#### A Formalisation of the Myhill-Nerode Theorem based on Regular Expressions (Proof Pearl)



joint work with Chunhan Wu and Xingyuan Zhang from the PLA University of Science and Technology in Nanjing

Christian Urban TU Munich I want to teach students with theorem provers (especially for inductions).

I want to teach students with theorem provers (especially for inductions).

• fib, even and odd

I want to teach students with theorem provers (especially for inductions).

- fib. even and odd
- formal language theory
   ⇒ nice textbooks: Kozen, Hopcroft & Ullman...

# in Nuprl

- Constable, Jackson, Naumov, Uribe
- 18 months for automata theory from Hopcroft & Ullman chapters 1–11 (including Myhill-Nerode)

# in Coq

- Filliâtre, Briais, Braibant and others
- multi-year effort; a number of results in automata theory, e.g.
  - Kleene's thm. by Filliâtre ("rather big")
  - automata theory by Briais (5400 loc)
  - Braibant ATBR library, including Myhill-Nerode (≫2000 loc)
  - Mirkin's partial derivative automaton construction (10600 loc)

## in HOL

• automata  $\Rightarrow$  graphs, matrices, functions

Nijmegen, 25 August 2011 - p. 5/18

# in HOL

- automata  $\Rightarrow$  graphs, matrices, functions
- combining automata/graphs

$$(A_1)$$
  $(A_2)$ 

# in HOL

- automata  $\Rightarrow$  graphs, matrices, functions
- combining automata/graphs

# in HOL

- automata  $\Rightarrow$  graphs, matrices, functions
- combining automata/graphs

disjoint union:

 $A_1 \uplus A_2 \stackrel{ ext{def}}{=} \{(1,x) \, | \, x \in A_1 \} \ \cup \ \{(2,y) \, | \, y \in A_2 \}$ 

# in HOL

• automata  $\Rightarrow$  graphs, matrices, functions

Problems with definition for regularity (Slind):

 $\mathsf{is\_regular}(A) \stackrel{ ext{def}}{=} \exists M. \ \mathsf{is\_dfa}(M) \land \mathcal{L}(M) = A$ 

 $A_1 \uplus A_2 \stackrel{ ext{def}}{=} \{(1,x) \, | \, x \in A_1 \} \ \cup \ \{(2,y) \, | \, y \in A_2 \}$ 

# in HOL

- automata  $\Rightarrow$  graphs, matrices, functions
- combining automata/graphs

A solution: use nat  $\Rightarrow$  state nodes

# in HOL

- automata  $\Rightarrow$  graphs, matrices, functions
- combining automata/graphs

A solution: use nat  $\Rightarrow$  state nodes

You have to <u>rename</u> states!

# in HOL

• Kozen's paper proof of Myhill-Nerode: requires absence of inaccessible states

is\_regular $(A) \stackrel{ ext{def}}{=} \exists M.$  is\_dfa $(M) \wedge \mathcal{L}(M) = A$ 

Nijmegen, 25 August 2011 - p. 6/18

# A language A is regular, provided there exists a regular expression that matches all strings of A.

A language A is regular, provided there exists a regular expression that matches all strings of A.

... and forget about automata

A language A is regular, provided there exists a regular expression that matches all strings of A.

#### ... and forget about automata

A language A is regular, provided there exists a regular expression that matches all strings of A.

#### ... and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma

A language A is regular, provided there exists a regular expression that matches all strings of A.

#### ... and forget about automata

- pumping lemma
- closure under complementation

A language A is regular, provided there exists a regular expression that matches all strings of A.

#### ... and forget about automata

- pumping lemma
- closure under complementation
- regular expression matching

A language A is regular, provided there exists a regular expression that matches all strings of A.

#### ... and forget about automata

- pumping lemma
- closure under complementation
- regular expression matching (⇒Owens et al)

A language A is regular, provided there exists a regular expression that matches all strings of A.

