journal of Computer and System Sciences, 10:2 (1975), 308–314)
is refactored and generalized to handle the more general Boolean gram-
mars. The algorithm reduces construction of the parsing table to com-
puting multiple products of Boolean matrices of various size. Its time
complexity on an input string of length n is O(BMM (n) log n), where
BMM (n) is the number of operations needed to multiply two Boolean
matrices of size n× n, which is O(n2.376) as per the current knowledge.

1 Introduction

Context-free grammars are the universally accepted mathematical model of syn-
tax, and their status is well-justified. On the one hand, their expressive means
are natural, in the sense whatever they define is intuitively seen as the syntax
of something. On the other hand, they can be implemented in a variety of effi-
cient algorithms, including a straightforward cubic-time parser, as well as many
practical parsing algorithms working much faster in special cases.

The main idea of the context-free grammars is inductive definition of syn-
tactically correct strings. For example, a context-free grammar S → aSb | ε
represents a definition of the form: a string has the property S if and only
if either it is representable as awb for some string w with the property S, or
if it is the empty string. Note that the vertical line in the above grammar is
essentially a disjunction of two syntactical conditions. Boolean grammars, intro-
duced by the author [7], are an extension of the context-free grammars, which
maintains the main principle of inductive definition, but allows the use of any
Boolean operations to combine syntactical conditions in the rules. At the same
time, they inherit the basic parsing algorithms from the context-free grammars,
including the Cocke–Kasami–Younger [7] along with its variant for unambigu-
ous grammars [10], the Generalized LR [8], as well as the linear-time recursive
descent [9].

The straightforward upper bound on the complexity of parsing for Boolean
grammars is the same as in the context-free case: O(n3), where n is the length of
? Supported by the Academy of Finland under grants 134860 and 218315.

the input string [7]. However, for the context-free grammars, there also exists an
asymptotically faster parsing algorithm due to Valiant [12]: this algorithm com-
putes the same parsing table as the simple Cocke–Kasami–Younger algorithm,
but does so by offloading the most intensive computations into calls to a Boolean
matrix multiplication procedure. The latter can be efficiently implemented in a
variety of ways. Given two n×n Boolean matrices, a straightforward calculation
of their product requires n3 conjunctions and (n − 1)n2 disjunctions. An im-
proved algorithm by Arlazarov et al. [2] reduces the number of bit operations to
O

(
n3

log n

)
, which is achieved by pre-computing products of all bit vectors of length

log n with certain submatrices. An asymptotically more significant acceleration
is obtained by using fast algorithms for multiplying n × n numerical matrices,
such as Strassen’s [11] algorithm that requires O(n2.81) arithmetical operations,
or the algorithm of Coppersmith and Winograd [3] with the theoretical running
time O(n2.376). These algorithms can be applied to multiplying n × n Boolean
matrices by calculating their product in the ring of residues modulo n + 1 [1].

Taking a closer look at Valiant’s algorithm, one can see that first the entire
grammar is encoded in a certain semiring, then the notion of a transitive closure
of a Boolean matrix is extended to matrices over this semiring, so that the
desired parsing table could be obtained as a closure of this kind, and finally it
is demonstrated that such a closure can be efficiently computed using Boolean
matrix multiplication. This approach essentially relies on having two operations
in a grammar, concatenation and union, which give rise to the product and the
sum in the semiring. Because of that, Valiant’s algorithm as it is cannot be
applied to Boolean grammars.

This paper aims at refactoring Valiant’s algorithm to make it work in the
more general case of Boolean grammars. It is shown that using matrices over a
semiring as an intermediate abstraction is in fact unnecessary, and it is sufficient
to employ matrix multiplication to compute the concatenations only, with the
Boolean operations evaluated separately. Furthermore, the proposed algorithm
maintains one fixed data structure, the parsing table, and whenever the matrix
is to be cut as per Valiant’s divide-and-conquer strategy, the new algorithm only
distributes the ranges of positions in the input string among the recursive calls.
This leads to an improved parsing algorithm, which, besides being applicable
to a larger family of grammars, is also better understandable than Valiant’s
algorithm, has a succinct proof of correctness and is ready to be implemented.

