
A Formalisation of the
Myhill-Nerode Theorem based on

Regular Expressions
(Proof Pearl)

joint work with Chunhan Wu and Xingyuan Zhang from the
PLA University of Science and Technology in Nanjing

Christian Urban
TU Munich

Nijmegen, 25 August 2011 � p. 1/18

formal language theory
⇒ nice textbooks: Kozen, Hopcroft & Ullman. . .

Nijmegen, 25 August 2011 � p. 2/18

I want to teach students with theorem

provers (especially for inductions).

�b, even and odd

formal language theory
⇒ nice textbooks: Kozen, Hopcroft & Ullman. . .

Nijmegen, 25 August 2011 � p. 2/18

I want to teach students with theorem

provers (especially for inductions).

�b, even and odd

formal language theory
⇒ nice textbooks: Kozen, Hopcroft & Ullman. . .

Nijmegen, 25 August 2011 � p. 2/18

I want to teach students with theorem

provers (especially for inductions).

Formal language theory. . .

in Nuprl

Constable, Jackson, Naumov, Uribe

18 months for automata theory from Hopcroft &
Ullman chapters 1�11 (including Myhill-Nerode)

Nijmegen, 25 August 2011 � p. 3/18

Formal language theory. . .

in Coq

Filliâtre, Briais, Braibant and others
multi-year effort; a number of results in
automata theory, e.g.

Kleene's thm. by Filliâtre (�rather big�)
automata theory by Briais (5400 loc)
Braibant ATBR library, including Myhill-Nerode
(>>2000 loc)
Mirkin's partial derivative automaton construction
(10600 loc)

Nijmegen, 25 August 2011 � p. 4/18

Formal language theory. . .

in HOL

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

Nijmegen, 25 August 2011 � p. 5/18

Formal language theory. . .

in HOL

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2

⇒ A1 A2

Nijmegen, 25 August 2011 � p. 5/18

Formal language theory. . .

in HOL

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

Nijmegen, 25 August 2011 � p. 5/18

Formal language theory. . .

in HOL

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

disjoint union:

A1]A2
def

= {(1, x) |x ∈ A1} ∪ {(2, y) | y ∈ A2}

Nijmegen, 25 August 2011 � p. 5/18

Formal language theory. . .

in HOL

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

disjoint union:

A1]A2
def

= {(1, x) |x ∈ A1} ∪ {(2, y) | y ∈ A2}

Nijmegen, 25 August 2011 � p. 5/18

Problems with de�nition for regularity (Slind):

is_regular(A)
def

= ∃M. is_dfa(M) ∧ L(M) = A

Formal language theory. . .

in HOL

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

A solution: use nat ⇒ state nodes

Nijmegen, 25 August 2011 � p. 5/18

Formal language theory. . .

in HOL

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

A solution: use nat ⇒ state nodes

You have to rename states!

Nijmegen, 25 August 2011 � p. 5/18

Formal language theory. . .

in HOL

Kozen's paper proof of Myhill-Nerode:
requires absence of inaccessible states

is_regular(A)
def

= ∃M. is_dfa(M) ∧ L(M) = A

Nijmegen, 25 August 2011 � p. 6/18

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

Nijmegen, 25 August 2011 � p. 7/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

Nijmegen, 25 August 2011 � p. 7/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

Nijmegen, 25 August 2011 � p. 7/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

Nijmegen, 25 August 2011 � p. 7/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata

Nijmegen, 25 August 2011 � p. 7/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

regular expression matching

most textbooks are about automata

Nijmegen, 25 August 2011 � p. 7/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

regular expression matching (⇒Owens et al)

most textbooks are about automata

Nijmegen, 25 August 2011 � p. 7/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

regular expression matching (⇒Owens et al)

most textbooks are about automata

Nijmegen, 25 August 2011 � p. 7/18

De�nition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

The Myhill-Nerode Theorem

provides necessary and suf�cient conditions
for a language being regular
(pumping lemma only necessary)

will help with closure properties of regular
languages

key is the equivalence relation:

x ≈A y
def

= ∀z. x@z ∈ A⇔ y@z ∈ A

Nijmegen, 25 August 2011 � p. 8/18

The Myhill-Nerode Theorem

provides necessary and suf�cient conditions
for a language being regular
(pumping lemma only necessary)

will help with closure properties of regular
languages

key is the equivalence relation:

x ≈A y
def

= ∀z. x@z ∈ A⇔ y@z ∈ A

Nijmegen, 25 August 2011 � p. 8/18

The Myhill-Nerode Theorem

�nite (UNIV// ≈A) ⇔ A is regular

Nijmegen, 25 August 2011 � p. 9/18

UNIV

set of all
strings

The Myhill-Nerode Theorem

�nite (UNIV// ≈A) ⇔ A is regular

Nijmegen, 25 August 2011 � p. 9/18

UNIV

set of all
strings [[x]]≈A

equivalence class

The Myhill-Nerode Theorem

�nite (UNIV// ≈A) ⇔ A is regular

Nijmegen, 25 August 2011 � p. 9/18

UNIV

set of all
strings [[x]]≈A

equivalence class

Two directions:

1.) �nite⇒ regular
�nite (UNIV// ≈A)⇒ ∃r. A = L(r)

2.) regular⇒ �nite
�nite (UNIV// ≈L(r))

