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Formal language theory. . .

in Nuprl

Constable, Jackson, Naumov, Uribe

18 months for automata theory from Hopcroft &
Ullman chapters 1�11 (including Myhill-Nerode)
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Formal language theory. . .

in Coq

Filliâtre, Briais, Braibant and others
multi-year effort; a number of results in
automata theory, e.g.

Kleene's thm. by Filliâtre (�rather big�)
automata theory by Briais (5400 loc)
Braibant ATBR library, including Myhill-Nerode
(>>2000 loc)
Mirkin's partial derivative automaton construction
(10600 loc)
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Formal language theory. . .

in HOL

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2
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Problems with de�nition for regularity (Slind):

is_regular(A)
def

= ∃M. is_dfa(M) ∧ L(M) = A
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Formal language theory. . .

in HOL

automata⇒ graphs, matrices, functions

combining automata/graphs

A1 A2 ⇒ A1 A2

A solution: use nat ⇒ state nodes

You have to rename states!
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Formal language theory. . .

in HOL

Kozen's paper proof of Myhill-Nerode:
requires absence of inaccessible states

is_regular(A)
def

= ∃M. is_dfa(M) ∧ L(M) = A
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. . . and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

closure under complementation

most textbooks are about automata
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The Myhill-Nerode Theorem

provides necessary and suf�cient conditions
for a language being regular
(pumping lemma only necessary)

will help with closure properties of regular
languages

key is the equivalence relation:

x ≈A y
def

= ∀z. x@z ∈ A⇔ y@z ∈ A
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UNIV

set of all
strings [[x]]≈A

equivalence class

Two directions:

1.) �nite⇒ regular
�nite (UNIV// ≈A)⇒ ∃r. A = L(r)

2.) regular⇒ �nite
�nite (UNIV// ≈L(r))



Initial and Final States

�nalsA
def

= {[|x|]≈A
| x ∈ A}

we can prove: A =
⋃

�nalsA
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Transitions between Eq-Classes

X
Y

c

X
c−→ Y

def

= X; c ⊆ Y

R1start
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Systems of Equations
Inspired by a method of Brzozowski '64:

X1start X2

a

b a

b

X1 =X1; b +X2; b

+ λ; []

X2 =X1; a +X2; a
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X1 =X1; b +X2; b + λ; []
X2 =X1; a +X2; a

by Arden
X1 =X1; b +X2; b + λ; []
X2 =

by Arden
X1 =X2; b · b? + λ; b?
X2 =X1; a · a?

by substitution
X1 =X1; a · a? · b · b? + λ; b?
X2 =X1; a · a?

by Arden
X1 = λ; b

? · (a · a? · b · b?)?
X2 =X1; a · a?

by substitution
X1 = λ; b

? · (a · a? · b · b?)?
X2 = λ; b

? · (a · a? · b · b?)? · a · a?
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The Other Direction
One has to prove

�nite(UNIV// ≈L(r))

by induction on r. Not trivial, but after a bit of
thinking, one can �nd a re�ned relation:

a1a2

a3 a4

a1.1

a1.2a2.1

a2.2

a3.1

a3.2 a4.1

a4.2

UNIV UNIV// ≈L(r) UNIV//R
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Partial Derivatives
. . . (set of) regular expressions after a string has
been parsed

pders x r = pders y r re�nes x≈L(r) y

�nite(UNIV//R1)

Therefore �nite(UNIV// ≈L(r)). Qed.
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What Have We Achieved?
�nite (UNIV// ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV// ≈A = UNIV// ≈A
non-regularity (anbn)

If there exists a suf�ciently large setB
(for example in�nitely large), such that

∀x, y ∈ B. x 6= y ⇒ x 6≈A y.
then A is not regular.

(A
def
=

⋃
n a

n)
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Conclusion

We have never seen a proof of Myhill-Nerode
based on regular expressions.

great source of examples (inductions)

no need to �ght the theorem prover:

�rst direction (790 loc)
second direction (400 / 390 loc)

I have not yet used it in teaching for
undergraduates.
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Bold Claim: (not proved!)

95% of regular language theory can be

done without automata!

. . . and this is much more tasteful ;o)



Thank you!

Questions?
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