2 Boolean grammars

Let Σ be a finite nonempty set used as an alphabet, let Σ∗ be the set of all finite
strings over Σ. For a string w = a1 . . . a` ∈ Σ∗ with ai ∈ Σ, the length of the
string is denoted by |w| = `. The unique empty string of length 0 is denoted by
ε. For a string w ∈ Σ∗ and for every its partition w = uv, u is a prefix of w
and v is its suffix ; furthermore, for every partition w = xyz, the string y is a
substring of w.

2

Any subset of Σ∗ is a language over Σ. The basic operations on languages are
the concatenation K ·L = {uv | u ∈ K, v ∈ L } and the Boolean set operations:
union K ∪ L, intersection K ∩ L, and complementation L. Boolean grammars
are a family of formal grammars in which all these operations can be explicitly
specified.

Definition 1. [7] A Boolean grammar is a quadruple G = (Σ, N,P, S), where
Σ and N are disjoint finite non-empty sets of terminal and nonterminal symbols
respectively; P is a finite set of rules of the form

A→ α1& . . .&αm&¬β1& . . .&¬βn, (1)

where m + n > 1, αi, βi ∈ (Σ ∪N)∗; S ∈ N is the start symbol of the grammar.

If negation is not allowed, that is, m > 1 and n = 0 in every rule, the
resulting grammars are known as conjunctive grammars [6]. If conjunction is
also prohibited, and thus every rule must have m = 1 and n = 0, then the
context-free grammars are obtained.

The intuitive semantics of a Boolean grammar is fairly clear: a rule (1) spec-
ifies that every string that satisfies each of the conditions αi and none of the
conditions βi is therefore generated by A. However, formalizing this definition
has proved to be rather nontrivial in the general case. In the case of conjunctive
grammars (including the context-free grammars), the semantics can be equiva-
lently defined by a least solution of language equations and by term rewriting.
The definition by language equations carries on to Boolean grammars of the
general form as follows.

A grammar is interpreted as a system of language equations in variables N ,
in which the equation for each A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(2)

The vector (. . . , LG(A), . . .) of languages generated by the nonterminals of the
grammar is defined by a solution of this system. In general, such a system may
have no solutions (as in the equation S = S corresponding to the grammar
S → ¬S) or multiple solutions (with S = S being the simplest example), but
the below simplest definition of Boolean grammars dismisses such systems as ill-
formed, and considers only systems with a unique solution; to be more precise,
a subclass of such systems:

Definition 2. Let G = (Σ, N,P, S) be a Boolean grammar, let (2) be the asso-
ciated system of language equations. Suppose that for every number ` > 0 there
exists a unique vector of languages (. . . , LC , . . .)C∈N (LC ⊆ Σ6`), such that a
substitution of LC for C, for each C ∈ N , turns every equation (2) into an
equality modulo intersection with Σ6`.

Then G complies to the semantics of a strongly unique solution, and, for
every A ∈ N , the language LG(A) can be defined as LA from the unique solution
of this system. The language generated by the grammar is L(G) = LG(S).

3

This fairly rough restriction ensures that the membership of a string in the
language depends only on the membership of shorter strings, which is essential
for the grammars to represent inductive definitions.

Example 1. The following Boolean grammar generates the language { ambncn |
m,n > 0,m 6= n }:

S → AB&¬DC
A→ aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

The rules for the nonterminals A, B, C and D are context-free, and they define
LG(AB) = { aibncn | i, n > 0 } and LG(DC) = { ambmcj | j, m > 0 }. Then the
propositional connectives in the rule for S specify the following combination of
the conditions given by AB and DC:

L(AB) ∩ L(DC) = { aibjck | j = k and i 6= j } = { ambncn | m,n > 0,m 6= n }︸ ︷︷ ︸
L(S)

Assuming Definition 2, every Boolean grammar can be transformed to an
equivalent grammar in binary normal form [7], in which every rule in P is of the
form

A→ B1C1& . . .&BnCm&¬D1E1& . . .&¬DnEn&¬ε

(m > 1, n > 0, Bi, Ci, Dj , Ej ∈ N)
A→ a

S → ε (only if S does not appear in right-hand sides of rules)

In the general case, the transformation requires an exponential blowup in the
size of the grammar.

An alternative, more general definition of the semantics of Boolean grammars
will be presented in Section 7.

