
tphols-2011

By xingyuan

January 27, 2011

Contents

theory Myhill
imports Myhill-1

begin

1 Direction: regular language ⇒finite partition

1.1 The scheme for this direction

The following convenient notation x ≈Lang y means: string x and y are
equivalent with respect to language Lang.

definition
str-eq (- ≈- -)

where
x ≈Lang y ≡ (x , y) ∈ (≈Lang)

The very basic scheme to show the finiteness of the partion generated by
a language Lang is by attaching a tag to every string. The set of tags are
carfully choosen to be finite so that the range of tagging function is finite.
If it can be proved that strings with the same tag are equivlent with respect
Lang, then the partition given rise by Lang must be finite. The detailed
argjument for this is formalized by the following lemma tag-finite-imageD.
The basic idea is using lemma finite-imageD from standard library:

[[finite (f ‘ A); inj-on f A]] =⇒ finite A

which says: if the image of injective function f over set A is finite, then A
must be finte.

lemma finite-range-image: finite (range f ) =⇒ finite (f ‘ A)
by (rule-tac B = {y . ∃ x . y = f x} in finite-subset , auto simp:image-def )

lemma tag-finite-imageD :
fixes tag
assumes rng-fnt : finite (range tag)

1



— Suppose the rang of tagging fucntion tag is finite.
and same-tag-eqvt :

∧
m n. tag m = tag (n::string) =⇒ m ≈lang n

— And strings with same tag are equivalent
shows finite (UNIV // (≈lang))
— Then the partition generated by (≈lang) is finite.

proof −
— The particular f and A used in finite-imageD are:
let ?f = op ‘ tag and ?A = (UNIV // ≈lang)
show ?thesis
proof (rule-tac f = ?f and A = ?A in finite-imageD)

— The finiteness of f -image is a simple consequence of assumption rng-fnt :
show finite (?f ‘ ?A)
proof −

have ∀ X . ?f X ∈ (Pow (range tag)) by (auto simp:image-def Pow-def )
moreover from rng-fnt have finite (Pow (range tag)) by simp
ultimately have finite (range ?f )

by (auto simp only :image-def intro:finite-subset)
from finite-range-image [OF this] show ?thesis .

qed
next

— The injectivity of f is the consequence of assumption same-tag-eqvt :
show inj-on ?f ?A
proof−

{ fix X Y
assume X-in: X ∈ ?A

and Y-in: Y ∈ ?A
and tag-eq : ?f X = ?f Y

have X = Y
proof −

from X-in Y-in tag-eq
obtain x y where x-in: x ∈ X and y-in: y ∈ Y and eq-tg : tag x = tag y

unfolding quotient-def Image-def str-eq-rel-def str-eq-def image-def
apply simp by blast

from same-tag-eqvt [OF eq-tg ] have x ≈lang y .
with X-in Y-in x-in y-in
show ?thesis by (auto simp:quotient-def str-eq-rel-def str-eq-def )

qed
} thus ?thesis unfolding inj-on-def by auto

qed
qed

qed

1.2 Lemmas for basic cases

The the final result of this direction is in easier-direction, which is an in-
duction on the structure of regular expressions. There is one case for each
regular expression operator. For basic operators such as NULL, EMPTY ,
CHAR c, the finiteness of their language partition can be established directly
with no need of taggiing. This section contains several technical lemma for

2



these base cases.
The inductive cases involve operators ALT , SEQ and STAR. Tagging func-
tions need to be defined individually for each of them. There will be one
dedicated section for each of these cases, and each section goes virtually the
same way: gives definition of the tagging function and prove that strings
with the same tag are equivalent.

lemma quot-empty-subset :
UNIV // (≈{[]}) ⊆ {{[]}, UNIV − {[]}}

proof
fix x
assume x ∈ UNIV // ≈{[]}
then obtain y where h: x = {z . (y , z ) ∈ ≈{[]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]}, UNIV − {[]}}
proof (cases y = [])

case True with h
have x = {[]} by (auto simp:str-eq-rel-def )
thus ?thesis by simp

next
case False with h
have x = UNIV − {[]} by (auto simp:str-eq-rel-def )
thus ?thesis by simp

qed
qed

lemma quot-char-subset :
UNIV // (≈{[c]}) ⊆ {{[]},{[c]}, UNIV − {[], [c]}}

proof
fix x
assume x ∈ UNIV // ≈{[c]}
then obtain y where h: x = {z . (y , z ) ∈ ≈{[c]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]},{[c]}, UNIV − {[], [c]}}
proof −

{ assume y = [] hence x = {[]} using h
by (auto simp:str-eq-rel-def )

