Notes on Regular Expression Simplification

Robert Harper, Spring 1997
edited by Frank Pfenning, Fall 1997

Draft of September 26, 1997

1 Introduction

Symbolic computation systems such as Mathematica and Maple provide a general means of simpli-
fying expressions using a variety of rules. A typical example is the simplification of a polynomial
by reducing it to “standard form” a,z" + an_12" "t + .-+ + a1z + ag. Our goal is to explore the
implementation of such simplifiers using the method of tactics. The general idea is to define a set
of primitive rules for simplifying expressions, and to combine these using a variety of functions to
build complex simplifiers from the basic rules.

2 Algebraic Laws for Regular Expressions

We will build a simplifier for regular expressions based on the following simple algebraic laws:

r+0 = r
O+r = r
(ri+mre)+rs = ri+(ra+rs)
1r = r
rl = r
r0 = 0
or = 0
(7‘17’2)7’3 = T (7’27’3)

These are called associative and cancellation laws for alternation and concatenation.
These laws are valid in the sense that if 1 = 3 according to the above laws, then L(ry) = L(r2).
In other words, the left- and right-hand sides determine the same language.

3 Simplification
We will use these laws to put regular expressions into standard form, by which we mean that

1. All uses of alternation and concatentation are right-associated.

2. All uses of 0 in an alternation expression and all uses of 1 in a concatenation expression are
eliminated.



Thus (a+b) + 0 + c* would be rewritten to the standardized form a + (b + c¢*).

How is simplification achieved? The general idea is to orient the equations from left to right,
regarding them as rewriting rules in which the left-hand side is re-written to the right-hand side.
Orienting the requations given above, we obtain the following rewriting rules:

r+0 — r
O+r — r
(ri+mre)+r3 — ri+(ra+rs)

1r —- r

rl — r

or — O

r0 — 0
(7’17’2)7’3 — (7’27’3)

When thought of as a rewriting rule in this manner, the left-hand side is called a redexr and the
right-hand side its contractum.

To simplify an expression, we apply these rules according to a specific rewriting strategy until
no further simplifications are possible. The resulting expression will then be in standard form.
The rewriting strategy that we shall use is called the leftmost-outermost strategy because at each
step we rewrite the expression by applying rules from the outside in (i.e., starting with the whole
expression and working progressively through sub-terms) and left-to-right (in the case of alternation
and concatenation). This strategy is complete in the sense that we will not miss an opportunity to
perform a simplification if there is one.!

It is important to realize that performing one simplification can enable another. For example,
if we have the expression r = r’ 4+ ¢, and 7 = (b + ¢)1, then simplification of r’ by cancellation
exposes the alternation, yielding the expression (a + b) 4+ a, which can then be further simplified
by right-associating.

Our overall strategy will be to repeatedly right-associate expressions, then cancel 0’s and 1’s,
until no further reductions are possible.

4 Implementation

The first step is to represent the primitive reduction steps as ML functions that, when applied to a
regular expression, either rewrite the regular expression in accordance with that rule, or else raise
the exception Fail to indicate failure to apply. Here are some example primitive rules:?

fun rassoc_plus (Plus (Plus (r, s), t)) = Plus (r, Plus (s, t))

| rassocplus _ = raise Fail

fun rcancel plus (Plus (r, Zero)) =r
| rcancel plus _ = raise Fail

fun lcancel plus (Plus (Zero, r)) =r
| lcancel plus _ = raise Fail

These functions (and the others for the concatenation operation) directly express the primitive
rewriting steps given above.

1We shall not prove this important fact here.
2The complete code may be found in the file code/lecture10.sml in the course directory.