3 Simple cubic-time parsing

Let G = (Σ,N,P, S) be a Boolean grammar in binary normal form, let w =
a1 . . . an be an input string. The simple cubic-time parsing algorithm constructs
a table T ∈ (2N)n×n, with

Ti,j = {A ∈ N | ai+1 . . . aj ∈ LG(A) }

for all 0 6 i < j 6 n. The elements of this table can be computed inductively on
the length j−i of the substring, starting with the elements Ti,i+1 each depending

4

only on the symbol ai+1, and continuing with larger and larger substrings, until
the element T0,n is computed. The induction step is given by the equality

Ti,j = f
(j−1⋃

k=i+1

Ti,k × Tk,j

)
,

where the function f : 2N×N → 2N is defined by

f(R) = {A | ∃A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬Dm′Em′ ∈ P :
(Bt, Ct) ∈ R and (Dt, Et) /∈ R for all t}.

In total, there are Θ(n2) elements, and each of them takes Θ(n) operations to
compute, which results in a cubic time complexity.

The full algorithm can be stated as follows:

Algorithm 1 (Extended Cocke–Kasami–Younger [6,7]) Let G = (Σ, N ,
P , S) be a Boolean grammar in the binary normal form. Let w = a1 . . . an,
where n > 1 and ai ∈ Σ, be an input string. For all 0 6 i < j 6 n, let Ti,j be a
variable ranging over subsets of N . Let R be a variable ranging over subsets of
N ×N .
1: for i = 1 to n do
2: Ti−1,i = {A | A→ ai ∈ P }
3: for ` = 2 to n do
4: for i = 0 to n− ` do
5: R = ∅
6: for all k = i + 1 to i + `− 1 do
7: R = R ∪ (Ti,k × Tk,i+`)
8: Ti,i+` = f(R)
9: accept if and only if S ∈ T0,n

The most time-consuming operation in the algorithm is computing the unions
Ri,j =

⋃j−1
k=i+1 Ti,k × Tk,j , in which Ri,j represents all concatenations BC that

generate the substring ai+1 . . . aj and the index k is a cutting point of this
substring, with B generating ai+1 . . . ak and with C generating ak+1 . . . aj . If
each union is computed individually, as it is done in the above algorithm, then
spending linear time for each Ri,j is unavoidable. However, if such unions are
computed for several sets Ti,j at a time, much of the work can be represented as
Boolean matrix multiplication. This is illustrated in the following example:

Example 2. Let w = a1a2a3a4a5 be an input string and consider the partially
constructed parsing table depicted in Figure 1, with Ti,j constructed for 1 6
i < j 6 3 and for 3 6 i < j 6 5, that is, for the substrings a1a2a3 and a3a4a5

together with their substrings. Denote by TA
i,j the Boolean value indicating

whether A is in Ti,j or not. Then the following product of Boolean matrices(
TB

0,2 TB
0,3

TB
1,2 TB

1,3

)
×

(
TC

2,4 TC
2,5

TC
3,4 TC

3,5

)
=

(
X0,4 X0,5

X1,4 X1,5

)

5

Fig. 1. Product of two Boolean matrices in Example 2.

represents partial information on whether the pair (B,C) should be in the fol-
lowing four elements:

(
R0,4 R0,5
R1,4 R1,5

)
. To be precise, X1,4 computes the member-

ship of (B,C) in R1,4 exactly; X0,4 does not take into account the factorization
a1·a2a3a4, which actually requires knowing whether C is in T1,4; the element X1,5

is symmetrically incomplete; finally, X0,5 misses the factorizations a1 · a2a3a4a5

and a1a2a3a4 · a5, which can be properly obtained only using T0,4 and T1,5. In
total, this matrix product computes 8 conjunctions out of 12 needed for these
four elements of R.

Already in this small example, using one matrix product requires changing
the order of computation of the elements {Ti,j}: the elements T0,3 and T2,5 need
to be calculated before T1,4. In the next section, the whole algorithm will be
restated as a recursive procedure, which arranges the computation so that as
much work as possible is offloaded into products of the largest possible matrices.

4 Parsing reduced to matrix multiplication

Let w = a1 . . . an be an input string. For the time being, assume that n + 1 is a
power of two, that is, the length of the input string is a power of two minus one;
this restriction can be relaxed in an implementation, which will be discussed in
the next section.