} moreover {
assume y = [c] hence x = {[c]} using h

by (auto dest !:spec[where x = []] simp:str-eq-rel-def )
} moreover {

assume y 6= [] and y 6= [c]
hence ∀ z . (y @ z ) 6= [c] by (case-tac y , auto)
moreover have

∧
p. (p 6= [] ∧ p 6= [c]) = (∀ q . p @ q 6= [c])

by (case-tac p, auto)
ultimately have x = UNIV − {[],[c]} using h

by (auto simp add :str-eq-rel-def )
} ultimately show ?thesis by blast

qed

3



qed

1.3 The case for SEQ

definition
tag-str-SEQ L1 L2 x ≡

((≈L1) ‘‘ {x}, {(≈L2) ‘‘ {x − xa}| xa. xa ≤ x ∧ xa ∈ L1})

lemma tag-str-seq-range-finite:
[[finite (UNIV // ≈L1); finite (UNIV // ≈L2)]]

=⇒ finite (range (tag-str-SEQ L1 L2))
apply (rule-tac B = (UNIV // ≈L1) × (Pow (UNIV // ≈L2)) in finite-subset)
by (auto simp:tag-str-SEQ-def Image-def quotient-def split :if-splits)

lemma append-seq-elim:
assumes x @ y ∈ L1 ;; L2

shows (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2) ∨
(∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2)

proof−
from assms obtain s1 s2

where x @ y = s1 @ s2

and in-seq : s1 ∈ L1 ∧ s2 ∈ L2

by (auto simp:Seq-def )
hence (x ≤ s1 ∧ (s1 − x ) @ s2 = y) ∨ (s1 ≤ x ∧ (x − s1) @ y = s2)

using app-eq-dest by auto
moreover have [[x ≤ s1; (s1 − x ) @ s2 = y ]] =⇒

∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2

using in-seq by (rule-tac x = s1 − x in exI , auto elim:prefixE )
moreover have [[s1 ≤ x ; (x − s1) @ y = s2]] =⇒

∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2

using in-seq by (rule-tac x = s1 in exI , auto)
ultimately show ?thesis by blast

qed

lemma tag-str-SEQ-injI :
tag-str-SEQ L1 L2 m = tag-str-SEQ L1 L2 n =⇒ m ≈(L1 ;; L2) n

proof−
{ fix x y z

assume xz-in-seq : x @ z ∈ L1 ;; L2

and tag-xy : tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y
havey @ z ∈ L1 ;; L2

proof−
have (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ z ∈ L2) ∨

(∃ za ≤ z . (x @ za) ∈ L1 ∧ (z − za) ∈ L2)
using xz-in-seq append-seq-elim by simp

moreover {
fix xa
assume h1 : xa ≤ x and h2 : xa ∈ L1 and h3 : (x − xa) @ z ∈ L2

obtain ya where ya ≤ y and ya ∈ L1 and (y − ya) @ z ∈ L2

4



proof −
have ∃ ya. ya ≤ y ∧ ya ∈ L1 ∧ (x − xa) ≈L2 (y − ya)
proof −

have {≈L2 ‘‘ {x − xa} |xa. xa ≤ x ∧ xa ∈ L1} =
{≈L2 ‘‘ {y − xa} |xa. xa ≤ y ∧ xa ∈ L1}

(is ?Left = ?Right)
using h1 tag-xy by (auto simp:tag-str-SEQ-def )

moreover have ≈L2 ‘‘ {x − xa} ∈ ?Left using h1 h2 by auto
ultimately have ≈L2 ‘‘ {x − xa} ∈ ?Right by simp
thus ?thesis by (auto simp:Image-def str-eq-rel-def str-eq-def )

qed
with prems show ?thesis by (auto simp:str-eq-rel-def str-eq-def )

qed
hence y @ z ∈ L1 ;; L2 by (erule-tac prefixE , auto simp:Seq-def )

} moreover {
fix za
assume h1 : za ≤ z and h2 : (x @ za) ∈ L1 and h3 : z − za ∈ L2

hence y @ za ∈ L1

proof−
have ≈L1 ‘‘ {x} = ≈L1 ‘‘ {y}

using h1 tag-xy by (auto simp:tag-str-SEQ-def )
with h2 show ?thesis

by (auto simp:Image-def str-eq-rel-def str-eq-def )
qed
with h1 h3 have y @ z ∈ L1 ;; L2

by (drule-tac A = L1 in seq-intro, auto elim:prefixE )
}
ultimately show ?thesis by blast

qed
} thus tag-str-SEQ L1 L2 m = tag-str-SEQ L1 L2 n =⇒ m ≈(L1 ;; L2) n

by (auto simp add : str-eq-def str-eq-rel-def )
qed

lemma quot-seq-finiteI :
[[finite (UNIV // ≈L1); finite (UNIV // ≈L2)]]
=⇒ finite (UNIV // ≈(L1 ;; L2))
apply (rule-tac tag = tag-str-SEQ L1 L2 in tag-finite-imageD)
by (auto intro:tag-str-SEQ-injI elim:tag-str-seq-range-finite)

