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Abstract. In realtime systems with support for resource locking and for pro-
cesses with priorities, one faces the problem of priority inversion. This problem
can make the behaviour of processes unpredictable and the resulting bugs can
be hard to find. The Priority Inheritance Protocol is one solution implemented in
many systems for solving this problem, but the correctness of this solution has
never been formally verified in a theorem prover. As already pointed out in the
literature, the original informal investigation of the Property Inheritance Protocol
presents a correctness “proof” for an incorrect algorithm. In this paper we fix the
problem of this proof by making all notions precise and implementing a variant
of a solution proposed earlier. Our formalisation in Isabelle/HOL uncovered facts
not mentioned in the literature, but also shows how to efficiently implement this
protocol. Earlier correct implementations were criticised as too inefficient. Our
formalisation is based on Paulson’s inductive approach to verifying protocols.

Keywords: Priority Inheritance Protocol, formal connectness proof, realtime sys-
tems

1 Introduction

Many realtime systems need to support processes with priorities and locking of re-
sources. Locking of resources ensures mutual exclusion when accessing shared data or
devices. Priorities allow schedulling of processes that need to finish their work within
hard deadlines. Unfortunately, both features can interact in subtle ways leading to a
problem, called Priority Inversion. Suppose three processes having priorities H(igh),
M (edium) and L(ow). We would expect that the process H blocks any other process
with lower priority and itself cannot be blocked by a process with lower priority. Alas, in
a naive implementation of resource looking and priorities this property can be violated.
Even worse, H can be delayed indefinitely by processes with lower priorities. For this
let L be in the possession of a lock for a resource that also H needs. H must therefore
wait for L to release this lock. The problem is that L might in turn be blocked by any
process with priority M , and so H sits there potentially waiting indefinitely. Since H
is blocked by processes with lower priorities, the problem is called Priority Inversion.



2 Xingyuan Zhang, Christian Urban, and Chunhan Wu

It was first described in [5] in the context of the Mesa programming language designed
for concurrent programming.

If the problem of Priority Inversion is ignored, realtime systems can become un-
predictable and resulting bugs can be hard to diagnose. The classic example where this
happened is the software that controlled the Mars Pathfinder mission in 1997 [8]. Once
the spacecraft landed, the software shut down at irregular intervals leading to loss of
project time, as normal operation of the craft could only resume the next day (the mis-
sion and data already collected were fortunately not lost, because of a clever system
design). The reason for the shutdowns was that the schedulling software fell victim of
Priority Inversion: a low priority task locking a resource prevented a high priority pro-
cess from running in time leading to a system reset. Once the problem was found, it
was rectified by enabling the Priority Inheritance Protocol in the schedulling software.

The idea behind the Priority Inheritance Protocol (PIP) is to let the process L tem-
porarily inherit the high priority from H until L releases the locked resource. This
solves the problem of H having to wait indefinitely, because L cannot, for example, be
blocked by processes having priorityM . This solution to the Priority Inversion problem
has been known since [5] but Lui et al give the first thourough analysis and present a
correctness proof for an algorithm [6].

However, there are further subtleties: just lowering the priority of the process L to
its low priority, as proposed in ???, is incorrect.

Priority inversion referrers to the phenomena where tasks with higher priority are blocked
by ones with lower priority. If priority inversion is not controlled, there will be no guar-
antee the urgent tasks will be processed in time. As reported in [8], priority inversion
used to cause software system resets and data lose in JPL’s Mars pathfinder project.
Therefore, the avoiding, detecting and controlling of priority inversion is a key issue to
attain predictability in priority based real-time systems.

The priority inversion phenomenon was first published in [5]. The two protocols
widely used to eliminate priority inversion, namely PI (Priority Inheritance) and PCE
(Priority Ceiling Emulation), were proposed in [6]. PCE is less convenient to use be-
cause it requires static analysis of programs. Therefore, PI is more commonly used in
practice[7]. However, as pointed out in the literature, the analysis of priority inheri-
tance protocol is quite subtle[12]. A formal analysis will certainly be helpful for us to
understand and correctly implement PI. All existing formal analysis of PI [4,11,3] are
based on the model checking technology. Because of the state explosion problem, model
check is much like an exhaustive testing of finite models with limited size. The results
obtained can not be safely generalized to models with arbitrarily large size. Worse still,
since model checking is fully automatic, it give little insight on why the formal model is
correct. It is therefore definitely desirable to analyze PI using theorem proving, which
gives more general results as well as deeper insight. And this is the purpose of this pa-
per which gives a formal analysis of PI in the interactive theorem prover Isabelle using
Higher Order Logic (HOL). The formalization focuses on on two issues:

1. The correctness of the protocol model itself. A series of desirable properties is
derived until we are fully convinced that the formal model of PI does eliminate
priority inversion. And a better understanding of PI is so obtained in due course.
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For example, we find through formalization that the choice of next thread to take
hold when a resource is released is irrelevant for the very basic property of PI to
hold. A point never mentioned in literature.

2. The correctness of the implementation. A series of properties is derived the mean-
ing of which can be used as guidelines on how PI can be implemented efficiently
and correctly.

The rest of the paper is organized as follows: Section 2 gives an overview of PI.
Section 3 introduces the formal model of PI. Section 4 discusses a series of basic prop-
erties of PI. Section 5 shows formally how priority inversion is controlled by PI. Section
6 gives properties which can be used for guidelines of implementation. Section 7 dis-
cusses related works. Section 8 concludes the whole paper.

Contributions
Despite the wide use of Priority Inheritance Protocol in real time operating system,

it’s correctness has never been formally proved and mechanically checked. All existing
verification are based on model checking technology. Full automatic verification gives
little help to understand why the protocol is correct. And results such obtained only
apply to models of limited size. This paper presents a formal verification based on
theorem proving. Machine checked formal proof does help to get deeper understanding.
We found the fact which is not mentioned in the literature, that the choice of next thread
to take over when an critical resource is release does not affect the correctness of the
protocol. The paper also shows how formal proof can help to construct correct and
efficient implementation.

2 An overview of priority inversion and priority inheritance

Priority inversion refers to the phenomenon when a thread with high priority is blocked
by a thread with low priority. Priority happens when the high priority thread requests
for some critical resource already taken by the low priority thread. Since the high pri-
ority thread has to wait for the low priority thread to complete, it is said to be blocked
by the low priority thread. Priority inversion might prevent high priority thread from
fulfill its task in time if the duration of priority inversion is indefinite and unpredictable.
Indefinite priority inversion happens when indefinite number of threads with medium
priorities is activated during the period when the high priority thread is blocked by the
low priority thread. Although these medium priority threads can not preempt the high
priority thread directly, they are able to preempt the low priority threads and cause it
to stay in critical section for an indefinite long duration. In this way, the high priority
thread may be blocked indefinitely.

Priority inheritance is one protocol proposed to avoid indefinite priority inversion.
The basic idea is to let the high priority thread donate its priority to the low priority
thread holding the critical resource, so that it will not be preempted by medium priority
threads. The thread with highest priority will not be blocked unless it is requesting
some critical resource already taken by other threads. Viewed from a different angle,
any thread which is able to block the highest priority threads must already hold some
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critical resource. Further more, it must have hold some critical resource at the moment
the highest priority is created, otherwise, it may never get change to run and get hold.
Since the number of such resource holding lower priority threads is finite, if every one
of them finishes with its own critical section in a definite duration, the duration the
highest priority thread is blocked is definite as well. The key to guarantee lower priority
threads to finish in definite is to donate them the highest priority. In such cases, the
lower priority threads is said to have inherited the highest priority. And this explains
the name of the protocol: Priority Inheritance and how Priority Inheritance prevents
indefinite delay.

The objectives of this paper are:

1. Build the above mentioned idea into formal model and prove a series of properties
until we are convinced that the formal model does fulfill the original idea.

2. Show how formally derived properties can be used as guidelines for correct and
efficient implementation.

The proof is totally formal in the sense that every detail is reduced to the very first
principles of Higher Order Logic. The nature of interactive theorem proving is for the
human user to persuade computer program to accept its arguments. A clear and simple
understanding of the problem at hand is both a prerequisite and a byproduct of such
an effort, because everything has finally be reduced to the very first principle to be
checked mechanically. The former intuitive explanation of Priority Inheritance is just
such a byproduct.

3 Formal model of Priority Inheritance

In this section, the formal model of Priority Inheritance is presented. The model is based
on Paulson’s inductive protocol verification method, where the state of the system is
modelled as a list of events happened so far with the latest event put at the head.

