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Abstract. In real-time systems with threads, resource locking and priority sched-
uling, one faces the problem of Priority Inversion. This problem can make the be-
haviour of threads unpredictable and the resulting bugs can be hard to find. The
Priority Inheritance Protocol is one solution implemented in many systems for
solving this problem, but the correctness of this solution has never been formally
verified in a theorem prover. As already pointed out in the literature, the original
informal investigation of the Property Inheritance Protocol presents a correctness
“proof” for an incorrect algorithm. In this paper we fix the problem of this proof
by making all notions precise and implementing a variant of a solution proposed
earlier. Our formalisation in Isabelle/HOL uncovers facts not mentioned in the
literature, but also shows how to efficiently implement this protocol. Earlier cor-
rect implementations were criticised as too inefficient. Our formalisation is based
on Paulson’s inductive approach to verifying protocols.
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1 Introduction

Many real-time systems need to support threads involving priorities and locking of re-
sources. Locking of resources ensures mutual exclusion when accessing shared data or
devices that cannot be preempted. Priorities allow scheduling of threads that need to
finish their work within deadlines. Unfortunately, both features can interact in subtle
ways leading to a problem, called Priority Inversion. Suppose three threads having pri-
orities H(igh), M (edium) and L(ow). We would expect that the thread H blocks any
other thread with lower priority and itself cannot be blocked by any thread with lower
priority. Alas, in a naive implementation of resource looking and priorities this property
can be violated. Even worse, H can be delayed indefinitely by threads with lower pri-
orities. For this let L be in the possession of a lock for a resource that also H needs. H
must therefore wait for L to exit the critical section and release this lock. The problem
is that L might in turn be blocked by any thread with priority M , and so H sits there
potentially waiting indefinitely. Since H is blocked by threads with lower priorities, the
problem is called Priority Inversion. It was first described in [5] in the context of the
Mesa programming language designed for concurrent programming.
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If the problem of Priority Inversion is ignored, real-time systems can become un-
predictable and resulting bugs can be hard to diagnose. The classic example where this
happened is the software that controlled the Mars Pathfinder mission in 1997 [8]. Once
the spacecraft landed, the software shut down at irregular intervals leading to loss of
project time as normal operation of the craft could only resume the next day (the mis-
sion and data already collected were fortunately not lost, because of a clever system
design). The reason for the shutdowns was that the scheduling software fell victim of
Priority Inversion: a low priority thread locking a resource prevented a high priority
thread from running in time leading to a system reset. Once the problem was found, it
was rectified by enabling the Priority Inheritance Protocol (PIP) [9]3 in the scheduling
software.

The idea behind PIP is to let the thread L temporarily inherit the high priority from
H until L leaves the critical section unlocking the resource. This solves the problem of
H having to wait indefinitely, because L cannot be blocked by threads having priority
M . While a few other solutions exist for the Priority Inversion problem, PIP is one that
is widely deployed and implemented. This includes VxWorks (a proprietary real-time
OS used in the Mars Pathfinder mission, in Boeing’s 787 Dreamliner, Honda’s ASIMO
robot, etc.), but also the POSIX 1003.1c Standard realised for example in libraries for
FreeBSD, Solaris and Linux.

One advantage of PIP is that increasing the priority of a thread can be dynamically
calculated by the scheduler. This is in contrast to, for example, Priority Ceiling [9],
another solution to the Priority Inversion problem, which requires static analysis of the
program in order to prevent Priority Inversion. However, there has also been strong crit-
icism against PIP. For instance, PIP cannot prevent deadlocks when lock dependencies
are circular, and also blocking times can be substantial (more than just the duration of
a critical section). Though, most criticism against PIP centres around unreliable imple-
mentations and PIP being too complicated and too inefficient. For example, Yodaiken
writes in [14]:

“Priority inheritance is neither efficient nor reliable. Implementations are ei-
ther incomplete (and unreliable) or surprisingly complex and intrusive.”

He suggests to avoid PIP altogether by not allowing critical sections to be preempted.
Unfortunately, this solution does not help in real-time systems with low latency require-
ments.

In our opinion, there is clearly a need for investigating correct algorithms for PIP.
A few specifications for PIP exist (in English) and also a few high-level descriptions
of implementations (e.g. in the textbook [11, Section 5.6.5]), but they help little with
actual implementations. That this is a problem in practise is proved by an email from
Baker, who wrote on 13 July 2009 on the Linux Kernel mailing list:

“I observed in the kernel code (to my disgust), the Linux PIP implementation is
a nightmare: extremely heavy weight, involving maintenance of a full wait-for
graph, and requiring updates for a range of events, including priority changes
and interruptions of wait operations.”

3 Sha et al. call it the Basic Priority Inheritance Protocol [9] and others sometimes also call it
Priority Boosting.
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The criticism by Yodaiken, Baker and others suggests to us to look again at PIP from a
more abstract level (but still concrete enough to inform an implementation), and makes
PIP an ideal candidate for a formal verification. One reason, of course, is that the
original presentation of PIP [9], despite being informally “proved” correct, is actually
flawed.

Yodaiken [14] points to a subtlety that had been overlooked in the informal proof by
Sha et al. They specify in [9] that after the thread (whose priority has been raised) com-
pletes its critical section and releases the lock, it “returns to its original priority level.”
This leads them to believe that an implementation of PIP is “rather straightforward” [9].
Unfortunately, as Yodaiken points out, this behaviour is too simplistic. Consider the case
where the low priority thread L locks two resources, and two high-priority threads H
and H ′ each wait for one of them. If L releases one resource so that H , say, can pro-
ceed, then we still have Priority Inversion with H ′ (which waits for the other resource).
The correct behaviour for L is to revert to the highest remaining priority of the threads
that it blocks. The advantage of formalising the correctness of a high-level specification
of PIP in a theorem prover is that such issues clearly show up and cannot be overlooked
as in informal reasoning (since we have to analyse all possible behaviours of threads,
i.e. traces, that could possibly happen).

Contributions: There have been earlier formal investigations into PIP [4,13,3], but they
are using model checking technology. As far as we are aware, this is the first formalised
proof for the correctness of PIP. In contrast to model checking, our formalisation pro-
vides insight into why PIP is correct and allows us to prove stronger properties. For this
Isar and Isabelle/HOL is an attractive tool for exploring definitions and keeping proofs
consistent.

For example, we find through formalization that the choice of next thread to take a
lock when a resource is released is irrelevant for the very basic property of PIP to hold.

