
Generation of regular expressions for automata by the
integral of regular expressions

L. W. Smith and S. S. Yau
Northwestern University*, Evanston, Illinois, 60201, USA

In this paper, the integral of regular expressions is defined and its properties are presented— The
concept of the integral is then applied to establishing an algorithm for generating the regular
expression of an arbitrary finite automaton specified by its state diagram or flow table. The regular
expression for a given automaton obtained by this algorithm is shown to be unique up to the com-
mutative property of the sum. This algorithm is effective and suitable for machine implementation.
Programmed results of this algorithm are also given and interpreted.
(Received August 1971)

1. Introduction
The relationship between regular expressions and finite
automata is well known (Kleene, 1954; Copi, Elgot and Wright,
1958) and a number of authors have studied the conversion
between regular expressions and finite automata. McNaughton
and Yamada (1960) presented a pair of algorithms which
systematically converted a regular expression to a finite
automaton and vice versa. Although these algorithms are
systematic, they have been shown to be often lengthy and too
tedious. Using the techniques suggested by Arden (1961),
Brzozowski and McCluskey (1963) gave a signal flow graph
method for finding regular expressions from a finite automaton.
Even though quite effective, the technique largely depends on
the intuition and insight of the user. Later, Brzozowski (1964)
defined the derivative of a regular expression, and showed this
to be the natural and most systematic way of going from a
regular expression to the state diagram of an automaton.

In this paper, we will describe the notation of the integral of a
regular expression analogous to that of a derivative. We will
show how, from a given deterministic state diagram, we can use
the notion of an integral of a regular expression to determine
its corresponding regular expression. The developed algorithm
will be shown to be systematic and effective. Finally, we will
present and interpret some of the results which were obtained
when the algorithm was programmed on the IBM 360/67
using SNOBOL4.

We will concern ourselves with the usual model of a finite
deterministic automaton

M={A,Z,Q,f,g},
where

A = {a0, au . .
Z = {zo,zu . . .
Q = {tfo,?i> • •
/ : Q x A -> Q

, av_ x} is a finite set of inputs to M.
, z w _ , } is a finite set of outputs from M.
,qu-x\ is a finite set of states of M.

is the next state function of M.
is the output function of M.

The results will be presented in terms of the Moore model. The
output of the automaton is the output of the final state. In the
case, where the output alphabet is {0, 1}, the output of ' 1 ' will
be denoted by a broken circle around the output state. The
results also apply equally as well to the Mealy model with a
slight modification of the algorithm.

2. Regular expressions

Definition 1
A sequence over the finite alphabet A is defined to be a series of
concatenated symbols from the alphabet A, X, and <f>.

The regular operations sum, product, and star on sets of

•Departments of Computer Sciences and Electrical Engineering.

sequences P, Pu P2, . . . over the alphabet A are defined as
follows:

Definition 2.1
The regular operation sum on the sets of sequences Pt and P2,
denoted by (Pt + P2), is defined to be the set of sequences

P, +Pi= {p\p eP, or P2} . (1)

Definition 2.2
The regular operation product on the sets of sequences Pt and
P2, denoted by (PiP2), is defined to be the set of sequences

Pfi = {p\P = PiPi-,Pi e Pi, Pi eP2} (2)

Definition 2.3
The regular operation star on the set of sequences P, denoted
by P*, is defined to be the set of sequences

P* = £ P" ,
n = 0

(3)

where P° = X, Pl = P, P2 = PP, . . .
These regular operations have the following properties:
Property 1: Sum is associative and communicative.
Property 2: Product is associative but not communicative.
Property 3: Product is distributive over sum, but sum is not

distributive over product.
Property 4: A serves as the multiplicative unity.
Property 5: <f> serves as the additive and multiplicative zero.
Now a regular expression can be defined as follows:

Definition 3
A regular expression over an alphabet A = {a0, ax, . . . , av_ t } ,
can be defined as follows:

1. The letters a0, au ..., av_^, I and <j> are regular expressions.
2. If/*! and P2 are regular expressions, then so are Pt + P2,

PlP2 and PS.
3. Nothing else is a regular expression unless it follows from

repeated applications of (1) and (2).