To define events, the identifiers of threads, priority and critical resources (abbrevi-
ated as cs) need to be represented. All three are represetned using standard Isabelle/HOL
type nat:

type-synonym thread = nat — Type for thread identifiers.
type-synonym priority = nat — Type for priorities.
type-synonym cs = nat — Type for critical sections (or critical resources).

Every event in the system corresponds to a system call, the formats of which are defined
as follows:

datatype event =
Create thread priority |— Thread thread is created with priority priority.
Exit thread |— Thread thread finishing its execution.
P thread cs |— Thread thread requesting critical resource cs.
V thread cs |— Thread thread releasing critical resource cs.
Set thread priority — Thread thread resets its priority to priority.
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Resource Allocation Graph (RAG for short) is used extensively in our formal analysis.
The following type node is used to represent nodes in RAG.

datatype node =
Th thread |— Node for thread.
Cs cs — Node for critical resource.

In Paulson’s inductive method, the states of system are represented as lists of events,
which is defined by the following type state:

type-synonym state = event list

The following function threads is used to calculate the set of live threads (threads s) in
state s.

fun threads :: state⇒ thread set
where
— At the start of the system, the set of threads is empty:
threads [] = {} |
— New thread is added to the threads:
threads (Create thread prio#s) = {thread} ∪ threads s |
— Finished thread is removed:
threads (Exit thread # s) = (threads s) − {thread} |
— Other kind of events does not affect the value of threads:
threads (e#s) = threads s

Functions such as threads, which extract information out of system states, are called
observing functions. A series of observing functions will be defined in the sequel in or-
der to model the protocol. Observing function original priority calculates the original
priority of thread th in state s, expressed as : original priority th s. The original priority
is the priority assigned to a thread when it is created or when it is reset by system call
Set thread priority.

fun original priority :: thread⇒ state⇒ priority
where
— 0 is assigned to threads which have never been created:
original priority thread [] = 0 |
original priority thread (Create thread ′ prio#s) =
(if thread ′= thread then prio else original priority thread s) |

original priority thread (Set thread ′ prio#s) =
(if thread ′= thread then prio else original priority thread s) |

original priority thread (e#s) = original priority thread s

In the following, birthtime th s is the time when thread th is created, observed from state
s. The time in the system is measured by the number of events happened so far since
the very beginning.

fun birthtime :: thread⇒ state⇒ nat
where
birthtime thread [] = 0 |
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birthtime thread ((Create thread ′ prio)#s) =
(if (thread = thread ′) then length s else birthtime thread s) |

birthtime thread ((Set thread ′ prio)#s) =
(if (thread = thread ′) then length s else birthtime thread s) |

birthtime thread (e#s) = birthtime thread s

The precedence is a notion derived from priority, where the precedence of a thread is
the combination of its original priority and birth time. The intention is to discriminate
threads with the same priority by giving threads whose priority is assigned earlier higher
precedences, becasue such threads are more urgent to finish. This explains the following
definition:

definition preced :: thread⇒ state⇒ precedence
where preced thread s = Prc (original priority thread s) (birthtime thread s)

A number of important notions are defined here:

consts
holding :: ′b⇒ thread⇒ cs⇒ bool
waiting :: ′b⇒ thread⇒ cs⇒ bool
depend :: ′b⇒ (node × node) set
dependents :: ′b⇒ thread⇒ thread set

In the definition of the following several functions, it is supposed that the waiting queue
of every critical resource is given by a waiting queue function wq, which servers as
arguments of these functions.

defs (overloaded)

—

We define that the thread which is at the head of waiting queue of resource cs is
holding the resource. This definition is slightly different from tradition where
all threads in the waiting queue are considered as waiting for the resource. This
notion is reflected in the definition of holding wq th cs as follows:

cs holding def :

holding wq thread cs
def
= (thread ∈ set (wq cs) ∧ thread = hd (wq cs))

—
In accordance with the definition of holding wq th cs, a thread th is considered
waiting for cs if it is in the waiting queue of critical resource cs, but not at the
head. This is reflected in the definition of waiting wq th cs as follows:

cs waiting def :

waiting wq thread cs
def
= (thread ∈ set (wq cs) ∧ thread 6= hd (wq cs))

—
depend wq represents the Resource Allocation Graph of the system under the
waiting queue function wq.