Despite the wide use of Priority Inheritance Protocol in real time operating system,
its correctness has never been formally proved and mechanically checked. All existing
verification are based on model checking technology. Full automatic verification gives
little help to understand why the protocol is correct. And results such obtained only
apply to models of limited size. This paper presents a formal verification based on
theorem proving. Machine checked formal proof does help to get deeper understanding.
We found the fact which is not mentioned in the literature, that the choice of next thread
to take over when an critical resource is release does not affect the correctness of the
protocol. The paper also shows how formal proof can help to construct correct and
efficient implementation.

vt (valid trace) was introduced earlier, cite
Paulson’s method has not been used outside security field, except work by Zhang et

al.
How did Sha et al prove it....they did not use Paulson’s method.
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2 Formal Model of the Priority Inheritance Protocol

The Priority Inheritance Protocol, short PIP, is a scheduling algorithm for a single-
processor system.4 Our model of PIP is based on Paulson’s inductive approach to proto-
col verification [7], where the state of a system is given by a list of events that happened
so far. Events of PIP fall into five categories defined as the datatype:

datatype event = Create thread priority
| Exit thread
| Set thread priority reset of the priority for thread
| P thread cs request of resource cs by thread
| V thread cs release of resource cs by thread

whereby threads, priorities and (critical) resources are represented as natural numbers.
The event Set models the situation that a thread obtains a new priority given by the
programmer or user (for example via the nice utility under UNIX). As in Paulson’s
work, we need to define functions that allow us to make some observations about states.
One, called threads, calculates the set of “live” threads that we have seen so far:

threads []
def
= ∅

threads (Create th prio::s)
def
= {th} ∪ threads s

threads (Exit th::s)
def
= threads s − {th}

threads ( ::s)
def
= threads s

In this definition :: stands for list-cons. Another function calculates the priority for a
thread th, which is defined as

priority th []
def
= 0

priority th (Create th ′ prio::s)
def
= if th ′= th then prio else priority th s

priority th (Set th ′ prio::s)
def
= if th ′= th then prio else priority th s

priority th ( ::s)
def
= priority th s

In this definition we set 0 as the default priority for threads that have not (yet) been
created. The last function we need calculates the “time”, or index, at which time a
process had its priority last set.

last set th []
def
= 0

last set th (Create th ′ prio::s)
def
= if th = th ′ then |s| else last set th s

last set th (Set th ′ prio::s)
def
= if th = th ′ then |s| else last set th s

last set th ( ::s)
def
= last set th s

In this definition |s| stands for the length of the list of events s. Again the default value
in this function is 0 for threads that have not been created yet. A precedence of a thread
th in a state s is the pair of natural numbers defined as

4 We shall come back later to the case of PIP on multi-processor systems.
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prec th s
def
= (priority th s, last set th s)

The point of precedences is to schedule threads not according to priorities (because what
should we do in case two threads have the same priority), but according to precedences.
Precedences allow us to always discriminate between two threads with equal priority
by taking into account the time when the priority was last set. We order precedences so
that threads with the same priority get a higher precedence if their priority has been set
earlier, since for such threads it is more urgent to finish their work. In an implementation
this choice would translate to a quite natural FIFO-scheduling of processes with the
same priority.

Next, we introduce the concept of waiting queues. They are lists of threads asso-
ciated with every resource. The first thread in this list (i.e. the head, or short hd) is
chosen to be the one that is in possession of the “lock” of the corresponding resource.
We model waiting queues as functions, below abbreviated as wq. They take a resource
as argument and return a list of threads. This allows us to define when a thread holds,
respectively waits for, a resource cs given a waiting queue function wq.

holds wq th cs
def
= th ∈ set (wq cs) ∧ th = hd (wq cs)

waits wq th cs
def
= th ∈ set (wq cs) ∧ th 6= hd (wq cs)

In this definition we assume set converts a list into a set. At the beginning, that is in the
state where no thread is created yet, the waiting queue function will be the function that
returns the empty list for every resource.

all unlocked
def
= λ . [] (1)

Using holds and waits, we can introduce Resource Allocation Graphs (RAG), which
represent the dependencies between threads and resources. We represent RAGs as rela-
tions using pairs of the form

(T th, C cs) and (C cs, T th)

where the first stands for a waiting edge and the second for a holding edge (C and T
are constructors of a datatype for vertices). Given a waiting queue function, a RAG is
defined as

RAG wq
def
= {(T th, C cs) | waits wq th cs} ∪ {(C cs, T th) | holds wq th cs}

Given three threads and three resources, an instance of a RAG is as follows:

th0 cs1

th1

th2 cs2

cs3

th3

holding
waiting

waiting
holding

holding

waiting

The use of relations for representing RAGs allows us to conveniently define the notion
of the dependants of a thread. This is defined as
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dependants wq th
def
= {th ′ | (T th ′, T th) ∈ (RAG wq)+}

This definition needs to account for all threads that wait for a thread to release a re-
source. This means we need to include threads that transitively wait for a resource being
released (in the picture above this means the dependants of th0 are th1 and th2, but also
th3, which cannot make any progress unless th2 makes progress, which in turn needs
to wait for th1 to finish). If there is a circle in a RAG, then clearly we have a deadlock.
Therefore when a thread requests a resource, we must ensure that the resulting RAG is
not circular.

Next we introduce the notion of the current precedence of a thread th in a state s. It
is defined as

cprec wq s th
def
= Max ({prec th s} ∪ {prec th ′ s | th ′∈ dependants wq th}) (2)

While the precedence prec of a thread is determined by the programmer (for example
when the thread is created), the point of the current precedence is to let scheduler in-
crease this priority, if needed according to PIP. Therefore the current precedence of th
is given as the maximum of the precedence th has in state s and all processes that are
dependants of th. Since the notion dependants is defined as the transitive closure of all
dependent threads, we deal correctly with the problem in the algorithm by Sha et al. [9]
where a priority of a thread is lowered prematurely.

The next function, called schs, defines the behaviour of the scheduler. It will be
defined by recursion on the state (a list of events); schs returns a schedule state, which
we represent as a record consisting of two functions:

(|wq fun, cprec fun|)

The first function is a waiting queue function (that is it takes a resource cs and returns
the corresponding list of threads that wait for it), the second is a function that takes
a thread and returns its current precedence (see (2)). We assume the usual getter and
setter methods for such records.

In the initial state, the scheduler starts with all resources unlocked (see (1)) and the
current precedence of every thread is initialised with (0, 0); that means initial cprec

def
= λ . (0, 0).

Therefore we have

schs []
def
=

(|wq fun = all unlocked, cprec fun = initial cprec|)

The cases for Create, Exit and Set are also straightforward: we calculate the waiting
queue function of the (previous) state s; this waiting queue function wq is unchanged
in the next schedule state—because none of these events lock or release any resources;
for calculating the next cprec fun, we use wq and the function cprec. This gives the
following three clauses for schs:
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schs (Create th prio::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Create th prio::s)|)

schs (Exit th::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Exit th::s)|)

schs (Set th prio::s)
def
=

let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cprec wq (Set th prio::s)|)

More interesting are the cases when a resource, say cs, is locked or released. In these
cases we need to calculate a new waiting queue function. For the event P th cs, we have
to update the function so that the new thread list for cs is old thread list plus the thread
th appended to the end of that list (remember the head of this list is seen to be in the
possession of this resource).

schs (P th cs::s)
def
=

let wq = wq fun (schs s) in
let new wq = wq(cs := (wq cs @ [th])) in
(|wq fun = new wq, cprec fun = cprec new wq (P th cs::s)|)