Initial and Final States

�nalsA
def

= {[|x|]≈A
| x ∈ A}

we can prove: A =
⋃

�nalsA

Nijmegen, 25 August 2011 � p. 10/18

Equivalence Classes

Initial and Final States

�nalsA
def

= {[|x|]≈A
| x ∈ A}

we can prove: A =
⋃

�nalsA

Nijmegen, 25 August 2011 � p. 10/18

Equivalence Classes

[] ∈ X

Initial and Final States

�nalsA
def

= {[|x|]≈A
| x ∈ A}

we can prove: A =
⋃

�nalsA

Nijmegen, 25 August 2011 � p. 10/18

Equivalence Classes

[] ∈ X

a �nal

Transitions between Eq-Classes

X
Y

c

X
c−→ Y

def

= X; c ⊆ Y

R1start

Nijmegen, 25 August 2011 � p. 11/18

Systems of Equations
Inspired by a method of Brzozowski '64:

X1start X2

a

b a

b

X1 =X1; b +X2; b

+ λ; []

X2 =X1; a +X2; a

Nijmegen, 25 August 2011 � p. 12/18

Systems of Equations
Inspired by a method of Brzozowski '64:

X1start X2

a

b a

b

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

Nijmegen, 25 August 2011 � p. 12/18

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

Nijmegen, 25 August 2011 � p. 13/18

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

Nijmegen, 25 August 2011 � p. 13/18

a

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

Nijmegen, 25 August 2011 � p. 13/18

a

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

Nijmegen, 25 August 2011 � p. 13/18

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

Nijmegen, 25 August 2011 � p. 13/18

a

a

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

Nijmegen, 25 August 2011 � p. 13/18

X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =X1; a · a?

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?

Nijmegen, 25 August 2011 � p. 13/18

X1start X2

a

b a

b

The Other Direction
One has to prove

�nite(UNIV// ≈L(r))

by induction on r. Not trivial, but after a bit of
thinking, one can �nd a re�ned relation:

a1a2

a3 a4

a1.1

a1.2a2.1

a2.2

a3.1

a3.2 a4.1

a4.2

UNIV UNIV// ≈L(r) UNIV//R

Nijmegen, 25 August 2011 � p. 14/18

a

Partial Derivatives
. . . (set of) regular expressions after a string has
been parsed

pders x r = pders y r re�nes x≈L(r) y

�nite(UNIV//R1)

Therefore �nite(UNIV// ≈L(r)). Qed.

Nijmegen, 25 August 2011 � p. 15/18

Partial Derivatives
. . . (set of) regular expressions after a string has
been parsed

pders x r = pders y r︸ ︷︷ ︸
R1

re�nes x≈L(r) y

�nite(UNIV//R1)

Therefore �nite(UNIV// ≈L(r)). Qed.

Nijmegen, 25 August 2011 � p. 15/18

a Antimirov '95

Partial Derivatives
. . . (set of) regular expressions after a string has
been parsed

pders x r = pders y r︸ ︷︷ ︸
R1

re�nes x≈L(r) y

�nite(UNIV//R1)

Therefore �nite(UNIV// ≈L(r)). Qed.

Nijmegen, 25 August 2011 � p. 15/18

a Antimirov '95

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A
non-regularity (anbn)

If there exists a suf�ciently large setB
(for example in�nitely large), such that

∀x, y ∈ B. x 6= y ⇒ x 6≈A y.
then A is not regular.

(A
def
=

⋃
n a

n)

Nijmegen, 25 August 2011 � p. 16/18

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A

non-regularity (anbn)

If there exists a suf�ciently large setB
(for example in�nitely large), such that

∀x, y ∈ B. x 6= y ⇒ x 6≈A y.
then A is not regular.

(A
def
=

⋃
n a

n)

Nijmegen, 25 August 2011 � p. 16/18

x ≈A y
def
= ∀z. x@z ∈ A⇔ y@z ∈ A

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A
non-regularity (anbn)

If there exists a suf�ciently large setB
(for example in�nitely large), such that

∀x, y ∈ B. x 6= y ⇒ x 6≈A y.
then A is not regular.

(A
def
=

⋃
n a

n)

Nijmegen, 25 August 2011 � p. 16/18

What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A
non-regularity (anbn)

If there exists a suf�ciently large setB
(for example in�nitely large), such that

∀x, y ∈ B. x 6= y ⇒ x 6≈A y.
then A is not regular.

(A
def
=

⋃
n a

n)
Nijmegen, 25 August 2011 � p. 16/18

Conclusion

We have never seen a proof of Myhill-Nerode
based on regular expressions.

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

I have not yet used it in teaching for
undergraduates.

Nijmegen, 25 August 2011 � p. 17/18

Conclusion

We have never seen a proof of Myhill-Nerode
based on regular expressions.

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

I have not yet used it in teaching for
undergraduates.

Nijmegen, 25 August 2011 � p. 17/18

Conclusion

We have never seen a proof of Myhill-Nerode
based on regular expressions.

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

I have not yet used it in teaching for
undergraduates.

Nijmegen, 25 August 2011 � p. 17/18

Conclusion

We have never seen a proof of Myhill-Nerode
based on regular expressions.

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

I have not yet used it in teaching for
undergraduates.

Nijmegen, 25 August 2011 � p. 17/18

Conclusion

We have never seen a proof of Myhill-Nerode
based on regular expressions.

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

I have not yet used it in teaching for
undergraduates.

Nijmegen, 25 August 2011 � p. 17/18

Bold Claim: (not proved!)

95% of regular language theory can be

done without automata!

. . . and this is much more tasteful ;o)

Thank you!

Questions?

Nijmegen, 25 August 2011 � p. 18/18