3. The integral of a regular expression

Before we define the integral of a regular expression, we must
define another operation on the set of sequences R called the
derivative of R (Brzozowski, 1964).

Definition 4
Given a set of sequences R and a sequence s, the derivative ofR
with respect to s, denoted by DSR, is defined to be

DSR = {p\sp 6 R) . (4)

222 The Computer Journal

 by on A
ugust 16, 2010

http://com
jnl.oxfordjournals.org

D
ow

nloaded from

http://comjnl.oxfordjournals.org

We now define the operation on the set of sequences /, called
the integral of /, in terms of the derivative of R.

Definition 5
Given a set of sequences / which is a derivative of the regular
set of sequences R and a letter ah the integral of / with respect

to ah denoted by I / dah is denned to be

Ida-, = {I'\I' = aj,l' <= R) . (5)

The integral of/with respect to a finite sequence^ = anai2. ..
ain is defined recursively to be

(6)= ail...ain_iainl c R.

The integration of and the integration by the special letters X
and <f> are denned as follows:

Definition 6
Given a set of sequences /, the integral of / with respect to X is
defined to be

\IdX = I (7)
and the integral of I with respect to (j> is defined to be

<£. (8)

Definition 7
Given the special letters X and <j>, the integral of X with respect

to the letter af is defined to be

lXdat = ai (9)

and the integral of cf> with respect to a letter a(is defined to be

S4da, = 4>. (10)
Since the integrations of / with respect to X and 4> produce /

and 0 respectively, these integrations will be considered as
trivial. We will, hence, consider only the integration of a regular
expression / with respect to a series of single letters to form
another integral / ' which is a subset of the original regular
expression R. Therefore, we will next define what we mean by
the complete integral of a regular expression with respect to the
alphabet A. Before we do this, we must define another integral
called the A-integral.

Definition 8
The X-integral, denoted by Z, for the complete integral DSR is
defined to be

fX if the sequence s e R
\

_
<j> if the sequence s $ R

,- -..

Definition 9
Given the regular expression Da(R, one for every ateA, the
complete integral over the alphabet A is defined to be the regular
expression

R = DXR = £ DaiR dat + Z.
i = oj

(12)

If we substitute any finite sequence s of letters of the alphabet
A for X in the above equation, the complete integral DJi over
the alphabet A becomes

Z. (13)

Next, consider the relationship between the states of the
automaton M and the set of input sequences. Each state qt of

M can be identified by the set of all input sequences, in which
every input sequence will take M from qt into an output state.
From this set of input sequences, we form a regular expression
and obtain the following properties.
Property 6: Given an automaton M, each state qt can be

characterised by a regular expression, DSiR, in which each
input sequence takes M from q(into some output state.
Property 7: If two regular expressions are equivalent, then

their corresponding states of the automaton are equivalent.
Let Si and Sj be two arbitrary input sequences taking the

automaton M from q0 to qt and qj respectively, and let R be the
regular expression defining M. Then, we have the following
theorem.

Theorem 1
The two states <?,- and q} of an automaton M characterised by the
complete integrals DSR and D R are equivalent if and only if
the complete integrals are equivalent.

Proof
The 'if part is evident from Property 7, and we only need to
show the 'only if part of the theorem. Let qt and qs be equiva-
lent. Then the next state of qt and q} via av are either equivalent
or identical. Therefore, DstaR is equal to DSjajR for all ax e A.
Also, if qt is equivalent to qj, both qt and qj have or do not have
an output. Therefore,

V DsiaiR dat + Z = V I Ds.atR da, + Z

DSR = DSR .

(14)

Q.E.D.