The clause for event V th cs is similar, except that we need to update the waiting queue
function so that the thread that possessed the lock is deleted from the corresponding
thread list. For this list transformation, we use the auxiliary function release. A simple
version of release would just delete this thread and return the rest, namely

release []
def
= []

release ( ::qs)
def
= qs

In practice, however, often the thread with the highest precedence in the list will get
the lock next. We have implemented this choice, but later found out that the choice of
which thread is chosen next is actually irrelevant for the correctness of PIP. Therefore
we prove the stronger result where release is defined as

release []
def
= []

release ( ::qs)
def
= SOME qs ′. distinct qs ′∧ set qs ′= set qs

SOME stands for Hilbert’s epsilon and implements an arbitrary choice for the next
waiting list. It just has to be a list of distinctive threads and contain the same elements
as qs. This gives for V the clause:

schs (V th cs::s)
def
=

let wq = wq fun (schs s) in
let new wq = release (wq cs) in
(|wq fun = new wq, cprec fun = cprec new wq (V th cs::s)|)
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Having the scheduler function schs at our disposal, we can “lift”, or overload, the
notions waits, holds, RAG and cprec to operate on states only.

holds s
def
= holds (wq fun (schs s))

waits s
def
= waits (wq fun (schs s))

RAG s
def
= RAG (wq fun (schs s))

cprec s
def
= cprec fun (schs s)

With these abbreviations we can introduce the notion of threads being ready in a state
(i.e. threads that do not wait for any resource) and the running thread.

ready s
def
= {th ∈ threads s | ∀ cs. ¬ waits s th cs}

running s
def
= {th ∈ ready s | cprec s th = Max (cprec s ‘ ready s)}

In this definition f ‘ S stands for the set S under the image of the function f. Note that
in the initial case, that is where the list of events is empty, the set threads is empty and
therefore there is no thread ready nor a running. If there is one or more threads ready,
then there can only be one thread running, namely the one whose current precedence
is equal to the maximum of all ready threads. We use the set-comprehension to capture
both possibilites. We can now also define the set of resources that are locked by a thread
in any given state.

resources s th
def
= {cs | (C cs, T th) ∈ RAG s}

These resources are given by the holding edges in the RAG.
Finally we can define what a valid state is in our PIP. For example we cannot ex-

ptect to be able to exit a thread, if it was not created yet. These validity constraints
are characterised by the inductive predicate step. We give five inference rules relating a
state and an event that can happen next.

th /∈ threads s
step s (Create th prio)

th ∈ running s resources s th = ∅
step s (Exit th)

The first rule states that a thread can only be created, if it does not yet exists. Simi-
larly, the second rule states that a thread can only be terminated if it was running and
does not lock any resources anymore (to simplify ). The event Set can happen if the
corresponding thread is running.

th ∈ running s
step s (Set th prio)

If a thread wants to lock a resource, then the thread needs to be running and also we
have to make sure that the resource lock does not lead to a cycle in the RAG. In practice,
ensuring the latter is of course the responsibility of the programmer. Here in our for-
mal model we just exclude such problematic cases in order to make some meaningful
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statements about PIP.5 Similarly, if a thread wants to release a lock on a resource, then
it must be running and in the possession of that lock. This is formally given by the last
two inference rules of step.

th ∈ running s (C cs, T th) /∈ (RAG s)+

step s (P th cs)

th ∈ running s holds s th cs
step s (V th cs)

A valid state of PIP can then be conveniently be defined as follows:

valid state []

valid state s step s e
valid state (e::s)

This completes our formal model of PIP. In the next section we present properties that
show our version of PIP is correct.

3 Correctness Proof

print-locale extend highest gen
thm extend highest gen def
thm extend highest gen axioms def
thm highest gen def

Main lemma

1. s is a valid state (vt s): valid state s.
2. th is a living thread in s (threads s): th ∈ threads s.
3. th has the highest precedence in s (highest): prec th s = Max (cprec s ‘ threads s).
4. The precedence of th is (prio, tm) (preced th): prec th s = (prio, tm).

Lemma 1. If th ′ 6= th and th ′∈ threads (moment i t @ s) and cntP (moment i t @ s) th ′= cntV (moment i t @ s) th ′

and i ≤ j then cntP (moment j t @ s) th ′= cntV (moment j t @ s) th ′ ∧ th ′ ∈ threads
(moment j t @ s) ∧ th ′ /∈ running (moment j t @ s).

Theorem 1. If th ′∈ running (t @ s) then th ′= th ∨ th ′ 6= th ∧ th ′∈ threads s ∧ cntV
s th ′< cntP s th ′.

TO DO

5 This situation is similar to the infamous occurs check in Prolog: in order to say anything
meaningful about unification, we need to perform an occurs check; but in practice the occurs
check is ommited and the responsibility to avoid problems rests with the programmer.
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4 Properties for an Implementation

TO DO

5 Conclusion

The Priority Inheritance Protocol is a classic textbook algorithm used in real-time sys-
tems in order to avoid the problem of Priority Inversion.

A clear and simple understanding of the problem at hand is both a prerequisite and
a byproduct of such an effort, because everything has finally be reduced to the very first
principle to be checked mechanically.

TO DO
no clue about multi-processor case according to [10]

The priority inversion phenomenon was first published in [5]. The two protocols
widely used to eliminate priority inversion, namely PI (Priority Inheritance) and PCE
(Priority Ceiling Emulation), were proposed in [9]. PCE is less convenient to use be-
cause it requires static analysis of programs. Therefore, PI is more commonly used in
practice[6]. However, as pointed out in the literature, the analysis of priority inheri-
tance protocol is quite subtle[?]. A formal analysis will certainly be helpful for us to
understand and correctly implement PI. All existing formal analysis of PI [4,13,3] are
based on the model checking technology. Because of the state explosion problem, model
check is much like an exhaustive testing of finite models with limited size. The results
obtained can not be safely generalized to models with arbitrarily large size. Worse still,
since model checking is fully automatic, it give little insight on why the formal model is
correct. It is therefore definitely desirable to analyze PI using theorem proving, which
gives more general results as well as deeper insight. And this is the purpose of this pa-
per which gives a formal analysis of PI in the interactive theorem prover Isabelle using
Higher Order Logic (HOL). The formalization focuses on on two issues:

1. The correctness of the protocol model itself. A series of desirable properties is
derived until we are fully convinced that the formal model of PI does eliminate
priority inversion. And a better understanding of PI is so obtained in due course.
For example, we find through formalization that the choice of next thread to take
hold when a resource is released is irrelevant for the very basic property of PI to
hold. A point never mentioned in literature.

2. The correctness of the implementation. A series of properties is derived the mean-
ing of which can be used as guidelines on how PI can be implemented efficiently
and correctly.

The rest of the paper is organized as follows: Section 6 gives an overview of PI. Sec-
tion 7 introduces the formal model of PI. Section 8 discusses a series of basic properties
of PI. Section 9 shows formally how priority inversion is controlled by PI. Section 10
gives properties which can be used for guidelines of implementation. Section 11 dis-
cusses related works. Section 12 concludes the whole paper.
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The basic priority inheritance protocol has two problems:
It does not prevent a deadlock from happening in a program with circular lock

dependencies.
A chain of blocking may be formed; blocking duration can be substantial, though

bounded.
Contributions
Despite the wide use of Priority Inheritance Protocol in real time operating system,

it’s correctness has never been formally proved and mechanically checked. All existing
verification are based on model checking technology. Full automatic verification gives
little help to understand why the protocol is correct. And results such obtained only
apply to models of limited size. This paper presents a formal verification based on
theorem proving. Machine checked formal proof does help to get deeper understanding.
We found the fact which is not mentioned in the literature, that the choice of next thread
to take over when an critical resource is release does not affect the correctness of the
protocol. The paper also shows how formal proof can help to construct correct and
efficient implementation.