The algorithm uses the following data structures. First, there is an (n +
1) × (n + 1) table T with Ti,j ⊆ N , as in Algorithm 1, and the goal is to set
each entry to Ti,j = {A | ai+1 . . . aj ∈ L(A) } for all 0 6 i < j 6 n. The
second table R has elements Ri,j ⊆ N × N each corresponding to the value of
R computed by Algorithm 1 in the iteration (` = j − i, i). The target value is
Ri,j = { (B,C) | ai+1 . . . aj ∈ L(B)L(C) } for all 0 6 i < j 6 n.

Initially, the elements of the tables are set as follows: Ti−1,i = {A | A→ ai ∈
P } for all 1 6 i 6 n, and the rest of values of T are undefined; Ri,j = ∅. The
rest of the entries are gradually constructed using the following two recursive
procedures:

– The first procedure, compute(`,m), constructs the correct values of Ti,j for
all ` 6 i < j < m.

6

– The other procedure, complete(`,m, `′,m′), assumes that the elements Ti,j

are already constructed for all i and j with ` 6 i < j < m, as well as for all
i, j with `′ 6 i < j < m′; it is furthermore assumed that for all ` 6 i < m
and `′ 6 j < m′, the current value of Ri,j is

Ri,j = { (B,C) | ∃k (m 6 k < `′) : ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈ L(C) },

which is a subset of the intended value of Ri,j .
Then complete(`,m, `′,m′) constructs Ti,j for all ` 6 i < m and `′ 6 j < m′.

– Matrix multiplication is performed by one more procedure,
product(d, `, `′, `′′), whose task is to add to each Ri,j , with ` 6 i < ` + d,
and `′′ 6 j < `′′ + d, all such pairs (B,C), that B ∈ Ti,k and C ∈ Tk,j for
some k with `′ 6 k < `′ + d. This can generally be done by computing |N |2
products of d× d Boolean matrices, one for each pair (B,C).

Algorithm 2 (Parsing through matrix multiplication)
Main procedure:
1: for i = 1 to n do
2: Ti−1,i = {A | A→ ai ∈ P }
3: compute(0, n + 1)
4: Accept if and only if S ∈ T0,n

Procedure compute(`,m):
5: if m− ` > 4 then
6: compute(`, `+m

2)
7: compute(`+m

2 ,m)
8: complete(`, `+m

2 , `+m
2 ,m)

Procedure complete(`,m, `′,m′), which requires m− ` = m′ − `′:
9: if m− ` > 1 then /* see Figure 2 */

10: /* compute C */
11: complete(`+m

2 ,m, `′, `′+m′

2)
12: /* compute D1 */
13: product(m−`

2 , `, `+m
2 , `′) /* D1 ← B1 × C */

14: complete(`, `+m
2 , `′, `′+m′

2)
15: /* compute D2 */
16: product(m−`

2 , `+m
2 , `′, `′+m′

2) /* D2 ← C × B2 */
17: complete(`+m

2 ,m, `′+m′

2 ,m′)
18: /* compute E */
19: product(m−`

2 , `, `+m
2 , `′+m′

2) /* E ← B1 ×D2 */
20: product(m−`

2 , `, `′, `′+m′

2) /* E ← D1 × B2 */
21: complete(`, `+m

2 , `′+m′

2 ,m′)
22: else if m 6= `′ then
23: T`,`′ = f(R`,`′)

The partition of the matrix in complete() is illustrated in Figure 2.

7

Fig. 2. Matrix partition in complete(`,m, `′,m′).

Lemma 1. Let ` < m 6 `′ < m′ with m− ` = m′− `′ being a power of two, and
assume that Ti,j = {A | ai+1 . . . aj ∈ L(A) } for all i and j with ` 6 i < j < m,
as well as for all i, j with `′ 6 i < j < m′. Furthermore, assume that, for all
` 6 i < m and `′ 6 j < m′,

Ri,j = { (B,C) | ∃k (m 6 k < `′) : ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈ L(C) }.

Then complete(`,m, `′,m′) returns with Ti,j = {A | ai+1 . . . aj ∈ L(A) } for all
` 6 i < m and `′ 6 j < m′.

Lemma 2. The procedure compute(`,m), executed on ` and m with m−` being a
power of two, returns with Ti,j = {A | ai+1 . . . aj ∈ L(A) } for all ` 6 i < j < m.

