
Certified Parsing

Background

Parsing is the act of transforming plain text into
some structure that can be analyzed by computers
for further processing. One might think that pars-
ing has been studied to death and after yacc and lex
no new results can be obtained in this area. How-
ever recent results and novel approaches make it
increasingly clear, that this is not true anymore.

We propose to approach the subject of pars-
ing from a certification point of view. Increas-
ingly, parsers are part of certified compilers, like
CompCert, which are guaranteed to be correct and
bug-free. Such certified compilers are crucial in
areas where software just cannot fail. However, so
far the parsers of these compilers have been left
out of the certification. This is because parsing
algorithms are often ad hoc and their semantics
is not clearly specified. Unfortunately, this means
parsers can harbour errors that potentially invali-
date the whole certification and correctness of the
compiler. In this project, we like to change that.

Only in the last few years, theorem provers
have become good enough for establishing the cor-
rectness of some standard lexing and parsing algo-
rithms. For this, the algorithms still need to be for-
mulated in way so that it is easy to reason about
them. In our earlier work about lexing and regular
languages, the authors showed that this precludes
well-known algorithms based automata. However
we showed that regular languages can be formu-
lated and reasoned about entirely in terms regu-
lar expressions, which can be easily represented
in theorem provers. This work uses the device of
derivatives of regular expressions. We like to ex-
tend this device to parsers and grammars. The
aim is to come up with elegant and practical useful
parsing algorithms whose correctness can be certi-
fied in a theorem prover.

Proposed Work

A recent development in parsing is Parsing Expres-
sion Grammars (PEG), which are an extension of
the standard Context Free Grammars (CFG) [6].
The extension introduces new regular operators,
such as negation and conjunction, on the right-
hand sides of grammar rules, as well as priority
orderings on rules. With these extensions, PEG
parsing becomes much more powerful. For ex-
ample disambiguation, formerly expressed by se-

mantic filters, can now be expressed directly using
grammar rules. This means a simpler and more
systematic treatment of ambiguity and more con-
cise grammar specifications for programming lan-
guages.

However, a serious disadvantage of PEG is that
it does not allow left recursion, because parsing
algorithms for PEG [5] can not deal with left re-
cursions. Although a new PEG parsing algorithm
has been proposed that can deal with left recur-
sion [11], there is no correctness proof, not even in
“paper-and-pencil” form. One aim of this research
is to solve this sorry state-of-affairs by either cer-
tifying this algorithm or inventing a new one. For
this we will first formalize a fixed point semantics
of PEG, based on which an efficient, certified pars-
ing algorithm can be given given.

There are several existing works we can draw
upon:

1. The works on PEG.

(a) An operation semantics for PEG has al-
ready been given in [6], but it is not
adequate to deal with left recursions.
But this work gives at least a precise
description of what the original PEG
meant for. This will serve an a ba-
sis to show the conservativeness of the
fixed point semantics we are going to
develop.

(b) The new algorithm [11] which claimed
to be able to deal with left recursions.
Although there is no correctness proof
yet, this may provide some useful inspi-
rations for our new algorithm design.

2. The works on Boolean Grammars [9].
Boolean Grammar is very closely related to
PEG, because it also contains negative and
conjunctive grammars. The main differences
are: First, Boolean Grammar has no ordering
on productions; Second: Boolean Grammar
does not contain STAR operator. There are
two works about Boolean Grammar which
might be useful for this research:

(a) A fixed point semantics for Boolean
Grammar [7]. The idea to define the
semantics of negative and conjunctive
operators is certainly what we can bor-
row. Therefore, this work gives the ba-
sis on which we can add in production
ordering and STAR operator.



(b) A parsing algorithm for Boolean Gram-
mar based on CYK parsing [7]. The
draw back of CYK parsing is that: the
original grammar specification needs to
be transformed into a normal form.
This transformation may lead to gram-
mar explosion and is undesirable. One
aim of this research is to see whether
this transformation can be avoided. For
this purpose, other parsing style may
provide useful inspirations, for exam-
ple:

i. Derivative Parsing [3, 1, 10, 8].
Christian Urban has used deriva-
tive methods to establish the cor-
rectness of a regular expression
matcher, as well the the finite par-
tition property of regular expres-
sion [12]. There are well founded
envisage that the derivative meth-
ods may provide the foundation to
the new parsing algorithms of PEG.

ii. Early parsing [4, 2]. It is a refine-
ment of CYK parsing which does
not require the transformation to
normal forms, and therefore pro-
vide one possible direction to adapt
the current CYK based parsing al-
gorithm of Boolean Grammar for
PEG grammar.

iii. The new parsing algorithm pro-
posed by Tom Ridge[???]. Re-
cently, T. Ridge has proposed and
certified an combinator style pars-
ing algorithm for CFG, which bor-
rows some ideas from Early pars-
ing. The proposed algorithm is very
simple and elegant. We are going
to strive for a parsing algorithm as
elegant as this one.

Which of the above possibilities will fi-
nally get into our final solutions is an
interesting point about this current re-
search.

Based on these works, we are quite confident
that our idea may lead to some concrete results.

References

[1] J. B. Almeida, N. Moriera, D. Pereira, and S. M.
de Sousa. Partial Derivative Automata Formalized
in Coq. In Proc. of the 15th International Con-
ference on Implementation and Application of Au-
tomata, volume 6482 of LNCS, pages 59–68, 2010.

[2] Aycock and Horspool. Practical Earley Parsing.
COMPJ: The Computer Journal, 45, 2002.

[3] J. A. Brzozowski. Derivatives of Regular Expres-
sions. Journal of the ACM, 11:481–494, 1964.

[4] J. Earley. An Efficient Context-Free Parsing Algo-
rithm. Communications of the ACM (CACM), 13(2),
Feb. 1970.

[5] B. Ford. Packrat Parsing: a Practical Linear-Time
Algorithm with Backtracking. In ICFP ’02: Pro-
ceedings of the seventh ACM SIGPLAN international
conference on Functional programming, 2002.

[6] B. Ford. Parsing Expression Grammars: A
Recognition-based Syntactic Foundation. In POPL
’04: Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming lan-
guages, pages 111–122, New York, NY, USA, 2004.
ACM.

[7] V. Kountouriotis, C. Nomikos, and P. Rondogian-
nis. Well-founded Semantics for boolean Gram-
mars. Inf. Comput, 207(9):945–967, 2009.

2



[8] M. Might and D. Darais. Yacc is Dead. CoRR,
abs/1010.5023, 2010. informal publication.

[9] A. Okhotin. Boolean Grammars. Inf. Comput.,
194(1):19–48, 2004.

[10] S. Owens, J. Reppy, and A. Turon. Regular-
Expression Derivatives Re-Examined. Journal of
Functional Programming, 19(2):173–190, 2009.

[11] A. Warth, J. R. Douglass, and T. D. Millstein. Pack-
rat Parsers Can Support Left Recursion. In R. Glück
and O. de Moor, editors, PEPM, pages 103–110.
ACM, 2008.

[12] C. Wu, X. Zhang, and C. Urban. A Formalisation of
the Myhill-Nerode Theorem based on Regular Ex-
pressions (Proof Pearl). In Proc. of the 2nd Interna-
tional Conference on Interactive Theorem Proving,
volume 6898 of LNCS, pages 341–356, 2011.

3