6 An overview of priority inversion and priority inheritance

Priority inversion refers to the phenomenon when a thread with high priority is blocked
by a thread with low priority. Priority happens when the high priority thread requests
for some critical resource already taken by the low priority thread. Since the high pri-
ority thread has to wait for the low priority thread to complete, it is said to be blocked
by the low priority thread. Priority inversion might prevent high priority thread from
fulfill its task in time if the duration of priority inversion is indefinite and unpredictable.
Indefinite priority inversion happens when indefinite number of threads with medium
priorities is activated during the period when the high priority thread is blocked by the
low priority thread. Although these medium priority threads can not preempt the high
priority thread directly, they are able to preempt the low priority threads and cause it
to stay in critical section for an indefinite long duration. In this way, the high priority
thread may be blocked indefinitely.

Priority inheritance is one protocol proposed to avoid indefinite priority inversion.
The basic idea is to let the high priority thread donate its priority to the low priority
thread holding the critical resource, so that it will not be preempted by medium priority
threads. The thread with highest priority will not be blocked unless it is requesting
some critical resource already taken by other threads. Viewed from a different angle,
any thread which is able to block the highest priority threads must already hold some
critical resource. Further more, it must have hold some critical resource at the moment
the highest priority is created, otherwise, it may never get change to run and get hold.
Since the number of such resource holding lower priority threads is finite, if every one
of them finishes with its own critical section in a definite duration, the duration the
highest priority thread is blocked is definite as well. The key to guarantee lower priority
threads to finish in definite is to donate them the highest priority. In such cases, the
lower priority threads is said to have inherited the highest priority. And this explains
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the name of the protocol: Priority Inheritance and how Priority Inheritance prevents
indefinite delay.

The objectives of this paper are:

1. Build the above mentioned idea into formal model and prove a series of properties
until we are convinced that the formal model does fulfill the original idea.

2. Show how formally derived properties can be used as guidelines for correct and
efficient implementation.

The proof is totally formal in the sense that every detail is reduced to the very first
principles of Higher Order Logic. The nature of interactive theorem proving is for the
human user to persuade computer program to accept its arguments. A clear and simple
understanding of the problem at hand is both a prerequisite and a byproduct of such
an effort, because everything has finally be reduced to the very first principle to be
checked mechanically. The former intuitive explanation of Priority Inheritance is just
such a byproduct.

7 Formal model of Priority Inheritance

In this section, the formal model of Priority Inheritance is presented. The model is based
on Paulson’s inductive protocol verification method, where the state of the system is
modelled as a list of events happened so far with the latest event put at the head.

To define events, the identifiers of threads, priority and critical resources (abbrevi-
ated as cs) need to be represented. All three are represetned using standard Isabelle/HOL
type nat:

type-synonym thread = nat — Type for thread identifiers.
type-synonym priority = nat — Type for priorities.
type-synonym cs = nat — Type for critical sections (or critical resources).

Every event in the system corresponds to a system call, the formats of which are defined
as follows:

datatype event =
Create thread priority |— Thread thread is created with priority priority.
Exit thread |— Thread thread finishing its execution.
P thread cs |— Thread thread requesting critical resource cs.
V thread cs |— Thread thread releasing critical resource cs.
Set thread priority — Thread thread resets its priority to priority.

Resource Allocation Graph (RAG for short) is used extensively in our formal analysis.
The following type node is used to represent nodes in RAG.

datatype node =
Th thread |— Node for thread.
Cs cs — Node for critical resource.

In Paulson’s inductive method, the states of system are represented as lists of events,
which is defined by the following type state:
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type-synonym state = event list

The following function threads is used to calculate the set of live threads (threads s) in
state s.

fun threads :: state⇒ thread set
where
— At the start of the system, the set of threads is empty:
threads [] = {} |
— New thread is added to the threads:
threads (Create thread prio#s) = {thread} ∪ threads s |
— Finished thread is removed:
threads (Exit thread # s) = (threads s) − {thread} |
— Other kind of events does not affect the value of threads:
threads (e#s) = threads s

Functions such as threads, which extract information out of system states, are called
observing functions. A series of observing functions will be defined in the sequel in or-
der to model the protocol. Observing function original priority calculates the original
priority of thread th in state s, expressed as : original priority th s. The original priority
is the priority assigned to a thread when it is created or when it is reset by system call
Set thread priority.

fun original priority :: thread⇒ state⇒ priority
where
— 0 is assigned to threads which have never been created:
original priority thread [] = 0 |
original priority thread (Create thread ′ prio#s) =
(if thread ′= thread then prio else original priority thread s) |

original priority thread (Set thread ′ prio#s) =
(if thread ′= thread then prio else original priority thread s) |

original priority thread (e#s) = original priority thread s

In the following, birthtime th s is the time when thread th is created, observed from state
s. The time in the system is measured by the number of events happened so far since
the very beginning.

fun birthtime :: thread⇒ state⇒ nat
where
birthtime thread [] = 0 |
birthtime thread ((Create thread ′ prio)#s) =

(if (thread = thread ′) then length s else birthtime thread s) |
birthtime thread ((Set thread ′ prio)#s) =

(if (thread = thread ′) then length s else birthtime thread s) |
birthtime thread (e#s) = birthtime thread s

The precedence is a notion derived from priority, where the precedence of a thread is
the combination of its original priority and birth time. The intention is to discriminate
threads with the same priority by giving threads whose priority is assigned earlier higher
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precedences, becasue such threads are more urgent to finish. This explains the following
definition:

definition preced :: thread⇒ state⇒ precedence

where preced thread s
def
= Prc (original priority thread s) (birthtime thread s)

A number of important notions are defined here:

consts
holding :: ′b⇒ thread⇒ cs⇒ bool
waiting :: ′b⇒ thread⇒ cs⇒ bool
depend :: ′b⇒ (node × node) set
dependents :: ′b⇒ thread⇒ thread set

In the definition of the following several functions, it is supposed that the waiting queue
of every critical resource is given by a waiting queue function wq, which servers as
arguments of these functions.

defs (overloaded)

—

We define that the thread which is at the head of waiting queue of resource cs is
holding the resource. This definition is slightly different from tradition where
all threads in the waiting queue are considered as waiting for the resource. This
notion is reflected in the definition of holding wq th cs as follows:

cs holding def :

holding wq thread cs
def
= (thread ∈ set (wq cs) ∧ thread = hd (wq cs))

—
In accordance with the definition of holding wq th cs, a thread th is considered
waiting for cs if it is in the waiting queue of critical resource cs, but not at the
head. This is reflected in the definition of waiting wq th cs as follows:

cs waiting def :

waiting wq thread cs
def
= (thread ∈ set (wq cs) ∧ thread 6= hd (wq cs))

—
depend wq represents the Resource Allocation Graph of the system under the
waiting queue function wq.

cs depend def :

depend (wq::cs⇒ thread list)
def
=

{(Th th, Cs cs) | th cs. waiting wq th cs} ∪ {(Cs cs, Th th) | cs th. holding wq th cs}
—

The following dependents wq th represents the set of threads which are de-
pending on thread th in Resource Allocation Graph depend wq:

cs dependents def :

dependents (wq::cs⇒ thread list) th
def
= {th ′ . (Th th ′, Th th) ∈ (depend wq)ˆ+}

The data structure used by the operating system for scheduling is referred to as
schedule state. It is represented as a record consisting of a function assigning waiting
queue to resources and a function assigning precedence to threads:

record schedule state =
wq fun :: cs⇒ thread list — The function assigning waiting queue.
cprec fun :: thread⇒ precedence — The function assigning precedence.