As a consequence of this theorem, if we have given a state qt

characterised by the regular expression /?,- which is unknown
and some regular expression s^i + s2, derived through
integration, we have

Rt = stRi + s2 = s^s2 . (15)

In order to avoid confusion, the state q-t and the characterising
regular expression Rt will be represented by just qt from here on,
i.e. (15) can be written as

1i = "Mi + s2 = Si*s2 . (16)

4. An algorithm for constructing a regular expression from a
state diagram
Definition 10:
Two input sequences over the alphabet A are similar with
respect to an automaton M if and only if starting in the same
state qt of M they terminate in the same state q} of M.
From this definition we formulate the following theorem.

Theorem 2
Given the set T of all possible finite input sequences over the
input alphabet A u {X} and the state flow table, T can be
partitioned into n similar classes, where n is the number of
states in the flow table.

Proof
We know that under a deterministic system the input sequence
X carries any state back into itself. Also, we know that every
finite input sequence from the initial state must end with one of
the n states of M. Q.E.D.

Following directly from Theorem 2, we have the following
theorem.

Theorem 3
Associated with each similar class formed from the set T of all
possible input sequences over the input alphabet A u {X} is a
state q,.

Volume 15 Number 3
2*

223

 by on A
ugust 16, 2010

http://com
jnl.oxfordjournals.org

D
ow

nloaded from

http://comjnl.oxfordjournals.org

From Brzozowski's work (1964), we know that each state of
an automaton M can be represented by a regular expression
DSR which is a derivative of the initial regular expression R
with respect to some input sequence s. Using this idea we
choose the minimal input sequence (i.e. input sequence of least
lexographical ordering) from each of the similar classes and
form a minimal derivative DSjR = qs which is equivalent to the
regular expression for the state q}.

Definition 11
A derivative DSjR for state q} is minimal if and only if there
exists no other derivative DSlR for state q} such that sk is less
lexographically than s}.
For simplicity we will write DSkR = qJt where q} is understood

to represent both the state and the regular expression repre-
senting the state. From Definition 9, we recall that each state
can be represented by the complete integral

"
•=o

+ z (17)

where DsjR represents some state q} in the automaton M, and
DSjatR the state entered from q} using the input letter at. Thus,
we have the relation between the derivative of the regular
expression used to determine the states of M and the integral
of the states of M used to form the regular expression. Taking
the set of minimal derivatives, which were discussed in the
preceding paragraph, we place them in a lexographical list
according to their input sequences. The minimal derivative
associated with the null state is skipped since both its integration
and differentiation will always equal <j). Then, a tree can be
constructed1 as follows: Starting from the first minimal deriv-
ative DXR on the list, draw a branch to each DaR, where at e A.
If DaiR is not minimal, then no branches will be drawn from
DaiR. If Da{R is minimal, draw a branch from Da>R to each
DaiajR, where <tj e A. Apply this process repeatedly until the
list of minimal derivatives is exhausted. The corresponding
state is next associated with each of these derivatives. If the
derivative is equal to the null state, the corresponding state is
replaced by </>.
At this point, we have taken each state q{ of the state diagram

and associated it with a derivative DS.R. We have shown that
this derivative is also the complete integral (17). From this
information we have built a tree in which each node corresponds
to a complete integral, DS.R, and each branch corresponds to
one of the integrands Ds.aiR used to form it. We will now
investigate four rules for manipulating these integrals based on
the properties of a regular expression under integration.
Rule 1: Combinatory Rule. If we have the following integrals

over the input alphabet {ah aj}
J DsaR da{ = aiP1

and (18)
DsaRdaj =

then we have the integral
DSR = aiP1 ajPjP2 (19)

Rule 2: Output Rule. If the state represented by this integral
has an output, add X to the integral.
Rule 3: Substitution Rule. If state qk is associated with the

regular expression Pl and the state q} with the regular expression
P2qk, then q} corresponds to P2PX.
Rule 4: Star Rule. If a state qk is associated with

then the integral of qk corresponds to P*(P2 + ^3).
Rules 1 and 2 are based on Definition 2.1 and Definition 8

respectively. These two rules give us the general form for the
complete integral. Rule 3 is the general substitution rule and

needs no further explanation. Rule 4 is a restatement of Arden's
theorem (Arden, 1961).
Using these concepts we state the following algorithm for

determining a regular expression for a given state diagram.
1. Form the flow table and lexographical list of minimal

derivatives beginning with DXR. Go to Step 2.
2. Construct a tree from the minimal derivatives. Go to Step 3.
3. Take the branches from the node corresponding to the last

minimal derivative in the list of Step 1 and integrate
the derivatives of the terminal nodes of the branches. Go to
Step 4.