In order to determine the algorithm’s complexity on an input of length 2k−1,
consider how many times the procedures compute() and complete() are called
for subproblems of each size. For each i ∈ {1, . . . , k − 1}, compute(`,m) with
m−` = 2k−i is called exactly 2i times; complete(`,m, `′,m′) with m−` = 2k−i is
called exactly 22i−1− 2i−1 times; product() is called for 2k−i× 2k−i submatrices
exactly 22i−1 − 2i times, and multiplies O(|G|) pairs of Boolean matrices.

Theorem 1. For every Boolean grammar G in binary normal form, Algorithm 2
constructs the parsing table for a string of length n in time O(|G|·BMM (n) log n),
where BMM (n) is the time needed to multiply two n × n Boolean matrices.
Assuming BMM (n) = Ω(n2+ε), the complexity is Θ(|G| · BMM (n)).

5 Notes on implementation

The restriction on the length of the string being a power of two minus one is
convenient for the algorithm’s presentation, but it would be rather annoying for

8

any implementation. This essential condition can be circumvented as follows.
Let w = a1 . . . an be an input string of any length n > 1. The algorithm shall
construct a table of size (n + 1)× (n + 1), yet while doing so, it will imagine a
larger table of size rounded up to the next power of two. Whenever a subroutine
call is concerned entirely with the elements beyond the edge of the table, this call
is skipped. The matrix products with one of the matrices split by the edge are
changed to products of rectangular matrices fitting into the table. More details
shall be presented in the full version of the paper.

Another question concerns the possible data structures for the algorithm. In
general, not everything mentioned in the theoretical presentation of the algo-
rithm would need to be computed for an actual grammar. First assume that the
grammar is context-free. In this case, whenever a pair (B,C) is added to Ri,j , it
will eventually make all nonterminals A with a rule A → BC be added to Ti,j .
Accordingly, the data structure R is not needed, and all matrix multiplication
procedures can output their result directly into the appropriate elements of T .

If the grammar is conjunctive or Boolean, there is a genuine need for using R,
yet only for the rules involving multiple conjuncts. Simple context-free rules with
a unique conjunct can be treated in the simplified way described above, with all
matrix products being directly flushed into T . If there exists a rule A→ BC& . . .
with at least two conjuncts, or any rule A→ ¬BC& . . ., then all data about the
pair (B,C) needs to be stored in R as described in the algorithm. This data
shall be used in the calculation of f , which takes into account the complex rules.

With this optimization of the algorithm, the following data structures natu-
rally come to mind:

– For each nonterminal A ∈ N , an (n + 1)× (n + 1) upper-triangular Boolean
matrix TA, with TA

i,j representing the membership of A in the set Ti,j . All
matrix products computed in the algorithm shall have some submatrices of
this matrix as the arguments.

– For every such pair (B,C) ∈ N ×N that occurs in multiple-conjunct rules
A→ BC& . . . or is negated in any rule A→ ¬BC& . . ., the algorithm shall
maintain an (n + 1)× (n + 1) upper-triangular Boolean matrix RBC .

6 Generalized algorithm

The original Valiant’s algorithm was presented in a generalized form, in which
it computes a certain kind of closure of a matrix over a semiring. While the
updated algorithm no longer uses any semiring, its computation can also be
generalized to operations over abstract structures.

Let X and Y be two sets, let ◦ : X ×X → Y be a binary operator mapping
pairs of elements of X to elements of Y , let t : Y × Y → Y be an associative
and commutative binary operator on Y , and let f : Y → X be any function.
Let x = x1 . . . xn with xi ∈ X be a sequence of elements of X and consider the

9

matrix T = T (x) ∈ Xn×n defined by the following equations:

Ti−1,i = xi

Ti,j = f
(j−1⊔

k=i+1

Ti,k ◦ Tk,j

)
Theorem 2. There is an algorithm, which, given a string x = x1 . . . xn of length
n, computes the matrix T (x) in time O(BMM (n) log n).

In this generalized form, the algorithm can be applied to different families of
grammars. For example, for context-free grammars in the binary normal form
one can set X = 2N , Y = 2N×N , ◦ = ×, t = ∪, xi = {A ∈ N | A → ai ∈ P }
and f(y) = {A ∈ N | ∃A→ BC ∈ P : (B,C) ∈ y }. For Boolean grammars, the
only difference is in f , which has to take into account more complicated Boolean
logic in the rules.