The following cpreced s th gives the current precedence of thread th under state s. The
definition of cpreced reflects the basic idea of Priority Inheritance that the current prece-
dence of a thread is the precedence inherited from the maximum of all its dependents,
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i.e. the threads which are waiting directly or indirectly waiting for some resources from
it. If no such thread exits, th’s current precedence equals its original precedence, i.e.
preced th s.

definition cpreced :: (cs⇒ thread list)⇒ state⇒ thread⇒ precedence
where cpreced wq s = (λ th. Max ((λ th. preced th s) ‘ ({th} ∪ dependents wq th)))

abbreviation
all unlocked

def
= λ ::cs. ([]::thread list)

abbreviation
initial cprec

def
= λ ::thread. Prc 0 0

abbreviation
release qs

def
= case qs of

[] => []
| ( #qs) => (SOME q. distinct q ∧ set q = set qs)

The following function schs is used to calculate the schedule state schs s. It is the key
function to model Priority Inheritance:

fun schs :: state⇒ schedule state
where
schs [] = (| wq fun = λ cs. [], cprec fun = (λ . Prc 0 0) |) |

—

1. ps is the schedule state of last moment.
2. pwq is the waiting queue function of last moment.
3. pcp is the precedence function of last moment (NOT USED).
4. nwq is the new waiting queue function. It is calculated using a case state-

ment:
(a) If the happening event is P thread cs, thread is added to the end of cs’s

waiting queue.
(b) If the happening event is V thread cs and s is a legal state, th ′ must

equal to thread, because thread is the one currently holding cs. The
case [] =⇒ [] may never be executed in a legal state. the (SOME q.
distinct q ∧ set q = set qs) is used to choose arbitrarily one thread
in waiting to take over the released resource cs. In our representation,
this amounts to rearrange elements in waiting queue, so that one of
them is put at the head.

(c) For other happening event, the schedule state just does not change.
5. ncp is new precedence function, it is calculated from the newly updated

waiting queue function. The dependency of precedence function on wait-
ing queue function is the reason to put them in the same record so that they
can evolve together.

schs (Create th prio # s) =
(let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cpreced wq (Create th prio # s)|))

| schs (Exit th # s) =
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(let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cpreced wq (Exit th # s)|))

| schs (Set th prio # s) =
(let wq = wq fun (schs s) in
(|wq fun = wq, cprec fun = cpreced wq (Set th prio # s)|))

| schs (P th cs # s) =
(let wq = wq fun (schs s) in
let new wq = wq(cs := (wq cs @ [th])) in
(|wq fun = new wq, cprec fun = cpreced new wq (P th cs # s)|))

| schs (V th cs # s) =
(let wq = wq fun (schs s) in
let new wq = wq(cs := release (wq cs)) in
(|wq fun = new wq, cprec fun = cpreced new wq (V th cs # s)|))

lemma cpreced initial:
cpreced (λ cs. []) [] = (λ . (Prc 0 0))

apply(simp add: cpreced def )
apply(simp add: cs dependents def cs depend def cs waiting def cs holding def )
apply(simp add: preced def )
done

lemma sch old def :
schs (e#s) = (let ps = schs s in

let pwq = wq fun ps in
let nwq = case e of

P th cs⇒ pwq(cs:=(pwq cs @ [th])) |
V th cs⇒ let nq = case (pwq cs) of

[]⇒ [] |
( #qs)⇒ (SOME q. distinct q ∧ set q = set qs)

in pwq(cs:=nq) |
⇒ pwq

in let ncp = cpreced nwq (e#s) in
(|wq fun = nwq, cprec fun = ncp|)

)
apply(cases e)
apply(simp all)
done

The following wq is a shorthand for wq fun.

definition wq :: state⇒ cs⇒ thread list
where wq s = wq fun (schs s)

The following cp is a shorthand for cprec fun.

definition cp :: state⇒ thread⇒ precedence

where cp s
def
= cprec fun (schs s)
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Functions holding, waiting, depend and dependents still have the same meaning, but
redefined so that they no longer depend on the fictitious waiting queue function wq, but
on system state s.

defs (overloaded)
s holding abv:

holding (s::state)
def
= holding (wq fun (schs s))

s waiting abv:

waiting (s::state)
def
= waiting (wq fun (schs s))

s depend abv:

depend (s::state)
def
= depend (wq fun (schs s))

s dependents abv:

dependents (s::state)
def
= dependents (wq fun (schs s))

The following lemma can be proved easily:

lemma
s holding def :

holding (s::state) th cs
def
= (th ∈ set (wq fun (schs s) cs) ∧ th = hd (wq fun (schs s)

cs))
by (auto simp:s holding abv wq def cs holding def )

lemma s waiting def :

waiting (s::state) th cs
def
= (th ∈ set (wq fun (schs s) cs) ∧ th 6= hd (wq fun (schs s)

cs))
by (auto simp:s waiting abv wq def cs waiting def )

lemma s depend def :
depend (s::state) =
{(Th th, Cs cs) | th cs. waiting (wq s) th cs} ∪ {(Cs cs, Th th) | cs th. holding (wq s)

th cs}
by (auto simp:s depend abv wq def cs depend def )

lemma
s dependents def :

dependents (s::state) th
def
= {th ′ . (Th th ′, Th th) ∈ (depend (wq s))ˆ+}

by (auto simp:s dependents abv wq def cs dependents def )

The following function readys calculates the set of ready threads. A thread is ready
for running if it is a live thread and it is not waiting for any critical resource.

definition readys :: state⇒ thread set

where readys s
def
= {th . th ∈ threads s ∧ (∀ cs. ¬ waiting s th cs)}

The following function runing calculates the set of running thread, which is the ready
thread with the highest precedence.

definition runing :: state⇒ thread set
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where runing s
def
= {th . th ∈ readys s ∧ cp s th = Max ((cp s) ‘ (readys s))}

The following function holdents s th returns the set of resources held by thread th in
state s.

definition holdents :: state⇒ thread⇒ cs set
where holdents s th

def
= {cs . (Cs cs, Th th) ∈ depend s}

cntCS s th returns the number of resources held by thread th in state s:

definition cntCS :: state⇒ thread⇒ nat
where cntCS s th = card (holdents s th)

The fact that event e is eligible to happen next in state s is expressed as step s e. The
predicate step is inductively defined as follows:

inductive step :: state⇒ event⇒ bool
where
— A thread can be created if it is not a live thread:
thread create: [[thread /∈ threads s]] =⇒ step s (Create thread prio) |
— A thread can exit if it no longer hold any resource:
thread exit: [[thread ∈ runing s; holdents s thread = {}]] =⇒ step s (Exit thread) |