cs depend def :

depend (wq::cs⇒ thread list)
def
=

{(Th t, Cs c) | t c. waiting wq t c} ∪ {(Cs c, Th t) | c t. holding wq t c}
—

The following dependents wq th represents the set of threads which are de-
pending on thread th in Resource Allocation Graph depend wq:

cs dependents def :

dependents (wq::cs⇒ thread list) th
def
= {th ′ . (Th th ′, Th th) ∈ (depend wq)ˆ+}
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The data structure used by the operating system for scheduling is referred to as
schedule state. It is represented as a record consisting of a function assigning waiting
queue to resources and a function assigning precedence to threads:

record schedule state =
waiting queue :: cs⇒ thread list — The function assigning waiting queue.
cur preced :: thread⇒ precedence — The function assigning precedence.

The following cpreced s th gives the current precedence of thread th under state s. The
definition of cpreced reflects the basic idea of Priority Inheritance that the current prece-
dence of a thread is the precedence inherited from the maximum of all its dependents,
i.e. the threads which are waiting directly or indirectly waiting for some resources from
it. If no such thread exits, th’s current precedence equals its original precedence, i.e.
preced th s.

definition cpreced :: state⇒ (cs⇒ thread list)⇒ thread⇒ precedence
where cpreced s wq = (λ th. Max ((λ th. preced th s) ‘ ({th} ∪ dependents wq th)))

The following function schs is used to calculate the schedule state schs s. It is the key
function to model Priority Inheritance:

fun schs :: state⇒ schedule state
where schs [] = (|waiting queue = λ cs. [], cur preced = cpreced [] (λ cs. [])|) |

—

1. ps is the schedule state of last moment.
2. pwq is the waiting queue function of last moment.
3. pcp is the precedence function of last moment.
4. nwq is the new waiting queue function. It is calculated using a case state-

ment:
(a) If the happening event is P thread cs, thread is added to the end of cs’s

waiting queue.
(b) If the happening event is V thread cs and s is a legal state, th ′ must

equal to thread, because thread is the one currently holding cs. The
case [] =⇒ [] may never be executed in a legal state. the (SOME q.
distinct q ∧ set q = set qs) is used to choose arbitrarily one thread
in waiting to take over the released resource cs. In our representation,
this amounts to rearrange elements in waiting queue, so that one of
them is put at the head.

(c) For other happening event, the schedule state just does not change.
5. ncp is new precedence function, it is calculated from the newly updated

waiting queue function. The dependency of precedence function on wait-
ing queue function is the reason to put them in the same record so that they
can evolve together.

schs (e#s) = (let ps = schs s in
let pwq = waiting queue ps in
let pcp = cur preced ps in
let nwq = case e of

P thread cs⇒ pwq(cs:=(pwq cs @ [thread])) |
V thread cs⇒ let nq = case (pwq cs) of

[]⇒ [] |
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(th ′#qs)⇒ (SOME q. distinct q ∧ set q = set qs)
in pwq(cs:=nq) |

⇒ pwq
in let ncp = cpreced (e#s) nwq in
(|waiting queue = nwq, cur preced = ncp|)

)

The following wq is a shorthand for waiting queue.

definition wq :: state⇒ cs⇒ thread list
where wq s = waiting queue (schs s)

The following cp is a shorthand for cur preced.

definition cp :: state⇒ thread⇒ precedence
where cp s = cur preced (schs s)

Functions holding, waiting, depend and dependents still have the same meaning, but
redefined so that they no longer depend on the fictitious waiting queue function wq, but
on system state s.

defs (overloaded)
s holding def :

holding (s::state) thread cs
def
= (thread ∈ set (wq s cs) ∧ thread = hd (wq s cs))

s waiting def :

waiting (s::state) thread cs
def
= (thread ∈ set (wq s cs) ∧ thread 6= hd (wq s cs))

s depend def :

depend (s::state)
def
=

{(Th t, Cs c) | t c. waiting (wq s) t c} ∪ {(Cs c, Th t) | c t. holding (wq s) t c}
s dependents def :

dependents (s::state) th
def
= {th ′ . (Th th ′, Th th) ∈ (depend (wq s))ˆ+}

The following function readys calculates the set of ready threads. A thread is ready
for running if it is a live thread and it is not waiting for any critical resource.

definition readys :: state⇒ thread set
where readys s = {thread . thread ∈ threads s ∧ (∀ cs. ¬ waiting s thread cs)}

