tphols-2011

By xingyuan
February 5, 2011

Contents

1 Direction regular language = finite partition 1
theory Myhill

imports Myhill-2
begin

1 Direction reqular language = finite partition

The intuition behind our treatment is still automata. Taking the automaton
in Fig.1(a) as an example, like any automaton, it represents the vehicle used
to recognize a certain regular language. For any given string, the process
starts from the left most and proceed character by character to the right,
driving the state transtion of automaton starting from the initial state (the
one marked by an short arrow). There could be three outcomes:

1. The process finally reaches the end of the string and the automaton is
at an accepting state, in which case the string is considered a member
of the language. For the automaton in Fig.1(a), a, ab, abb, abc, abbec,
b, baa are such kind of strings.

2. The process finally reaches the end of the string but the automaton
is at an non-accepting state, in which case, the string is considered
a non-member of the language. For the automaton in Fig.1(a), ad,
abbd, adbd, bdabbced are such kind of strings.

3. The process get stuck at the middle of the string, in which case, the
string is considered a non-member of the lauguage. For the automaton
in Fig.1(a), ¢, acb, bbacd, aaccd are such kind of strings.

To avoid the situation 3 above, we can augment a normal automaton with a
“absorbing state”, as the state X3 in Fig.1(b). In an auguments automaton,
the process of strings never get stuck: whenever a string is recognized as not
belonging to the language, the augmented automaton is transfered into the



“absorbing state” and kept there until the process reaches the end of the
string, in which case, the string is rejected by situation 2 above.

Given a language Lang and a string z, the equivalent class ~Lang ‘ {z}
corresponds to the state reached by processing r with the augmented au-
tomaton. Since ~Lang ‘“ {z} is defined for every z, it corresponds to the
fact that the processing of z will never get stuck.

The most acquainted way to define a regular language Lang is by giving
an automaton which recorgizes every string in Lang. Fig.1(a) gives such a
automaton, which is esstially a graph where every finite path leading from
initial state to one finial state corresponds to a string in Lang.

(a) Original automaton

(b) Extended automaton

Figure 1: The relationship between automata and finite partition

end

e = mmmmmmamem-



	Direction regular language finite partition