—

A thread can request for an critical resource cs, if it is running and the request
does not form a loop in the current RAG. The latter condition is set up to avoid
deadlock. The condition also reflects our assumption all threads are carefully
programmed so that deadlock can not happen:

thread P: [[thread ∈ runing s; (Cs cs, Th thread) /∈ (depend s)ˆ+]] =⇒
step s (P thread cs) |

— A thread can release a critical resource cs if it is running and holding that
resource:

thread V: [[thread ∈ runing s; holding s thread cs]] =⇒ step s (V thread cs) |
— A thread can adjust its own priority as long as it is current running:
thread set: [[thread ∈ runing s]] =⇒ step s (Set thread prio)

With predicate step, the fact that s is a legal state in Priority Inheritance protocol can be
expressed as: vt step s, where the predicate vt can be defined as the following:

inductive vt :: state⇒ bool
where
— Empty list [] is a legal state in any protocol:
vt nil[intro]: vt [] |
— If s a legal state, and event e is eligible to happen in state s, then e#s is a legal

state as well:
vt cons[intro]: [[vt s; step s e]] =⇒ vt (e#s)

It is easy to see that the definition of vt is generic. It can be applied to any step predicate
to get the set of legal states.

The following two functions the cs and the th are used to extract critical resource and
thread respectively out of RAG nodes.

fun the cs :: node⇒ cs
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where the cs (Cs cs) = cs

fun the th :: node⇒ thread
where the th (Th th) = th

The following predicate next th describe the next thread to take over when a critical
resource is released. In next th s th cs t, th is the thread to release, t is the one to take
over.

definition next th:: state⇒ thread⇒ cs⇒ thread⇒ bool
where next th s th cs t = (∃ rest. wq s cs = th#rest ∧ rest 6= [] ∧

t = hd (SOME q. distinct q ∧ set q = set rest))

The function count Q l is used to count the occurrence of situation Q in list l:

definition count :: ( ′a⇒ bool)⇒ ′a list⇒ nat
where count Q l = length (filter Q l)

The following cntP s returns the number of operation P happened before reaching state
s.

definition cntP :: state⇒ thread⇒ nat
where cntP s th = count (λ e. ∃ cs. e = P th cs) s

The following cntV s returns the number of operation V happened before reaching state
s.

definition cntV :: state⇒ thread⇒ nat
where cntV s th = count (λ e. ∃ cs. e = V th cs) s

8 General properties of Priority Inheritance

The following are several very basic prioprites:

1. All runing threads must be ready (runing ready):

running s ⊆ ready s

2. All ready threads must be living (readys threads):

ready s ⊆ threads s

3. There are finite many living threads at any moment (finite threads):

valid state s =⇒ finite (threads s)

4. Every waiting queue does not contain duplcated elements (wq distinct):

valid state s =⇒ distinct (wq s cs)

5. All threads in waiting queues are living threads (wq threads):
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[[valid state s; th ∈ set (wq s cs)]] =⇒ th ∈ threads s

6. The event which can get a thread into waiting queue must be P-events (block pre):

[[valid state (e::s); thread /∈ set (wq s cs); thread ∈ set (wq (e::s) cs)]]
=⇒ e = P thread cs

7. A thread may never wait for two different critical resources (waiting unique):

[[valid state s; waits s th cs1; waits s th cs2]] =⇒ cs1 = cs2

8. Every resource can only be held by one thread (held unique):

[[valid state s; holds s th1 cs; holds s th2 cs]] =⇒ th1 = th2

9. Every living thread has an unique precedence (preced unique):

[[prec th1 s = prec th2 s; th1 ∈ threads s; th2 ∈ threads s]] =⇒ th1 = th2

The following lemmas show how RAG is changed with the execution of events:

1. Execution of Set does not change RAG (depend set unchanged):

RAG (Set th prio::s) = RAG s

2. Execution of Create does not change RAG (depend create unchanged):

RAG (Create th prio::s) = RAG s

3. Execution of Exit does not change RAG (depend exit unchanged):

RAG (Exit th::s) = RAG s

4. Execution of P (step depend p):

valid state (P th cs::s) =⇒
RAG (P th cs::s) =
(if wq s cs = [] then RAG s ∪ {(C cs, T th)} else RAG s ∪ {(T th, C cs)})

5. Execution of V (step depend v):

valid state (V th cs::s) =⇒
RAG (V th cs::s) =
RAG s − {(C cs, T th)} − {(T th ′, C cs) | next th s th cs th ′} ∪
{(C cs, T th ′) | next th s th cs th ′}

These properties are used to derive the following important results about RAG:

1. RAG is loop free (acyclic depend):

valid state s =⇒ acyclic (RAG s)

2. RAGs are finite (finite depend):
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valid state s =⇒ finite (RAG s)

3. Reverse paths in RAG are well founded (wf dep converse):

valid state s =⇒ wf ((RAG s)−1)

4. The dependence relation represented by RAG has a tree structure (unique depend):

[[valid state s; (n, n1) ∈ RAG s; (n, n2) ∈ RAG s]] =⇒ n1 = n2

5. All threads in RAG are living threads (dm depend threads and range in):

[[valid state s; T th ∈ Domain (RAG s)]] =⇒ th ∈ threads s
[[valid state s; T th ∈ Range (RAG s)]] =⇒ th ∈ threads s

The following lemmas show how every node in RAG can be chased to ready threads:

1. Every node in RAG can be chased to a ready thread (chain building):

[[valid state s; node ∈ Domain (RAG s)]]
=⇒ ∃ th ′. th ′∈ ready s ∧ (node, T th ′) ∈ (RAG s)+

2. The ready thread chased to is unique (dchain unique):

[[valid state s; (n, T th1) ∈ (RAG s)+; th1 ∈ ready s; (n, T th2) ∈ (RAG s)+;
th2 ∈ ready s]]
=⇒ th1 = th2

Properties about next th:

1. The thread taking over is different from the thread which is releasing (next th neq):

[[valid state s; next th s th cs th ′]] =⇒ th ′ 6= th

2. The thread taking over is unique (next th unique):

[[next th s th cs th1; next th s th cs th2]] =⇒ th1 = th2

Some deeper results about the system:

1. There can only be one running thread (runing unique):

[[valid state s; th1 ∈ running s; th2 ∈ running s]] =⇒ th1 = th2

2. The maximum of cprec and prec are equal (max cp eq):

valid state s =⇒
Max (cprec s ‘ threads s) = Max ((λth. prec th s) ‘ threads s)

3. There must be one ready thread having the max cprec-value (max cp readys threads):

valid state s =⇒ Max (cprec s ‘ ready s) = Max (cprec s ‘ threads s)
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The relationship between the count of P and V and the number of critical resources held
by a thread is given as follows:

1. The V-operation decreases the number of critical resources one thread holds (cntCS v dec)

valid state (V thread cs::s) =⇒
cntCS (V thread cs::s) thread + 1 = cntCS s thread

2. The number of V never exceeds the number of P (cnp cnv cncs):

valid state s =⇒
cntP s th =
cntV s th +
(if th ∈ ready s ∨ th /∈ threads s then cntCS s th else cntCS s th + 1)

3. The number of V equals the number of P when the relevant thread is not living:
(cnp cnv eq):

[[valid state s; th /∈ threads s]] =⇒ cntP s th = cntV s th

4. When a thread is not living, it does not hold any critical resource (not thread holdents):

[[valid state s; th /∈ threads s]] =⇒ resources s th = ∅

5. When the number of P equals the number of V, the relevant thread does not hold
any critical resource, therefore no thread can depend on it (count eq dependents):

[[valid state s; cntP s th = cntV s th]] =⇒ dependants (wq s) th = ∅

9 Key properties

The essential of Priority Inheritance is to avoid indefinite priority inversion. For this
purpose, we need to investigate what happens after one thread takes the highest prece-
dence. A locale is used to describe such a situation, which assumes:

1. s is a valid state (vt s): valid state s.
2. th is a living thread in s (threads s): th ∈ threads s.
3. th has the highest precedence in s (highest): prec th s = Max (cprec s ‘ threads s).
4. The precedence of th is (prio, tm) (preced th): prec th s = (prio, tm).