4. Combine the separate integrals in Step 3 according to the
order of the integral manipulation Rules 1 to 4 to form the
complete integral of the last minimal derivative. Then,
delete this last minimal derivative. Go to Step 5.

5. Repeat Steps 3 and 4 for each minimal derivative in the
reverse order of the list in Step 1 until all the integration is
complete.

The procedure will now be illustrated by the following
example.

Step 1: Given the state diagram in Fig. 1 with q0 and q5 being
the starting state and the null state respectively, we generate the
flow table shown in Fig. 2 and the lexographical list of minimal
derivatives.

DXR
DtR
D10R

A10
Step 2: Using the list of minimal derivatives from Step 1, the

tree shown in Fig. 3 is constructed and the proper state or <f> is
associated with each entry.
Step 3: Integrating Dll00R and Dil0lR, we obtain

S Dll00Rd0 = j (frdO = 0(j) = 4>
!D1101Rdl = [q3d\ = lq3

Fig. 1. The state diagram for the illustrative example

qo

qi

q2

q3

q4

qs

0

qs

q2

q4

qs

qs

1

qi

q3

qs

q3

q3

qs

z

X

Fig. 2. The flow table for Fig. 1

224 The Computer Journal

 by on A
ugust 16, 2010

http://com
jnl.oxfordjournals.org

D
ow

nloaded from

http://comjnl.oxfordjournals.org

D0R-f6

'100

-'1100

Fig. 3. The tree formed from the set of minimal derivatives obtained in
Step 1 for the example

Step 4: Combining these integrals according to Rule 1, we
have

qA = \q3

Step 5: Repeating Steps 3 and 4 for other minimal derivatives
in the reverse order of the list of minimal derivatives in Step 1,
we have

jDllQRd0 = S lq3d0 = 0lq3

SDtliRdl =jq3dl = lq3

q3 = 0lq3 + lq3 + X By Rule 1,2
= (01 + 1)* By Rule 4

SD100RdO = jgld0 = 0gl

SDl0lRd\ =S4>dl = \<j> = 4>
g2 = 0gl By Rule 1

; DIOR do =; ogl do = (%t

SD^Rdl =J(01 + l)*d\ = 1(01 + 1)*
qx = 00g, + 1(01 + 1)* By Rule 1

By Rule 4
£ = <f>
+ \)*d\ = l(00)*l(01 + 1)*

By Rule 1

From the discussion of the algorithm and the illustrative
example, we obtain the following basic properties for the
algorithm.
Property 8: The algorithm is independent of the numbering

of the states.
Property 9: The resultant regular expression for the state

diagram is independent of the order in which the integration is
performed.
Property 10: The resultant regular expression is dependent

only on the tree formed by the minimal derivatives. This tree
is explicitly defined by the algorithm. These properties yield the
following theorem.

= (00)* 1(01 + 1)*

/ D0R dO = J <j> dO = 0<

J DvRd\ = /(00)*l(01

q0 = l(00)*l(01 + 1)*

Theorem 4
The regular expression for a given state diagram obtained by

the above algorithm is unique up to the commutative property
of the sum.

