
Derivative Parsing

Daniel Spiewak

December 2, 2010

1 Defining the Derivative

Def: Any context-free grammar, G, is composed entirely of rules with the following five forms
(implicitly, four):

• G = c (terminal)

• G = ε (null)

• G = G1 ◦G2 (concatenation)

• G = µg . G1 ∪G2 (union)

• G = g (recursion)

Note that this is merely an alternative way to formalize context-free grammars.
We can define a rewrite operation on a grammar which we call “the derivative with respect to

c” (where c is some terminal). This operation on some grammar G will be expressed as Dc(G).
The operation will produce a new grammar which obeys the following identity (let L(G) mean “the
language generated by G”):

L(G) = {cw1, w2, cw3, cw4, . . .}
L(Dc(G)) = {w1, w3, w4, . . .}

Thus, L(Dc(G)) is precisely the language of G consisting of only the strings which start with c

where the terminal c has been removed. Intuitively, we start out by assuming that c is in the
First set of G. We then derive a new grammar, G′, where First(G′) is exactly Second(G), and
analogously with higher-order sets. We are forcibly consuming c and rewriting the grammar to
reflect this fact. Another way to put this would be:

cw ∈ L(G)⇒ w ∈ L(Dc(G))

If c is not in the First set of G, then Dc(G) = ∅.
We can define the derivative over all five grammatical forms in the following way:

Dc(c) = ε
Dc(ε) = ∅

Dc(µg . G1 ∪G2) = µg′ . Dc(G1) ∪Dc(G2)
Dc(g) = g′ where g 7→ G and g′ 7→ Dc(G)

Dc(G1 ◦G2) =

{
Dc(G1) ◦G2 if ε 6∈ L(G1)

µg′ . (Dc(G1) ◦G2) ∪Dc(G2) otherwise

1

Note that there is a certain difficulty when it comes to the derivative Dc(g), where g is a recursive
reference to an operation which we are currently deriving. This difficulty arrises from the fact that
context-free grammars can be recursive (as formalized through the µg . G1 ∪G2 notation).

The solution to this problem is to use a call-by-need evaluation strategy, allowing incremental
computation [1] of the derivative of a union operation. This incremental computation is critical as
it allows the derivative to preserve the recursion which is present in the original grammar. Thus,
the derivative will be recursive iff the original grammar is recursive. Further, the derivative will
be recursive in exactly the same rules as the original grammar. This is born out by the definition
of the derivative in the recursive case, which simply uses the derivative of the recursive operation
which must have been previously partially computed.

2 Defining the Algorithm

Given this operation, we can define a context-free recognition algorithm for some input stream ct,
where c is the first token in the stream and t is the remainder:

recognize(ct, G) = Dc(G) 6= ∅ ∧ recognize(t,Dc(G))
recognize(ε,G) = ε ∈ L(G)

Thus, we begin by assuming that the input stream is valid. If this is the case, then we can recursively
take the derivative with respect to each successive token. If we at any point arrive at the null set,
then there was no way that the grammar in question could have consumed the curent token and
the recognition will be False. If we reach the end of the stream and have not achieved a grammar
who’s language contains ε, then while we may have a valid prefix, we do not have a valid string
and the recognition will again be False. Otherwise, if we reach the end of the stream and have
rewritten to a grammar which generates a language containing the empty string, then we have
successfully recognized the input stream.

3 Proofs

3.1 Complexity of Dc

Lemma The derivative has an asymptotic complexity of O(k) where k is the number of concatenations
in the grammar.

Proof By induction.

Case Dc(c)

Requires O(1) steps.

Case Dc(ε)

Requires O(1) steps.

Case Dc(g)

Uses a pre-computed partial result, and so requires O(1) steps.

Case Dc(µg . G1 ∪G2)

By induction, taking the derivative of G1 will require O(k1) (where k1 is the number
of concatenations in G1). Analogously for G2 requiring O(k2). Note that either G1 or

2

G2 (or both) may contain G. Thus, some memoization must be taking place at each
level of the deconstruction. This implies that we will only compute the derivative for a
particular operation at most once.

Thus, we don’t need to concern ourselves with overlap between k1 and k2. In the worst-
case, G1 and G2 will be entirely disjoint. In this case, the number of concatenations in
G will be precisely the number in G1 plus the number in G2. Thus, taking the derivative
of G will be O(k), where k is the number of concatenations in G.

Case Dc(G1 ◦G2)

By induction, taking the derivative of G1 will require O(k1) (where k1 is the number of
concatenations in G1). Analogously for G2 requiring O(k2). The argument here is quite
analogous to the argument we made for G1 ∪ G2. However, the difference is that the
number of concatenations in G is in fact k1 + k2 + 1, since the operation represented by
the root of G is itself a concatenation.