Under these assumptions, some basic priority can be derived for th:

1. The current precedence of th equals its own precedence (eq cp s th):

cprec s th = prec th s

2. The current precedence of th is the highest precedence in the system (highest cp preced):

cprec s th = Max ((λth ′. prec th ′ s) ‘ threads s)
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3. The precedence of th is the highest precedence in the system (highest preced thread):

prec th s = Max ((λth ′. prec th ′ s) ‘ threads s)

4. The current precedence of th is the highest current precedence in the system (high-
est ′):

cprec s th = Max (cprec s ‘ threads s)

To analysis what happens after state s a sub-locale is defined, which assumes:

1. t is a valid extension of s (vt t): valid state (t @ s).
2. Any thread created in t has priority no higher than prio, therefore its precedence can

not be higher than th, therefore th remain to be the one with the highest precedence
(create low):

Create th ′ prio ′∈ set t =⇒ prio ′≤ prio

3. Any adjustment of priority in t does not happen to th and the priority set is no
higher than prio, therefore th remain to be the one with the highest precedence
(set diff low):

Set th ′ prio ′∈ set t =⇒ th ′ 6= th ∧ prio ′≤ prio

4. Since we are investigating what happens to th, it is assumed th does not exit during
t (exit diff ):

Exit th ′∈ set t =⇒ th ′ 6= th

All these assumptions are put into a predicate extend highest gen. It can be proved that
extend highest gen holds for any moment i in it t (red moment):

extend highest gen s th prio tm (moment i t)

From this, an induction principle can be derived for t, so that properties already
derived for t can be applied to any prefix of t in the proof of new properties about t
(ind):

[[R [];∧
e t. [[valid state (t @ s); step (t @ s) e;

extend highest gen s th prio tm t;
extend highest gen s th prio tm (e::t); R t]]
=⇒ R (e::t)]]

=⇒ R t

The following properties can be proved about th in t:

1. In t, thread th is kept live and its precedence is preserved as well (th kept):

th ∈ threads (t @ s) ∧ prec th (t @ s) = prec th s

2. In t, thread th’s precedence is always the maximum among all living threads (max preced):
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prec th (t @ s) = Max ((λth ′. prec th ′ (t @ s)) ‘ threads (t @ s))

3. In t, thread th’s current precedence is always the maximum precedence among all
living threads (th cp max preced):

cprec (t @ s) th = Max ((λth ′. prec th ′ (t @ s)) ‘ threads (t @ s))

4. In t, thread th’s current precedence is always the maximum current precedence
among all living threads (th cp max):

cprec (t @ s) th = Max (cprec (t @ s) ‘ threads (t @ s))

5. In t, thread th’s current precedence equals its precedence at moment s (th cp preced):

cprec (t @ s) th = prec th s

The main theorem of this part is to characterizing the running thread during t (runing inversion 2):

th ′∈ running (t @ s) =⇒
th ′= th ∨ th ′ 6= th ∧ th ′∈ threads s ∧ cntV s th ′< cntP s th ′

According to this, if a thread is running, it is either th or was already live and held some
resource at moment s (expressed by: cntV s th ′< cntP s th ′).

Since there are only finite many threads live and holding some resource at any mo-
ment, if every such thread can release all its resources in finite duration, then after finite
duration, none of them may block th anymore. So, no priority inversion may happen
then.

10 Properties to guide implementation

The properties (especially runing inversion 2) convinced us that the model defined in
Section 7 does prevent indefinite priority inversion and therefore fulfills the fundamen-
tal requirement of Priority Inheritance protocol. Another purpose of this paper is to
show how this model can be used to guide a concrete implementation. As discussed in
Section 5.6.5 of [11], the implementation of Priority Inheritance in Solaris uses sophis-
ticated linking data structure. Except discussing two scenarios to show how the data
structure should be manipulated, a lot of details of the implementation are missing. In
[3,4,13] the protocol is described formally using different notations, but little informa-
tion is given on how this protocol can be implemented efficiently, especially there is no
information on how these data structure should be manipulated.

Because the scheduling of threads is based on current precedence, the central is-
sue in implementation of Priority Inheritance is how to compute the precedence cor-
rectly and efficiently. As long as the precedence is correct, it is very easy to modify the
scheduling algorithm to select the correct thread to execute.

First, it can be proved that the computation of current precedence cprec of a threads
only involves its children (cp rec):

valid state s =⇒ cprec s th = Max ({prec th s} ∪ cprec s ‘ children s th)
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where children s th represents the set of children of th in the current RAG:

children s th
def
= {th ′ | (T th ′, T th) ∈ child s}

where the definition of child is:

child s
def
= {(T th ′, T th) | ∃ cs. (T th ′, C cs) ∈ RAG s ∧ (C cs, T th) ∈ RAG s}

The aim of this section is to fill the missing details of how current precedence should
be changed with the happening of events, with each event type treated by one subsec-
tion, where the computation of cprec uses lemma cp rec.

10.1 Event Set th prio

The context under which event Set th prio happens is formalized as follows:

1. The formation of s (s def ): s
def
= Set th prio::s ′.

2. State s is a valid state (vt s): valid state s. This implies event Set th prio is eligible
to happen under state s ′ and state s ′ is a valid state.

Under such a context, we investigated how the current precedence cprec of threads
change from state s ′ to s and obtained the following conclusions:

1. All threads with no dependence relation with thread th have their cprec-value un-
changed (eq cp):

[[th ′ 6= th; th /∈ dependants s th ′]] =⇒ cprec s th ′= cprec s ′ th ′

This lemma implies the cprec-value of th and those threads which have a depen-
dence relation with th might need to be recomputed. The way to do this is to start
from th and follow the RAG-chain to recompute the cprec-value of every encoun-
tered thread using lemma cp rec. Since the RAG-relation is loop free, this proce-
dure can always stop. The the following lemma shows this procedure actually could
stop earlier.