5. Machine implementation

In this paper we have considered the notion of the integral of a
regular expression and have shown how it can be applied to a
state diagram to generate its corresponding regular expression.
The algorithm has been implemented on IBM 360/67 computer.
A variety of state diagrams ranging in size from 3 to 45 states

were used to verify and collect statistical data on the algorithm.
Fig. 4 shows the variation in run time as the number of states
in the diagram increased. A set of state diagrams were formed
using the same number of states and varying their interconnect-
ing paths. The time required to determine the regular expres-
sions from this set of state diagrams was recorded. Changing
the number of states, different sets of state diagrams with
varying interconnecting paths were used. Later the times for
each of separate sets of state diagrams were arranged in ascend-
ing order and graphed. After proper scaling the results were
found to be similar. Fig. 5 shows this basic graph, where Tis the
least amount of time required to compute any regular expres-
sion of n states and the scale along the abscissa gives the
proportion of regular expressions computed from the set of
state diagrams of n states at some time xT, where x > 1. This
increase in the amount of time required to compute the various
regular expressions of the same number of states was considered
to be an indicator of the complexity of that derived regular
expression due to the algorithm. When the state diagram
generated a regular expression of the form R = E or EU*,
where E did not contain the universal sequence U* which for
the set {0, 1} is equal to (0 + 1)*, the run time was almost
minimal. In the case where the regular expression could have
been written in the form R = U*E, the derived regular
expression incorporated the sequence E into the sequence U*,
increasing its complexity and the run time. Combining the
information given in Figs. 4 and 5, we are able to determine the

T
i
M
E

3T

2T

T

0

/ , OVERHEAD
/ / / / / /

15 30 45

NUMBER OF STATES

Fig. 4. Variation in computer run time for state diagrams with
increasing numbers of states

I .6T

I.3T

25 50 75 100

PROPORTION OF REGULAR EXPRESSIONS

Fig. 5. Variation in computer run time for state diagrams with a
constant number of states but varying interconnecting paths

Volume 15 Number 3 225

 by on A
ugust 16, 2010

http://com
jnl.oxfordjournals.org

D
ow

nloaded from

http://comjnl.oxfordjournals.org

4T

3T

M 2T

/ / / / / / /
/ / , OVERHEAD

O 15 30 45

NUMBER OF STATES

Fig. 6. Derived upper and lower bounds for Fig. 4

INPUT

t ("STATE

"[TRANSITION TABLE

CONSTRUCT A LIST

OF INTEGRANDS

INTEGRATE THESE INTEGRANDS

AND STORE THE RESULTS

REGULAR EXPRESSION

OUTPUT

Fig. 7. The general flow chart for the SNOBOL4 program

| CHECK FOR THE NULL STATE |

| SET STATE = INITIAL STATE |

(UNDER X DOES THIS STATE \
GO INTO THE NULL STATE /

I NO /

J"
CONCATENATE X ONTO

I THE INTEGRATION SEQUENCE

SET THE STATE EQUIVALENT
TO THIS SEQUENCE AND

PLACE IT ON THE
INTEGRAND LIST

T

I YES

(is THIS THE LAMBDA STATE)

J£sAs x='o' \

I PLACE STATE ON COMPLETION L I S T]

NO / HAS NEXT STATE ON THE \
INTEGRAND LIST BEEN D O N E /

IYES
, \
< WAS THIS THE LAST STATE)
N j YES /

Fig. 8. Procedure for forming the List of Integrands

upper and lower boundaries for the run time which are given in
Fig. 6.

Appendix
The SNOBOL4 program, whose flowchart is shown in Fig. 7,
consists of basically four parts:

1. An input section.

j
4
REMOVE THE LAST ENTRY FROM

THE INTEGRAL LIST

1 1
INTEGRATE IT W.R.T ITS LAST LETTER

OF ITS INTEGRATION SEQUENCE

A=THE INTEGRAL AND
REMAINING SEQUENCE

B=THE INTEGRAL AND
REMAINING SEQUENCE

i
RULE 1' COMBINATORY RULE

RULE 2- OUTPUT RULE

|

RULE 3- SUBSTITUTION RULE

1
RULE 4> STAR RULE

1
STORE THE RESULTS

IN THE INTEGRAL LIST

1
/ IS THE INTEGRATION SEQUENCE
\ FOR A AND B EQUIVALENT

JYES

[YES

OUTPUT
SECTION

Fig. 9. Procedure for integrating the List

ASSIGN CONTENTS
OF B TO A

~\NO

J

of Integrands

2. An integrand list section.
3. An integration section.
4. An output section.
The input section consists of reading in the state diagram in

the form of flow table, and the output section consists of
printing the derived regular expression. Our emphasis, there-
fore, is placed on the other two sections, the integrand list
shown in Fig. 8, and the integration section shown in Fig. 9.
Before looking at the details of the section on how the integ-

rand list is formed, it is necessary first to define a series of terms
which will be used throughout our discussion:

X = {0, 1} alphabetic letters.
S T A T E = {qo,qu... , q u - l) .
INTEGRATION SEQUENCE = the shortest series of

alphabetic letters needed to go from the initial state to the
state designated in the word STATE.

COMPLETION LIST = a series of storage locations con-
taining the states which have been placed on the
INTEGRAND LIST.

INTEGRAND LIST = a series of storage locations con-
taining an integration sequence and its associated state.

Also, two other words, NULL and LAMBDA are used to
denote the null state and lambda state, if they are used. We
return now to the discussion of how the integrand list is formed.
After the flow table, our representation of the state diagram,

is read into the computer by the SNOBOL4 input procedure,
the program transfers to the second section of the program to
form the integrand list. The following procedure is used:

Step 1: Upon entry into this section, a check is made to see if
the null state is present within the state transition table. This is
done by taking each state, seeing if it has an output and if each
input alphabetic letter {0, 1} will carry the state back into
itself.

(la) If so, NULL is set to the state and transfer is made
to Step 2.

226 The Computer Journal

 by on A
ugust 16, 2010

http://com
jnl.oxfordjournals.org

D
ow

nloaded from

http://comjnl.oxfordjournals.org

< •
'iS THE INI EGRATION SEQUENCE\

FOR A 8 B EQUIVALENT /
YESl I NO

INTEGRAL IS ASSIGNED
THE SUM OF THE INTEGRAL
OF A AND INTEGRAL OF B

INTEGRAL IS ASSIGNED
THE INTEGRAL OF A

Fig. 10. Rule 1. Combinatory rule

DOES THE STATE ASSOCIATED \
.WITH THE INTEGRATION SEQUENCE/

OF A HAVE ON OUTPUT /
YES NO

ADD X TO THE
INTEGRAL

Fig. 11. Rule 2. Output rule

(lb) If not, continue.
Step 2: STATE is set to the initial state.
Step 3: Zis set to '0'.
Step 4: Under the alphabetic letter denoted by X, a check is

made to see if STATE goes into the null state.
(4a) If so, a check is made to see if X is set to '0'. This is

done to see if STATE is possible in the lambda state.
(4a, a) If so, a check is made to see if STATE goes

to the null state under '1 ' .
(4a,a,a) If so, LAMBDA is set to the con-

tents of STATE and transfer is
made to Step 8.

(4a,a,b) If not, X\s set to '1 ' and transfer is
made to Step 5.

(4a,b) If not, transfer is made to Step 8.
(4b) If not, continue.

Step 5: Next, X is concatenated onto the INTEGRATION
SEQUENCE of STATE.
Step 6: This new integration sequence along with its associ-

ated state (not the state in STATE) are added to the INTE-
GRAND LIST.
Step 7: A check is made to see if X is '0'.
(7a) If so, X is set to '1 ' and transfer is made to Step 4.
(7b) If not, continue.

Step 8: Place STATE on the COMPLETION LIST.
Step 9: A check is made to see if the state associated with the

next integration sequence has already been done. This is done
by taking the state and comparing it with each of the states in
the COMPLETION LIST.

(9a) If so, transfer is made to Step 10.
(9b) If not, the associated state is assigned to STATE and

transfer is made to Step 3.
Step 10: A check is made to see if this is the last entry.
(10a) If so, transfer is made to the Integration Section.
(10b) If not, transfer is made to Step 9.