The same extended algorithm can be applied to probabilistic context-free
grammars, as well as to the fuzzy generalization of Boolean grammars defined
by Ésik and Kuich [4]. The next section presents one more application.

7 Application to the well-founded semantics

The well-founded semantics of Boolean grammars was proposed by Kountouri-
otis, Nomikos and Rondogiannis [5]. This semantics is applicable to every syn-
tactically valid Boolean grammar, and defines a three-valued language generated
by each nonterminal symbol.

Three-valued languages are mappings from Σ∗ to {0, 1
2 , 1}, where 1 and 0

indicate that a string definitely is or definitely is not in the language, while 1
2

stands for “undefined”. Equivalently, three-valued languages can be defined by
pairs (L,L′) with L ⊆ L′ ⊆ Σ∗, where L and L′ represent a lower bound and an
upper bound on a language that is not known precisely. A string in both L and
L′ definitely is in the language, a string belonging to neither of them definitely
is not, and if a string is in L′ but not in L, its membership is not defined. In
particular, if L = L′, then the language is completely defined, and a pair (∅, Σ∗)
means a language about which nothing is known. The set of such pairs shall be
denoted by 3Σ∗

.
Boolean operations and concatenation are generalized from two-valued to

three-valued languages as follows:

(K, K ′) ∪ (L, L′) = (K ∪ L,K ′ ∪ L′)
(K, K ′) ∩ (L, L′) = (K ∩ L,K ′ ∩ L′)

(L,L′) = (L′, L)
(K, K ′)(L,L′) = (KL, K ′L′)

Two different partial orderings on three-valued languages are defined. First,
they can be compared with respect to the degree of truth:

(K, K ′)vT (L,L′) if K ⊆ L and K ′ ⊆ L′.

10

The other ordering is with respect to the degree of information:

(K, K ′)vI(L,L′) if K ⊆ L and L′ ⊆ K ′.

It represents the fact that (K, K ′) and (L,L′) are approximations of the same
language, and that (L,L′) is more precise, in the sense of having fewer uncertain
strings.

Both orderings are extended to vectors of three-valued languages. The truth-
ordering has a bottom element ⊥T =

(
(∅, ∅), . . . , (∅, ∅)

)
, For the information-

ordering, the bottom element is ⊥I =
(
(∅, Σ∗), . . . , (∅, Σ∗)

)
.

As in the two-valued case, concatenation, union and intersection, as well as
every combination thereof, are monotone and continuous with respect to the
truth ordering; complementation is not monotone. With respect to the informa-
tion ordering; concatenation and all Boolean operations, including complementa-
tion, are monotone and continuous, which extends to any combinations of these
operations.

Definition 3 (Well-founded semantics [5]). Let G = (Σ, N,P, S) be a
Boolean grammar, let N = {A1, . . . , An}. Fix any vector K = ((K1,K

′
1), . . . ,

(Kn,K ′
n)) ∈ (3Σ∗

)n and define a function ΘK : (3Σ∗
)n → (3Σ∗

)n by substituting
its argument into positive conjuncts and K into negative conjuncts:

[ΘK(L)]A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[m⋂
i=1

αi(L) ∩
n⋂

j=1

βj(K)
]
,

for each A ∈ N . Define Ω(K) = T
⊔
`>0

Θ`
K(⊥T) and let M = I

⊔
k>0

Ωk(⊥I). Then,

according to the well-founded semantics of Boolean grammars, LG(A) = [M]A.

The main result justifying the correctness of the well-founded semantics, is that
M is a solution of the following system of equations in three-valued languages:

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[m⋂
i=1

αi(L) ∩
n⋂

j=1

βj(L)
]

(for A ∈ N).

The binary normal form is generalized to the well-founded semantics:

Proposition 1 (Kountouriotis et al. [5]). Every Boolean grammar, as in
Definition 3, can be effectively transformed to a grammar in the binary normal
form, in which every rule is of the form

A→ B1C1& . . .&BnCm&¬D1E1& . . .&¬DnEn&¬ε

(m > 1, n > 0, Bi, Ci, Dj , Ej ∈ N)
A→ a (a ∈ Σ)
A→ a&U (a ∈ Σ)
U → ¬U (a special symbol generating uncertainty)
S → ε (only if S does not appear in right-hand sides of rules)

The transformation maintains the generated three-valued language.