The following function runing calculates the set of running thread, which is the ready
thread with the highest precedence.

definition runing :: state⇒ thread set
where runing s = {th . th ∈ readys s ∧ cp s th = Max ((cp s) ‘ (readys s))}

The following function holdents s th returns the set of resources held by thread th in
state s.

definition holdents :: state⇒ thread⇒ cs set
where holdents s th = {cs . (Cs cs, Th th) ∈ depend s}

cntCS s th returns the number of resources held by thread th in state s:
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definition cntCS :: state⇒ thread⇒ nat
where cntCS s th = card (holdents s th)

The fact that event e is eligible to happen next in state s is expressed as step s e. The
predicate step is inductively defined as follows:

inductive step :: state⇒ event⇒ bool
where
— A thread can be created if it is not a live thread:
thread create: [[thread /∈ threads s]] =⇒ step s (Create thread prio) |
— A thread can exit if it no longer hold any resource:
thread exit: [[thread ∈ runing s; holdents s thread = {}]] =⇒ step s (Exit thread) |

—

A thread can request for an critical resource cs, if it is running and the request
does not form a loop in the current RAG. The latter condition is set up to avoid
deadlock. The condition also reflects our assumption all threads are carefully
programmed so that deadlock can not happen:

thread P: [[thread ∈ runing s; (Cs cs, Th thread) /∈ (depend s)ˆ+]] =⇒
step s (P thread cs) |

— A thread can release a critical resource cs if it is running and holding that
resource:

thread V: [[thread ∈ runing s; holding s thread cs]] =⇒ step s (V thread cs) |
— A thread can adjust its own priority as long as it is current running:
thread set: [[thread ∈ runing s]] =⇒ step s (Set thread prio)

With predicate step, the fact that s is a legal state in Priority Inheritance protocol can be
expressed as: vt step s, where the predicate vt can be defined as the following:

inductive vt :: (state⇒ event⇒ bool)⇒ state⇒ bool
for cs — cs is an argument representing any step predicate.
where
— Empty list [] is a legal state in any protocol:
vt nil[intro]: vt cs [] |
— If s a legal state, and event e is eligible to happen in state s, then e#s is a legal

state as well:
vt cons[intro]: [[vt cs s; cs s e]] =⇒ vt cs (e#s)

It is easy to see that the definition of vt is generic. It can be applied to any step predicate
to get the set of legal states.

The following two functions the cs and the th are used to extract critical resource and
thread respectively out of RAG nodes.

fun the cs :: node⇒ cs
where the cs (Cs cs) = cs

fun the th :: node⇒ thread
where the th (Th th) = th

The following predicate next th describe the next thread to take over when a critical
resource is released. In next th s th cs t, th is the thread to release, t is the one to take
over.
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definition next th:: state⇒ thread⇒ cs⇒ thread⇒ bool
where next th s th cs t = (∃ rest. wq s cs = th#rest ∧ rest 6= [] ∧

t = hd (SOME q. distinct q ∧ set q = set rest))

The function count Q l is used to count the occurrence of situation Q in list l:

definition count :: ( ′a⇒ bool)⇒ ′a list⇒ nat
where count Q l = length (filter Q l)

The following cntP s returns the number of operation P happened before reaching state
s.

definition cntP :: state⇒ thread⇒ nat
where cntP s th = count (λ e. ∃ cs. e = P th cs) s

The following cntV s returns the number of operation V happened before reaching state
s.

definition cntV :: state⇒ thread⇒ nat
where cntV s th = count (λ e. ∃ cs. e = V th cs) s

4 General properties of Priority Inheritance

The following are several very basic prioprites:

1. All runing threads must be ready (runing ready):

runing s ⊆ readys s

2. All ready threads must be living (readys threads):

readys s ⊆ threads s

3. There are finite many living threads at any moment (finite threads):

vt step s =⇒ finite (threads s)

4. Every waiting queue does not contain duplcated elements (wq distinct):

vt step s =⇒ distinct (wq s cs)

5. All threads in waiting queues are living threads (wq threads):

[[vt step s; th ∈ set (wq s cs)]] =⇒ th ∈ threads s

6. The event which can get a thread into waiting queue must be P-events (block pre):

[[vt step (e·s); thread /∈ set (wq s cs); thread ∈ set (wq (e·s) cs)]]
=⇒ e = P thread cs