The next section, the integration section, integrates this list

of integrands, and manipulates the results according to the
four rules of manipulation to form a regular expression. Again
before describing the steps followed within this section, we will
look at some additional notation which is used:
A = a storage location containing the integral and remaining

integration sequence after an integrand has been integ-
rated once, i.e., if the integrand is equal to DSm iaiR = P
the integral will be equal to J DSm_iadai = DSm tR =aLP
and the remaining integration sequence is sm_l.

B = a second location like A.
INTEGRAL = another location which is used to contain

the complete integral of the state which is being worked on.
INTEGRAL LIST = a series of storage locations containing

a state and the integral corresponding to that state.
Referring to Fig. 9, we will describe the general procedure for

integrating the integrands of the state diagram and the rules of
manipulating the derived integrals.
Step 1: Remove the last entry from the INTEGRAND LIST

which contains a state and an integration sequence.
Step 2: This integrand is then integrated with respect to the

last letter of the integration sequence.
Step 3: The resulting integral and the remaining integration

sequences are assigned to A.
Step 4: Steps 1 and 2 are repeated and the results assigned to

B.
Step 5: Combinatory Rule, Fig. 10. A check is made to see if

the remaining integration sequence for A and B are equivalent.
(5a) If so, INTEGRAL is assigned the sum of the integral

of A and the integral of B.
(5b) If not, INTEGRAL is assigned the integral of A only.

DOES INTEGRAL CONTAIN ONLY STATE \

FOR WHICH INTEGRATE HAVE BEEN DETERMIND/

NO I YES
I

SUBSTITUTE THE INTEGRALS
FOR THESE STATES

•+I+-

Fig. 12. Rule 3. Substitution rule

DOES THE INTEGRAL CONTAIN THE STATE
TO WHICH IT IS TO BE ASSIGNED

N0 L£ .
COLLECT ALL SEQUENCES CONTAINING

THIS STATE IN THE INTEGRAL

REMOVE THE STATES , STAR
THE SEQUENCE AND PRODUCT
IT WITH THE REMOVING SEQUENCES

Fig. 13. Rule 4. Star rule

Volume 15 Number 3 227

 by on A
ugust 16, 2010

http://com
jnl.oxfordjournals.org

D
ow

nloaded from

http://comjnl.oxfordjournals.org

Step 6: Output Rule, Fig. 11. A check is made to see if the
state associated with its remaining integration sequence has an
output. This is done by taking the remaining integration
sequence, and finding the associated state in the INTEGRAL
LIST and checking this state for an output in the state tran-
sition state which was read in as input.

(6a) If so, X is added to the contents of INTEGRAL.
(6b) If not, continue.

Step 7: Substitution Rule, Fig. 12. A check is made to see if
INTEGRAL contains any state for which integrals have already
been determined. This is done by taking each state, one at a
time, on the INTEGRAL LIST beginning with the first integral
which was determined and checking to see if it is in
INTEGRAL. This is continued until all the states on the
INTEGRAL LIST have been tried.

(7a) If so,
(7a, 1) All the sequences containing the state being

checked are collected.
(7a,2) The corresponding integral is substituted in

for this state.
(7b) If not, continue.

Step 8: Star Rule, Fig. 13. A check is made to see if
INTEGRAL contains the state to which it is to be assigned.
This is done by taking the state associated with the remaining
integration sequence and checking to see if it occurs in the

INTEGRAL.
(8a) If so,

(8a,l) All the sequences containing this state in
INTEGRAL are collected and placed as the
first sequence in the integral.

(8a,2) The state is removed, and the sequence
starred and producted with the remaining
sequences.

(8b) If not, continue.
Step 9: Taking the remaining integration sequence in A, find

the state associated with it in the INTEGRAND LIST. This
state and the contents of INTEGRAL are then placed in the
INTEGRAL LIST.
Step 10: Is the remaining integration sequence in A and B

equivalent.
(10a) If so, a check is made to see if this is the last inte-

gration. This is done by checking to see if both re-
maining sequences are equal to the null set.
(10a,a) If so, transfer to the Output Section.
(10a,b) If not, transfer to Step 1.