11

Kountouriotis et al. [5] used this normal form to construct an extension of
the cubic-time parsing algorithm to the well-founded semantics, which, given
an input string w, computes its membership status as a value in {0, 1

2 , 1}.
The data constructed in that algorithm can be computed more efficiently us-
ing matrix multiplication, which will now be demonstrated by encoding it
into the abstract form of the proposed algorithm. Let X = 3N , Y = 3N×N ,
(U1, V1)◦(U2, V2) = (U1×U2, V1×V2), (Q1, R1)t(Q2, R2) = (Q1∪Q2, R1∪R2),
I(a) = ({A | A → a ∈ P }, {A | A → a ∈ P or A → a&U ∈ P }), and fi-
nally f(Q,R) =

(
{A | ∃A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬Dm′Em′&¬ε :

(Bi, Ci) ∈ Q and (Dj , Ej) /∈ R for all applicable i, j}, {A | ∃A →
B1C1& . . .&BmCm&¬D1E1& . . .&¬Dm′Em′&¬ε : (Bi, Ci) ∈ R and (Dj , Ej) /∈
Q for all applicable i, j}

)
. This establishes an analogue of Theorem 1 for the

well-founded semantics, that is, the three-valued membership in L(G) of a given
string w ∈ Σ∗ can be computed in time Θ(BMM (n) log n) = O(n2.376).

Thus, one more key algorithm for the context-free grammars has been ex-
tended to the general case of Boolean grammars, and its clarity has even been
improved in the process. This provides further evidence for the author’s long-
time claim that Boolean grammars are the proper general case of the context-free
grammars.

References

1. L. Adleman, K. S. Booth, F. P. Preparata, W. L. Ruzzo, “Improved time and space
bounds for Boolean matrix multiplication”, Acta Informatica 11:1 (1978), 61–70.

2. V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, I. A. Faradzhev, “On economical
construction of the transitive closure of an oriented graph”, Soviet Mathematics
Doklady, 11 (1970), 1209–1210.

3. D. Coppersmith, S. Winograd, “Matrix multiplication via arithmetic progressions”,
Journal of Symbolic Computation, 9:3 (1990), 251–280.

4. Z. Ésik, W. Kuich, “Boolean fuzzy sets”, International Journal of Foundations of
Computer Science, 18:6 (2007), 1197–1207.

5. V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “Well-founded semantics for
Boolean grammars”, Information and Computation, 207:9 (2009), 945–967;

6. A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Com-
binatorics, 6:4 (2001), 519–535.

7. A. Okhotin, “Boolean grammars”, Information and Computation, 194:1 (2004),
19–48.

8. A. Okhotin, “Generalized LR parsing algorithm for Boolean grammars”, Interna-
tional Journal of Foundations of Computer Science, 17:3 (2006), 629–664.

9. A. Okhotin, “Recursive descent parsing for Boolean grammars”, Acta Informatica,
44:3–4 (2007), 167–189.

10. A. Okhotin, “Unambiguous Boolean grammars”, Information and Computation,
206 (2008), 1234–1247.

11. V. Strassen, “Gaussian elimination is not optimal”, Numerische Mathematik, 13
(1969), 354–356.

12. L. G. Valiant, “General context-free recognition in less than cubic time”, Journal
of Computer and System Sciences, 10:2 (1975), 308–314.

12

http://dx.doi.org/10.1007/BF00264600
http://dx.doi.org/10.1007/BF00264600
http://dx.doi.org/10.1142/S0129054107005248
http://dx.doi.org/10.1016/j.ic.2009.05.002
http://dx.doi.org/10.1016/j.ic.2009.05.002
http://dx.doi.org/10.1016/j.ic.2004.03.006
http://dx.doi.org/10.1142/S0129054106004029
http://dx.doi.org/10.1007/s00236-007-0045-0
http://dx.doi.org/10.1016/j.ic.2008.03.023
http://dx.doi.org/10.1016/S0022-0000(75)80046-8

	Fast parsing for Boolean grammars: a generalization of Valiant's algorithm