This extra + 1 is necessary as we require an extra step to derive concatenations. Recall
the definition of the derivative for concatenation:{

Dc(G1) ◦G2 if ε 6∈ L(G1)

µg′ . (Dc(G1) ◦G2) ∪Dc(G2) otherwise

In the worst case, we are creating a new union operation and effectively deepning our
tree by one level. We will assume that this requires 1 step. Thus, the derivative of G
where G is a concatenation requires O(k1 + k2 + 1) = O(k).

The important point here is not the number of concatenations in the grammar, but rather that the
complexity of Dc is linearly proportional to the number of operations in the grammar.

3.2 Complexity of the Nullability Test

You will note that the parsing algorithm (as well as the derivative algorithm) requires a test to see
whether or not ε ∈ L(G). This operation itself requires O(k) where k is the number of operations
in G. This proof is trivial and is omitted so that I can get to the other, more interesting proofs.

3.3 Size Increase of G′

When we take the derivative, the resulting grammar G′ may (in the worst case) be more complex
than the original grammar G. This is because the derivative of the concatenation operation can
create a new operation, deepening the tree as noted in Section 3.1.

Theorem Let C(G) be the number of concatenations in G (this function is trivial to define). Let |G|
be the total number of operations in G. Prove that |Dc(G)| ≤ |G|+ C(G).

Proof By induction.

Case Dc(c)

|G| = 1 and C(G) = 0. The derivative of G is a grammar G′ such that L(G′) = {ε}.
Since |G′| = 1, we have that |G′| ≤ |G|+ C(G).

3

Case Dc(ε)

In this case, the result is the null set (or rather, the null grammar). The total number
of operations in this grammar is 0, which is clearly less than |ε|.

Case Dc(g)

In this case, the derivative will be a recursive reference to a higher point in the derived
grammar G′. This doesn’t add any complexity however, because G already contained a
recursive reference to that same point in the form of g. Thus, |G′| will be precisely the
size of the derivative of the operation referenced by g. As is intuitive, the recursive case
follows by trivial induction.

Case Dc(µg . G1 ∪G2)

At this point, I’m going to get a little hand-wavy because the symbols get a bit thick.
We can safely argue that the derivative is not adding any operations in this case. Rather
it is recursively operating on the left- and right-hand sides of the union and then putting
the results back together with a single union operation. Thus, the net gain in in terms of
operations is precisely 0. Thus, |Dc(G)| = |G| with the addition of whatever operations
we gained from our recursive operations. Inductively, we know that we could not have
gained more operations than we have concatenations, thus our bound is preserved.

Case Dc(G1 ◦G2)

There are two cases here. In the case where ε 6∈ L(G1), the resulting construction will
have gained 0 operations over the source construction (we simply concatenate the result
with G2). Thus, it follows by an argument similar to what we used for ∪ that the bound
is preserved.

In the second case, the result of the derivative will look like µg′ . . (Dc(G1) ◦G2)∪Dc(G2).
Here we have not only concatenated our results back together (for a net gain of 0
operations), but we have also added a union operation. Thus, our net gain will be 1.
This is within our bounds however, as we are working with a concatenation operation.

Thus, in the worst case, taking the derivative of a concatenation operation adds exactly
1 operation to the resulting grammar (plus whatever was added by the recursive deriva-
tions), which is precisely the number of concatenation operations in the grammar (by
induction). This preserves our bounds.

In more straightforward terms, this is saying that while the rewritten grammar G′ may be more
complex than the original grammar G, that increase in complexity is bounded by the number of
concatenation operations in the original grammar.

3.4 Complexity of Derivative Recognition

Here’s the money proof. We have that the the grammar resulting from the derivative may be larger
than the original grammar, but that size increase is bounded by the number of concatenation
operations. Critically, the number of concatenation operations does not increase. The derivative
will never add a concatenation to the grammar. It only adds union operations. Thus, we can
repeatedly take the derivative of a grammar G, and the increase after each subsequent derivation
will be bounded by C(G), which is to say, the number of concatenations in the original grammar
G.

4

We have previously shown that the number of steps required to take the derivative of some
grammar G is O(k), where k = |G|. We also have (by construction) that the derivative recognition
algorithm requires exactly n sequential derivations where n is the length of the input. Thus, we
have the following expansion for the worst-case complexity of the recognition algorithm:

k + 2k + 3k + · · ·+ nk

This follows because k = |G| = C(G) (in the worst case, where the entire grammar is concatenation),
and each subsequent derivation requires k′ steps, where k′ = |G′|. Recall that |G′| ≤ |G| + C(G)
and k = C(G). Thus, each subsequent derivation will “add” k steps to the next derivation, and
the first derivation will require at most k steps.

This expansion can be rewritten as the following sum:

n∑
i=1

ik = k

n∑
i=1

i < kn2

Thus, derivative recognition is O(n2) where n is the length of the input.

References

[1] R.S. Sundaresh and Paul Hudak, Incremental computation via partial evaluation, Conference
Record of the 18th Annual ACM Symposium on POPL, 1991, pp. 1–13.

5