7. A thread may never wait for two different critical resources (waiting unique):
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[[vt step s; waiting s th cs1; waiting s th cs2]] =⇒ cs1 = cs2

8. Every resource can only be held by one thread (held unique):

[[vt step s; holding s th1 cs; holding s th2 cs]] =⇒ th1 = th2

9. Every living thread has an unique precedence (preced unique):

[[preced th1 s = preced th2 s; th1 ∈ threads s; th2 ∈ threads s]] =⇒ th1 = th2

The following lemmas show how RAG is changed with the execution of events:

1. Execution of Set does not change RAG (depend set unchanged):

depend (Set th prio·s) = depend s

2. Execution of Create does not change RAG (depend create unchanged):

depend (Create th prio·s) = depend s

3. Execution of Exit does not change RAG (depend exit unchanged):

depend (Exit th·s) = depend s

4. Execution of P (step depend p):

vt step (P th cs·s) =⇒
depend (P th cs·s) =
(if wq s cs = [] then depend s ∪ {(Cs cs, Th th)}
else depend s ∪ {(Th th, Cs cs)})

5. Execution of V (step depend v):

vt step (V th cs·s) =⇒
depend (V th cs·s) =
depend s − {(Cs cs, Th th)} − {(Th th ′, Cs cs) | next th s th cs th ′} ∪
{(Cs cs, Th th ′) | next th s th cs th ′}

These properties are used to derive the following important results about RAG:

1. RAG is loop free (acyclic depend):

vt step s =⇒ acyclic (depend s)

2. RAGs are finite (finite depend):

vt step s =⇒ finite (depend s)

3. Reverse paths in RAG are well founded (wf dep converse):

vt step s =⇒ wf ((depend s)−1)

4. The dependence relation represented by RAG has a tree structure (unique depend):
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[[vt step s; (n, n1) ∈ depend s; (n, n2) ∈ depend s]] =⇒ n1 = n2

5. All threads in RAG are living threads (dm depend threads and range in):

[[vt step s; Th th ∈ Domain (depend s)]] =⇒ th ∈ threads s
[[vt step s; Th th ∈ Range (depend s)]] =⇒ th ∈ threads s

The following lemmas show how every node in RAG can be chased to ready threads:

1. Every node in RAG can be chased to a ready thread (chain building):

[[vt step s; node ∈ Domain (depend s)]]
=⇒ ∃ th ′. th ′∈ readys s ∧ (node, Th th ′) ∈ (depend s)+

2. The ready thread chased to is unique (dchain unique):

[[vt step s; (n, Th th1) ∈ (depend s)+; th1 ∈ readys s;
(n, Th th2) ∈ (depend s)+; th2 ∈ readys s]]
=⇒ th1 = th2

Properties about next th:

1. The thread taking over is different from the thread which is releasing (next th neq):

[[vt step s; next th s th cs th ′]] =⇒ th ′ 6= th

2. The thread taking over is unique (next th unique):

[[next th s th cs th1; next th s th cs th2]] =⇒ th1 = th2

Some deeper results about the system:

1. There can only be one running thread (runing unique):

[[vt step s; th1 ∈ runing s; th2 ∈ runing s]] =⇒ th1 = th2

2. The maximum of cp and preced are equal (max cp eq):

vt step s =⇒ Max (cp s ‘ threads s) = Max ((λth. preced th s) ‘ threads s)

3. There must be one ready thread having the max cp-value (max cp readys threads):

vt step s =⇒ Max (cp s ‘ readys s) = Max (cp s ‘ threads s)

The relationship between the count of P and V and the number of critical resources held
by a thread is given as follows:

1. The V-operation decreases the number of critical resources one thread holds (cntCS v dec)

vt step (V thread cs·s) =⇒ cntCS (V thread cs·s) thread + 1 = cntCS s thread

2. The number of V never exceeds the number of P (cnp cnv cncs):
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vt step s =⇒
cntP s th =
cntV s th +
(if th ∈ readys s ∨ th /∈ threads s then cntCS s th else cntCS s th + 1)

3. The number of V equals the number of P when the relevant thread is not living:
(cnp cnv eq):

[[vt step s; th /∈ threads s]] =⇒ cntP s th = cntV s th

4. When a thread is not living, it does not hold any critical resource (not thread holdents):

[[vt step s; th /∈ threads s]] =⇒ holdents s th = ∅

5. When the number of P equals the number of V, the relevant thread does not hold
any critical resource, therefore no thread can depend on it (count eq dependents):