#### ... and forget about automata

- pumping lemma
- closure under complementation
- regular expression matching (⇒Owens et al)
- most textbooks are about automata

- provides necessary and sufficient conditions for a language being regular (pumping lemma only necessary)
- will help with closure properties of regular languages

- provides necessary and sufficient conditions for a language being regular (pumping lemma only necessary)
- will help with closure properties of regular languages
- key is the equivalence relation:

 $xpprox_A y\stackrel{ ext{def}}{=} orall z. \ x @z \in A \Leftrightarrow y @z \in A$ 



• finite  $(UNIV/\!/pprox_A) \Leftrightarrow A$  is regular

Nijmegen, 25 August 2011 - p. 9/18



• finite  $(UNIV / \approx_A) \Leftrightarrow A$  is regular



• finite  $(UNIV/\!/pprox_A) \Leftrightarrow A$  is regular





- finals  $A \stackrel{\mathsf{def}}{=} \{ \|x\|_{pprox_A} \mid x \in A \}$
- we can prove:  $A = \bigcup$  finals A





- ullet finals  $A\stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \{ \|x\|_{pprox_A} \mid x\in A \}$
- we can prove:  $A = \bigcup$  finals A





- finals  $A \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \{ \|x\|_{pprox_A} \mid x \in A \}$
- we can prove:  $A = \bigcup$  finals A

### **Transitions between Eq-Classes**



 $X \stackrel{c}{\longrightarrow} Y \stackrel{\text{\tiny def}}{=} X; c \subseteq Y$ 

Nijmegen, 25 August 2011 - p. 11/18

### **Systems of Equations**

Inspired by a method of Brzozowski '64:



### **Systems of Equations**

Inspired by a method of Brzozowski '64:





$$egin{aligned} X_1 &= X_1; b + X_2; b + \lambda; [] \ X_2 &= X_1; a + X_2; a \ & X_1 &= X_1; b + X_2; b + \lambda; [] \ X_2 &= X_1; a \cdot a^{\star} \end{aligned}$$

by Arden

$$X_{1} = X_{1}; b + X_{2}; b + \lambda; []$$

$$X_{2} = X_{1}; a + X_{2}; a$$
by Arden
$$X_{1} = X_{1}; b + X_{2}; b + \lambda; []$$

$$X_{2} = X_{1}; a \cdot a^{*}$$
by Arden
$$X_{1} = X_{2}; b \cdot b^{*} + \lambda; b^{*}$$

$$X_{2} = X_{1}; a \cdot a^{*}$$

$$X_{1} = X_{1}; b + X_{2}; b + \lambda; []$$

$$X_{2} = X_{1}; a + X_{2}; a$$
by Arden
$$X_{1} = X_{1}; b + X_{2}; b + \lambda; []$$

$$X_{2} = X_{1}; a \cdot a^{\star}$$
by Arden
$$X_{1} = X_{2}; b \cdot b^{\star} + \lambda; b^{\star}$$

$$X_{2} = X_{1}; a \cdot a^{\star}$$
by substitution
$$X_{1} = X_{1}; a \cdot a^{\star} \cdot b \cdot b^{\star} + \lambda; b^{\star}$$

$$X_{2} = X_{1}; a \cdot a^{\star}$$

$$X_{1} = X_{1}; b + X_{2}; b + \lambda; []$$

$$X_{2} = X_{1}; a + X_{2}; a$$
by Arden
$$X_{1} = X_{1}; b + X_{2}; b + \lambda; []$$

$$X_{2} = X_{1}; a \cdot a^{\star}$$
by Arden
$$X_{1} = X_{2}; b \cdot b^{\star} + \lambda; b^{\star}$$

$$X_{2} = X_{1}; a \cdot a^{\star}$$
by substitution
$$X_{1} = X_{1}; a \cdot a^{\star} \cdot b \cdot b^{\star} + \lambda; b^{\star}$$

$$X_{2} = X_{1}; a \cdot a^{\star}$$
by Arden
$$X_{1} = \lambda; b^{\star} \cdot (a \cdot a^{\star} \cdot b \cdot b^{\star})^{\star}$$

$$X_{2} = X_{1}; a \cdot a^{\star}$$

$$X_{1} = X_{1}; b + X_{2}; b + \lambda; []$$

$$X_{2} = X_{1}; a + X_{2}; a$$
by Arden
$$X_{1} = X_{1}; b + X_{2}; b + \lambda; []$$

$$X_{2} = X_{1}; a \cdot a^{\star}$$
by Arden
$$X_{1} = X_{2}; b \cdot b^{\star} + \lambda; b^{\star}$$