2. The following two lemma shows, if a thread the re-computation of which gives an
unchanged cprec-value, the procedure described above can stop.
(a) Lemma eq up self shows if the re-computation of th’s cprec gives the same

result, the procedure can stop:
[[th ∈ dependants s th ′′; cprec s th = cprec s ′ th]]
=⇒ cprec s th ′′= cprec s ′ th ′′

(b) Lemma eq up) shows if the re-computation at intermediate threads gives un-
changed result, the procedure can stop:
[[th ∈ dependants s th ′; th ′∈ dependants s th ′′; cprec s th ′= cprec s ′ th ′]]
=⇒ cprec s th ′′= cprec s ′ th ′′
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10.2 Event V th cs

The context under which event V th cs happens is formalized as follows:

1. The formation of s (s def ): s
def
= V th cs::s ′.

2. State s is a valid state (vt s): valid state s. This implies event V th cs is eligible to
happen under state s ′ and state s ′ is a valid state.

Under such a context, we investigated how the current precedence cprec of threads
change from state s ′ to s.

Two subcases are considerted, where the first is that there exits th ′ such that

next th s ′ th cs th ′

holds, which means there exists a thread th ′ to take over the resource release by thread
th. In this sub-case, the following results are obtained:

1. The change of RAG is given by lemma depend s:

RAG s = RAG s ′− {(C cs, T th)} − {(T th ′, C cs)} ∪ {(C cs, T th ′)}

which shows two edges are removed while one is added. These changes imply how
the current precedences should be re-computed.

2. First all threads different from th and th ′ have their cprec-value kept, therefore do
not need a re-computation (cp kept):

[[th ′′ 6= th; th ′′ 6= th ′]] =⇒ cprec s th ′′= cprec s ′ th ′′

This lemma also implies, only the cprec-values of th and th ′ need to be recomputed.

The other sub-case is when for all th ′

¬ next th s ′ th cs th ′

holds, no such thread exists. The following results can be obtained for this sub-case:

1. The change of RAG is given by lemma depend s:

RAG s = RAG s ′− {(C cs, T th)}

which means only one edge is removed.
2. In this case, no re-computation is needed (eq cp):

cprec s th ′= cprec s ′ th ′
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10.3 Event P th cs

The context under which event P th cs happens is formalized as follows:

1. The formation of s (s def ): s
def
= P th cs::s ′.

2. State s is a valid state (vt s): valid state s. This implies event P th cs is eligible to
happen under state s ′ and state s ′ is a valid state.

This case is further divided into two sub-cases. The first is when wq s ′ cs = [] holds.
The following results can be obtained:

1. One edge is added to the RAG (depend s):

RAG s = RAG s ′∪ {(C cs, T th)}
2. No re-computation is needed (eq cp):

cprec s th ′= cprec s ′ th ′

The second is when wq s ′ cs 6= [] holds. The following results can be obtained:

1. One edge is added to the RAG (depend s):

RAG s = RAG s ′∪ {(T th, C cs)}
2. Threads with no dependence relation with th do not need a re-computation of their

cprec-values (eq cp):

th /∈ dependants s th ′=⇒ cprec s th ′= cprec s ′ th ′

This lemma implies all threads with a dependence relation with th may need re-
computation.

3. Similar to the case of Set, the computation procedure could stop earlier (eq up):

[[th ∈ dependants s th ′; th ′∈ dependants s th ′′; cprec s th ′= cprec s ′ th ′]]
=⇒ cprec s th ′′= cprec s ′ th ′′

10.4 Event Create th prio

The context under which event Create th prio happens is formalized as follows:

1. The formation of s (s def ): s
def
= Create th prio::s ′.

2. State s is a valid state (vt s): valid state s. This implies event Create th prio is
eligible to happen under state s ′ and state s ′ is a valid state.

The following results can be obtained under this context:

1. The RAG does not change (eq dep):

RAG s = RAG s ′

2. All threads other than th do not need re-computation (eq cp):

th ′ 6= th =⇒ cprec s th ′= cprec s ′ th ′

3. The cprec-value of th equals its precedence (eq cp th):

cprec s th = prec th s
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10.5 Event Exit th

The context under which event Exit th happens is formalized as follows:

1. The formation of s (s def ): s
def
= Exit th::s ′.

2. State s is a valid state (vt s): valid state s. This implies event Exit th is eligible to
happen under state s ′ and state s ′ is a valid state.

The following results can be obtained under this context:

1. The RAG does not change (eq dep):

RAG s = RAG s ′

2. All threads other than th do not need re-computation (eq cp):

th ′ 6= th =⇒ cprec s th ′= cprec s ′ th ′

Since th does not live in state s, there is no need to compute its cprec-value.

11 Related works

1. Integrating Priority Inheritance Algorithms in the Real-Time Specification for Java
[13] models and verifies the combination of Priority Inheritance (PI) and Priority
Ceiling Emulation (PCE) protocols in the setting of Java virtual machine using ex-
tended Timed Automata(TA) formalism of the UPPAAL tool. Although a detailed
formal model of combined PI and PCE is given, the number of properties is quite
small and the focus is put on the harmonious working of PI and PCE. Most key fea-
tures of PI (as well as PCE) are not shown. Because of the limitation of the model
checking technique used there, properties are shown only for a small number of
scenarios. Therefore, the verification does not show the correctness of the formal
model itself in a convincing way.

2. Formal Development of Solutions for Real-Time Operating Systems with TLA+/TLC
[3]. A formal model of PI is given in TLA+. Only 3 properties are shown for PI us-
ing model checking. The limitation of model checking is intrinsic to the work.

3. Synchronous modeling and validation of priority inheritance schedulers [4]. Gives
a formal model of PI and PCE in AADL (Architecture Analysis & Design Lan-
guage) and checked several properties using model checking. The number of prop-
erties shown there is less than here and the scale is also limited by the model check-
ing technique.

4. The Priority Ceiling Protocol: Formalization and Analysis Using PVS [2]. For-
malized another protocol for Priority Inversion in the interactive theorem proving
system PVS.

There are several works on inversion avoidance:

1. Solving the group priority inversion problem in a timed asynchronous system [12].
The notion of Group Priority Inversion is introduced. The main strategy is still
inversion avoidance. The method is by reordering requests in the setting of Client-
Server.
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2. A Formalization of Priority Inversion [1]. Formalized the notion of Priority Inver-
sion and proposes methods to avoid it.

Examples of inaccurate specification of the protocol ???.

12 Conclusions

The work in this paper only deals with single CPU configurations. The ”one CPU”
assumption is essential for our formalisation, because the main lemma fails in multi-
CPU configuration. The lemma says that any runing thead must be the one with the
highest prioirty or already held some resource when the highest priority thread was
initiated. When there are multiple CPUs, it may well be the case that a threads did not
hold any resource when the highest priority thread was initiated, but that thread still
runs after that moment on a separate CPU. In this way, the main lemma does not hold
anymore.

There are some works deals with priority inversion in multi-CPU configurations[???],
but none of them have given a formal correctness proof. The extension of our formal
proof to deal with multi-CPU configurations is not obvious. One possibility, as sug-
gested in paper [???], is change our formal model (the defiintion of ”schs”) to give the
released resource to the thread with the highest prioirty. In this way, indefinite prioirty
inversion can be avoided, but for a quite different reason from the one formalized in
this paper (because the ”mail lemma” will be different). This means a formal correct-
ness proof for milt-CPU configuration would be quite different from the one given in
this paper. The solution of prioirty inversion problem in mult-CPU configurations is
a different problem which needs different solutions which is outside the scope of this
paper.
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