tphols-2011

By xingyuan

February 6, 2011

Contents

```
1 Direction regular language ⇒finite partition
theory Myhill
imports Myhill-2
begin
```

1 Direction regular language \Rightarrow finite partition

A deterministic finite automata (DFA) M is a 5-tuple $(Q, \Sigma, \delta, s, F)$, where:

- 1. Q is a finite set of *states*, also denoted Q_M .
- 2. Σ is a finite set of *alphabets*, also denoted Σ_M .
- 3. δ is a transition function of type $Q \times \Sigma \Rightarrow Q$ (a total function), also denoted δ_M .
- 4. $s \in Q$ is a state called *initial state*, also denoted s_M .
- 5. $F \subseteq Q$ is a set of states named *accepting states*, also denoted F_M .

Therefore, we have $M = (Q_M, \Sigma_M, \delta_M, s_M, F_M)$. Every DFA M can be interpreted as a function assigning states to strings, denoted $\hat{\delta}_M$, the definition of which is as the following:

$$\delta_M([]) \equiv s_M$$

$$\hat{\delta}_M(xa) \equiv \delta_M(\hat{\delta}_M(x), a)$$
(1)

1

A string x is said to be *accepted* (or *recognized*) by a DFA M if $\hat{\delta}_M(x) \in F_M$. The language recognized by DFA M, denoted L(M), is defined as:

$$L(M) \equiv \{x \mid \hat{\delta}_M(x) \in F_M\}$$
(2)

The standard way of specifying a laugage \mathcal{L} as *regular* is by stipulating that: $\mathcal{L} = L(M)$ for some DFA M. For any DFA M, the DFA obtained by changing initial state to another $p \in Q_M$ is denoted M_p , which is defined as:

$$M_p \equiv (Q_M, \Sigma_M, \delta_M, p, F_M) \tag{3}$$

Two states $p, q \in Q_M$ are said to be *equivalent*, denoted $p \approx_M q$, iff.

$$L(M_p) = L(M_q) \tag{4}$$

It is obvious that \approx_M is an equivalent relation over Q_M . and the partition induced by \approx_M has $|Q_M|$ equivalent classes. By overloading \approx_M , an equivalent relation over strings can be defined:

$$x \approx_M y \equiv \hat{\delta}_M(x) \approx_M \hat{\delta}_M(y) \tag{5}$$

It can be proved that the partition induced by \approx_M also has $|Q_M|$ equivalent classes. It is also easy to show that: if $x \approx_M y$, then $x \approx_{L(M)} y$, and this means \approx_M is a more refined equivalent relation than $\approx_{L(M)}$. Since partition induced by \approx_M is finite, the one induced by $\approx_{L(M)}$ must also be finite. Now, we get one direction of Myhill-Nerode Theorem:

Lemma 1 (Myhill-Nerode Theorem, Direction one). If a language \mathcal{L} is regular (i.e. $\mathcal{L} = L(M)$ for some DFA M), then the partition induced by $\approx_{\mathcal{L}}$ is finite.

The other direction is:

Lemma 2 (Myhill-Nerode Theorem, Direction two). If the partition induced by $\approx_{\mathcal{L}}$ is finite, then \mathcal{L} is regular (i.e. $\mathcal{L} = L(M)$ for some DFA M).

To prove this lemma, a DFA $M_{\mathcal{L}}$ is constructed out of $\approx_{\mathcal{L}}$ with:

$$Q_{M_{\mathcal{L}}} \equiv \{ \llbracket x \rrbracket_{\approx_{\mathcal{L}}} \mid x \in \Sigma^* \}$$
(6a)

$$\Sigma_{M_{\mathcal{L}}} \equiv \Sigma_M$$
 (6b)

$$\delta_{M_{\mathcal{L}}} \equiv (\lambda(\llbracket x \rrbracket_{\approx_{\mathcal{L}}}, a) . \llbracket xa \rrbracket_{\approx_{\mathcal{L}}})$$
(6c)

$$s_{M_{\mathcal{L}}} \equiv \llbracket \llbracket \rrbracket \rrbracket_{\approx_{\mathcal{L}}} \tag{6d}$$

$$F_{M_{\mathcal{L}}} \equiv \{ [\![x]\!]_{\approx_{\mathcal{L}}} \mid x \in \mathcal{L} \}$$
(6e)

It can be proved that $\mathcal{L} = L(M_{\mathcal{L}})$.

end

Figure 1: The relationship between automata and finite partition