1.4 The case for ALT

definition
tag-str-ALT L1 L2 (x ::string) ≡ ((≈L1) ‘‘ {x}, (≈L2) ‘‘ {x})

lemma quot-union-finiteI :
assumes finite1 : finite (UNIV // ≈(L1::string set))
and finite2 : finite (UNIV // ≈L2)
shows finite (UNIV // ≈(L1 ∪ L2))

proof (rule-tac tag = tag-str-ALT L1 L2 in tag-finite-imageD)

5



show
∧

m n. tag-str-ALT L1 L2 m = tag-str-ALT L1 L2 n =⇒ m ≈(L1 ∪ L2) n
unfolding tag-str-ALT-def str-eq-def Image-def str-eq-rel-def by auto

next
show finite (range (tag-str-ALT L1 L2)) using finite1 finite2

apply (rule-tac B = (UNIV // ≈L1) × (UNIV // ≈L2) in finite-subset)
by (auto simp:tag-str-ALT-def Image-def quotient-def )

qed

1.5 The case for STAR

This turned out to be the trickiest case.

definition
tag-str-STAR L1 x ≡ {(≈L1) ‘‘ {x − xa} | xa. xa < x ∧ xa ∈ L1?}

lemma finite-set-has-max : [[finite A; A 6= {}]] =⇒
(∃ max ∈ A. ∀ a ∈ A. f a <= (f max :: nat))

proof (induct rule:finite.induct)
case emptyI thus ?case by simp

next
case (insertI A a)
show ?case
proof (cases A = {})

case True thus ?thesis by (rule-tac x = a in bexI , auto)
next

case False
with prems obtain max

where h1 : max ∈ A
and h2 : ∀ a∈A. f a ≤ f max by blast

show ?thesis
proof (cases f a ≤ f max )

assume f a ≤ f max
with h1 h2 show ?thesis by (rule-tac x = max in bexI , auto)

next
assume ¬ (f a ≤ f max )
thus ?thesis using h2 by (rule-tac x = a in bexI , auto)

qed
qed

qed

lemma finite-strict-prefix-set : finite {xa. xa < (x ::string)}
apply (induct x rule:rev-induct , simp)
apply (subgoal-tac {xa. xa < xs @ [x ]} = {xa. xa < xs} ∪ {xs})
by (auto simp:strict-prefix-def )

lemma tag-str-star-range-finite:
finite (UNIV // ≈L1) =⇒ finite (range (tag-str-STAR L1))

apply (rule-tac B = Pow (UNIV // ≈L1) in finite-subset)
by (auto simp:tag-str-STAR-def Image-def

6



quotient-def split :if-splits)

lemma tag-str-STAR-injI :
tag-str-STAR L1 m = tag-str-STAR L1 n =⇒ m ≈(L1?) n

proof−
{ fix x y z

assume xz-in-star : x @ z ∈ L1?
and tag-xy : tag-str-STAR L1 x = tag-str-STAR L1 y
have y @ z ∈ L1?
proof(cases x = [])

case True
with tag-xy have y = []

by (auto simp:tag-str-STAR-def strict-prefix-def )
thus ?thesis using xz-in-star True by simp

next
case False
obtain x-max

where h1 : x-max < x
and h2 : x-max ∈ L1?
and h3 : (x − x-max ) @ z ∈ L1?
and h4 :∀ xa < x . xa ∈ L1? ∧ (x − xa) @ z ∈ L1?

−→ length xa ≤ length x-max
proof−

let ?S = {xa. xa < x ∧ xa ∈ L1? ∧ (x − xa) @ z ∈ L1?}
have finite ?S

by (rule-tac B = {xa. xa < x} in finite-subset ,
auto simp:finite-strict-prefix-set)

moreover have ?S 6= {} using False xz-in-star
by (simp, rule-tac x = [] in exI , auto simp:strict-prefix-def )

ultimately have ∃ max ∈ ?S . ∀ a ∈ ?S . length a ≤ length max
using finite-set-has-max by blast

with prems show ?thesis by blast
qed
obtain ya

where h5 : ya < y and h6 : ya ∈ L1? and h7 : (x − x-max ) ≈L1 (y − ya)
proof−

from tag-xy have {≈L1 ‘‘ {x − xa} |xa. xa < x ∧ xa ∈ L1?} =
{≈L1 ‘‘ {y − xa} |xa. xa < y ∧ xa ∈ L1?} (is ?left = ?right)
by (auto simp:tag-str-STAR-def )

moreover have ≈L1 ‘‘ {x − x-max} ∈ ?left using h1 h2 by auto
ultimately have ≈L1 ‘‘ {x − x-max} ∈ ?right by simp
with prems show ?thesis apply