The second step is to define the leftmost-outermost rewriting strategy. The idea is that, given
a rule, we apply that rule to the leftmost, outermost expression on which it does not fail. (If it
does not apply anywhere, then fail.) Here is the code:

fun LMOM rule r =
rule r handle Fail => LMOM’ rule r
and LMOM’ rule (Plus (r, s8)) =
(Plus (LMOM rule r, s) handle Fail => Plus (r, LMOM rule s))
| LMOM’ rule (Times (r, s)) =
(Times (LMOM rule r, s) handle Fail => Times (r, LMOM rule s))
| LMOM’ rule (Star r) = Star (LMOM rule r)
| LMOM’ rule r = raise Fail

The function LMOM is defined mutually-recursively with the auxiliary function LMOM’. The idea is
that LMOM attempts to apply the rule to the given expression. If it succeeds, then the result of
applying the rule is the result; if it fails, then we proceed into sub-terms, considering multiple
sub-terms from left-to-right.

Now we define the simplifier in stages using rewriting tactics. Here are the definitions:

val rassoc = REPEAT (LMOM (rassoc_times ORELSE rassoc_plus))

val cancel

LMOM (rcancel _times ORELSE rcancel_plus ORELSE
lcancel times ORELSE lcancel plus)

val simplify = REPEAT (rassoc THEN cancel)

The functions rassoc, cancel, and simplify are called rewriting tactics.

The function rassoc right-associates alternation and concatenation operators by repeatedly
applying the primitive associative rewritings to the leftmost, outermost position in the given reg-
ular expression. Upon completion of rassoc, all uses of alternation and concatenation are right-
associated.

The function cancel cancels 0’s and 1’s using the cancellation laws at the leftmost, outermost
position. At most one cancellation is performed by a call to cancel.

The function simplify repeatedly right-associates, then cancels, until no further simplifications
can be performed.

These rewriting tactics are implemented using the generic tacticals ID, THEN, ORELSE, FAIL,
TRY, and REPEAT. These are provided in a module with the signature REWRITE:

signature REWRITE =

sig
exception Fail
type ’a rewriter = ’a -> ’a (* may raise Fail *)
(x infixr THEN ORELSE *)
val THEN : ’a rewriter * ’a rewriter -> ’a rewriter
val ID : ’a rewriter (* unfailing *)
val ORELSE : ’a rewriter * ’a rewriter -> ’a rewriter
val FAIL : ’a rewriter

val TRY : ’a rewriter -> ’a rewriter (* unfailing *)
val REPEAT : ’a rewriter -> ’a rewriter (* unfailing *)
end;



Notice that the definition of the type ’a rewriter to be >a -> ’a appears in the signature. Thus
a rewriter is just a function from some type to itself. In our case we choose ’a to be the type
RegExp.regexp, but these tacticals are not limited to regular expressions.

In practical use of rewriters, it is extremely important to keep in mind which tactics may fail,
and which will always succeed (possibly keeping the expression unchanged). For example, f THEN
g may clearly fail if f fails or g fails on the result of f. On the other hand, TRY f will never fail:
if f does not apply, it returns its argument unchanged.

How are the rewriting tacticals implemented? Using exceptions. Here’s the code:

structure Rewriter :> REWRITE =
struct
exception Fail
type ’a rewriter = ’a -> ’a (* may raise Fail *)
infixr THEN ORELSE
fun (£f1 THEN £2) x = £2(£f1(x))
fun ID x = x
fun (f1 ORELSE f2) x = f1 x handle Fail => f2 x
fun FATIL x = raise Fail
fun TRY £ x = (f ORELSE ID) x
fun REPEAT f x = TRY (f THEN (REPEAT f)) x
end

We use infix syntax for THEN and ORELSE. The rewriter f; THEN f first applies fi, then applies fo
to the result; this is just function composition. The rewriter ID just returns the argument without
modification; it is the “null” or “identity” rewriter. The rewriter f; ORELSE fo rewrites using fi;
if this fails (i.e., raises the exception Fail), then it rewrites using fo instead. The rewriter FAIL
always fails immediately. The rewriter TRY f tries to rewrite using f; if it succeeds, the result of
applying f is returned, otherwise the original expression is returned untouched. Finally REPEAT f
tries f repeatedly until it fails, yielding the result of all successful rewritings.