$$X_{2} = X_{1}; a \cdot a^{\star}$$
by substitution
$$X_{1} = X_{1}; a \cdot a^{\star} \cdot b \cdot b^{\star} + \lambda; b^{\star}$$

$$X_{2} = X_{1}; a \cdot a^{\star}$$
by Arden
$$X_{1} = \lambda; b^{\star} \cdot (a \cdot a^{\star} \cdot b \cdot b^{\star})^{\star}$$

$$X_{2} = X_{1}; a \cdot a^{\star}$$
by substitution
$$X_{1} = \lambda; b^{\star} \cdot (a \cdot a^{\star} \cdot b \cdot b^{\star})^{\star}$$

$$X_{2} = \lambda; b^{\star} \cdot (a \cdot a^{\star} \cdot b \cdot b^{\star})^{\star} \cdot a \cdot a^{\star}$$



### The Other Direction One has to prove finite( $UNIV//\approx_{\mathcal{L}(r)}$ )

by induction on r. Not trivial, but after a bit of thinking, one can find a refined relation:



### **Partial Derivatives**

 ...(set of) regular expressions after a string has been parsed

• pders x r = pders y r refines  $x \approx_{\mathcal{L}(r)} y$ 

### **Partial Derivatives**

 ...(set of) regular expressions after a string has been parsed

• pders x r = pders y r refines x 
$$\approx_{\mathcal{L}(r)} y$$
  
 $R_1$   
Antimirov '95

• finite $(UNIV//R_1)$ 

### **Partial Derivatives**

 ...(set of) regular expressions after a string has been parsed

• pders x r = pders y r refines x 
$$\approx_{\mathcal{L}(r)} y$$
  
 $R_1$   
Antimirov '95

- finite $(UNIV//R_1)$
- Therefore finite  $(UNIV// \approx_{\mathcal{L}(r)})$ . Qed.

# • finite $(UNIV // \approx_A) \Leftrightarrow A$ is regular

#### What Have We Achieved?

- finite  $(UNIV/\!/pprox_A) \ \Leftrightarrow \ A$  is regular
- regular languages are closed under complementation; this is now easy  $UNIV//\approx_A = UNIV//\approx_{\overline{A}}$

#### $xpprox_A y\stackrel{\mathsf{def}}{=} orall z.\ x@z\in A \Leftrightarrow y@z\in A$

#### What Have We Achieved?

- finite  $(UNIV/\!/pprox_A) \ \Leftrightarrow \ A$  is regular
- regular languages are closed under complementation; this is now easy  $UNIV//\approx_A = UNIV//\approx_{\overline{A}}$
- non-regularity  $(a^n b^n)$

If there exists a sufficiently large set B(for example infinitely large), such that  $\forall x, y \in B. \ x \neq y \implies x \not\approx_A y.$ then A is not regular.

### What Have We Achieved?

- finite  $(UNIV/\!/pprox_A) \ \Leftrightarrow \ A$  is regular
- regular languages are closed under complementation; this is now easy  $UNIV//\approx_A = UNIV//\approx_{\overline{A}}$
- non-regularity  $(a^n b^n)$

If there exists a sufficiently large set B(for example infinitely large), such that  $\forall x, y \in B. \ x \neq y \implies x \not\approx_A y.$ then A is not regular.

( $A \stackrel{\mathsf{def}}{=} igcup_n a^n$ )

• We have never seen a proof of Myhill-Nerode based on regular expressions.

- We have never seen a proof of Myhill-Nerode based on regular expressions.
- great source of examples (inductions)

- We have never seen a proof of Myhill-Nerode based on regular expressions.
- great source of examples (inductions)
- no need to fight the theorem prover:
  - first direction (790 loc)
  - second direction (400 / 390 loc)

- We have never seen a proof of Myhill-Nerode based on regular expressions.
- great source of examples (inductions)
- no need to fight the theorem prover:
  - first direction (790 loc)
  - second direction (400 / 390 loc)
- I have **not** yet used it in teaching for undergraduates.

- We have never seen a proof of Myhill-Nerode
   Bold Claim: (not proved!)
- **95%** of regular language theory can be done without automata!

... and this is much more tasteful ;o)

• I have **not** yet used it in teaching for undergraduates.

# **Thank you!**

**Questions?** 

Nijmegen, 25 August 2011 - p. 18/18