(simp add :Image-def str-eq-rel-def str-eq-def ) by blast
qed
have (y − ya) @ z ∈ L1?
proof−

from h3 h1 obtain a b where a-in: a ∈ L1

and a-neq : a 6= [] and b-in: b ∈ L1?
and ab-max : (x − x-max ) @ z = a @ b

7



by (drule-tac star-decom, auto simp:strict-prefix-def elim:prefixE )
have (x − x-max ) ≤ a ∧ (a − (x − x-max )) @ b = z
proof −

have ((x − x-max ) ≤ a ∧ (a − (x − x-max )) @ b = z ) ∨
(a < (x − x-max ) ∧ ((x − x-max ) − a) @ z = b)

using app-eq-dest [OF ab-max ] by (auto simp:strict-prefix-def )
moreover {

assume np: a < (x − x-max ) and b-eqs: ((x − x-max ) − a) @ z = b
have False
proof −

let ?x-max ′ = x-max @ a
have ?x-max ′ < x

using np h1 by (clarsimp simp:strict-prefix-def diff-prefix )
moreover have ?x-max ′ ∈ L1?

using a-in h2 by (simp add :star-intro3 )
moreover have (x − ?x-max ′) @ z ∈ L1?

using b-eqs b-in np h1 by (simp add :diff-diff-appd)
moreover have ¬ (length ?x-max ′ ≤ length x-max )

using a-neq by simp
ultimately show ?thesis using h4 by blast

qed
} ultimately show ?thesis by blast

qed
then obtain za where z-decom: z = za @ b

and x-za: (x − x-max ) @ za ∈ L1

using a-in by (auto elim:prefixE )
from x-za h7 have (y − ya) @ za ∈ L1

by (auto simp:str-eq-def str-eq-rel-def )
with z-decom b-in show ?thesis by (auto dest !:step[of (y − ya) @ za])

qed
with h5 h6 show ?thesis

by (drule-tac star-intro1 , auto simp:strict-prefix-def elim:prefixE )
qed

} thus tag-str-STAR L1 m = tag-str-STAR L1 n =⇒ m ≈(L1?) n
by (auto simp add :str-eq-def str-eq-rel-def )

qed

lemma quot-star-finiteI :
finite (UNIV // ≈L1) =⇒ finite (UNIV // ≈(L1?))
apply (rule-tac tag = tag-str-STAR L1 in tag-finite-imageD)
by (auto intro:tag-str-STAR-injI elim:tag-str-star-range-finite)

1.6 The main lemma

lemma easier-directioν:
Lang = L (r ::rexp) =⇒ finite (UNIV // (≈Lang))

proof (induct arbitrary :Lang rule:rexp.induct)
case NULL
have UNIV // (≈{}) ⊆ {UNIV }

8



by (auto simp:quotient-def str-eq-rel-def str-eq-def )
with prems show ?case by (auto intro:finite-subset)

next
case EMPTY
have UNIV // (≈{[]}) ⊆ {{[]}, UNIV − {[]}}

by (rule quot-empty-subset)
with prems show ?case by (auto intro:finite-subset)

next
case (CHAR c)
have UNIV // (≈{[c]}) ⊆ {{[]},{[c]}, UNIV − {[], [c]}}

by (rule quot-char-subset)
with prems show ?case by (auto intro:finite-subset)

next
case (SEQ r1 r2)
have [[finite (UNIV // ≈(L r1)); finite (UNIV // ≈(L r2))]]

=⇒ finite (UNIV // ≈(L r1 ;; L r2))
by (erule quot-seq-finiteI , simp)

with prems show ?case by simp
next

case (ALT r1 r2)
have [[finite (UNIV // ≈(L r1)); finite (UNIV // ≈(L r2))]]

=⇒ finite (UNIV // ≈(L r1 ∪ L r2))
by (erule quot-union-finiteI , simp)

with prems show ?case by simp
next

case (STAR r)
have finite (UNIV // ≈(L r))

=⇒ finite (UNIV // ≈((L r)?))
by (erule quot-star-finiteI )

with prems show ?case by simp
qed

end

9


	Direction: regular language finite partition
	The scheme for this direction
	Lemmas for basic cases
	The case for SEQ
	The case for ALT
	The case for STAR
	The main lemma