(10b) If not, move the contents of B to A and go to Step 4.
As stated before the output section consists of printing the

derived regular expression. A check is also made to see if any
more input is waiting. If so, the process begins again. If not,
the program terminates.

References
ARDEN, D. N. (1961). Delayed logic and finite state machines, Proc. 2nd Ann. Symp. on Switching Circuit Theory and Logical Design, Detroit,

Michigan, p. 133.
BRZOZOWSKI, J. A., and MCCLUSKEY, E. J. (1963). Signal flow graph techniques for sequential circuit state diagrams, IEEE Trans. Elect.

Comp., Vol. EC-12, p. 67.
BRZOZOWSKI, J. A. (1964). Derivatives of regular expressions, / . Assoc. Comp. Mack, Vol. 11, p. 481.
COPI, I. M., ELGOT, C. L., and WRIGHT, J. B. (1958). Realization of events by logical nets, / . Assoc. Comp. Mach., Vol. 5, p. 181.
KLEENE, S. C. (1954). Representation of events in nerve nets and finite automata, Automata Studies, C. E. Shannon and E. J. McCarthy, eds.

(Princeton, N.J.: Princeton University Press), study 34, p. 3.
MCNAUGHTON, R., and YAMADA, H. (1960). Regular expressions and state graphs for automata, IRE Trans, on Elect. Comp., Vol. EC-9,

p. 39.

Book review
An Analysis of Complexity, by H. van Emden, 1971; 86 pages.

{Amsterdam: Mathematical Centre, Tract 35, S3.00)

In many branches of science—numerical taxonomy, pattern recog-
nition, artificial intelligence are some examples—classification is a
necessary precursor of theoretical study. Often the 'why' comes
before the 'how' of classification. A fundamental difficulty is the
choice of criteria that distinguish good classifications from bad ones.
What might be good for one purpose may indeed not be good for
another.
Dr van Emden proceeds to define complexity. A classification is a

set of entities into mutually disjoint classes. A subset of the entities,
one from each class, is a set of paradigms. If each of the remaining
entities is assigned to the same class as its paradigm according to
some measure, the classification is perfect if the same result is
obtained for every possible set of paradigms. Thus classification
depends on similarities or interactions between pairs of entities and
between sets of entities. Measures of dissimilarity are defined to be
matrics. Complexity is defined as the way in which 'a whole is
different from the composition of its parts'. A mathematical defin-
ition of interaction in terms of the theory of information. An amount
of variety, H, exists in a set so defined that H has the same properties
as those which Shannon required the uncertainty of a random vari-
able to have in information theory. Then the amount of complexity
C(S) which a system S has is the difference between the sum of the

varieties of the individual components of the system itself. This can
be related to the interactions between sub-systems of S.
Pairwise interactions between entities to be classified when data is

qualitative may be used to define a distance function without requir-
ing the qualitative data themselves to constitute a matric space thus
allowing a model of classification to be formulated in terms of
information. When objects can be described by points in n-dimen-
sional inner-product spaces, the covariance matrix of the set of
points can be studied. The author gives a maximum entropy
characterisation of the multivariate normal distribution with the aid
of which he proposes a measure of the complexity of a covariance
matrix. He finds that the condition number of the covariance matrix
relates to the complexity.
In a final section he discusses interaction and computational

complexity using Jacobi's iteration method for solving linear
equations as an example. Here, I think, the author has most success.
His work affords an insight into numerical procedures which
promises to be valuable. Certainly one can get fresh understanding of
processes such as Kron's method of tearing for dealing with large
systems, and the various decomposition algorithm of linear pro-
gramming by applying the author's ideas.
All in all, this little book is a well-written immensely readable

introduction to a new and challenging topic.
A. YOUNG (Coleraine)

228 The Computer Journal

 by on A
ugust 16, 2010

http://com
jnl.oxfordjournals.org

D
ow

nloaded from

http://comjnl.oxfordjournals.org