[[vt step s; cntP s th = cntV s th]] =⇒ dependents (wq s) th = ∅

5 Key properties

The essential of Priority Inheritance is to avoid indefinite priority inversion. For this
purpose, we need to investigate what happens after one thread takes the highest prece-
dence. A locale is used to describe such a situation, which assumes:

1. s is a valid state (vt s): vt step s.
2. th is a living thread in s (threads s): th ∈ threads s.
3. th has the highest precedence in s (highest): preced th s = Max (cp s ‘ threads s).
4. The precedence of th is Prc prio tm (preced th): preced th s = Prc prio tm.

Under these assumptions, some basic priority can be derived for th:

1. The current precedence of th equals its own precedence (eq cp s th):

cp s th = preced th s

2. The current precedence of th is the highest precedence in the system (highest cp preced):

cp s th = Max ((λth ′. preced th ′ s) ‘ threads s)

3. The precedence of th is the highest precedence in the system (highest preced thread):

preced th s = Max ((λth ′. preced th ′ s) ‘ threads s)

4. The current precedence of th is the highest current precedence in the system (high-
est ′):

cp s th = Max (cp s ‘ threads s)

To analysis what happens after state s a sub-locale is defined, which assumes:
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1. t is a valid extension of s (vt t): vt step (t @ s).
2. Any thread created in t has priority no higher than prio, therefore its precedence can

not be higher than th, therefore th remain to be the one with the highest precedence
(create low):

Create th ′ prio ′∈ set t =⇒ prio ′≤ prio

3. Any adjustment of priority in t does not happen to th and the priority set is no
higher than prio, therefore th remain to be the one with the highest precedence
(set diff low):

Set th ′ prio ′∈ set t =⇒ th ′ 6= th ∧ prio ′≤ prio

4. Since we are investigating what happens to th, it is assumed th does not exit during
t (exit diff ):

Exit th ′∈ set t =⇒ th ′ 6= th

All these assumptions are put into a predicate extend highest gen. It can be proved that
extend highest gen holds for any moment i in it t (red moment):

extend highest gen s th prio tm (moment i t)

From this, an induction principle can be derived for t, so that properties already
derived for t can be applied to any prefix of t in the proof of new properties about t
(ind):

[[R [];∧
e t. [[vt step (t @ s); step (t @ s) e; extend highest gen s th prio tm t;

extend highest gen s th prio tm (e·t); R t]]
=⇒ R (e·t)]]

=⇒ R t

The following properties can be proved about th in t:

1. In t, thread th is kept live and its precedence is preserved as well (th kept):

th ∈ threads (t @ s) ∧ preced th (t @ s) = preced th s

2. In t, thread th’s precedence is always the maximum among all living threads (max preced):

preced th (t @ s) = Max ((λth ′. preced th ′ (t @ s)) ‘ threads (t @ s))

3. In t, thread th’s current precedence is always the maximum precedence among all
living threads (th cp max preced):

cp (t @ s) th = Max ((λth ′. preced th ′ (t @ s)) ‘ threads (t @ s))

4. In t, thread th’s current precedence is always the maximum current precedence
among all living threads (th cp max):

cp (t @ s) th = Max (cp (t @ s) ‘ threads (t @ s))
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5. In t, thread th’s current precedence equals its precedence at moment s (th cp preced):

cp (t @ s) th = preced th s

The main theorem of this part is to characterizing the running thread during t (runing inversion 2):

th ′∈ runing (t @ s) =⇒
th ′= th ∨ th ′ 6= th ∧ th ′∈ threads s ∧ cntV s th ′< cntP s th ′

According to this, if a thread is running, it is either th or was already live and held some
resource at moment s (expressed by: cntV s th ′< cntP s th ′).

Since there are only finite many threads live and holding some resource at any mo-
ment, if every such thread can release all its resources in finite duration, then after finite
duration, none of them may block th anymore. So, no priority inversion may happen
then.

6 Properties to guide implementation

The properties (especially runing inversion 2) convinced us that the model defined in
Section 3 does prevent indefinite priority inversion and therefore fulfills the fundamen-
tal requirement of Priority Inheritance protocol. Another purpose of this paper is to
show how this model can be used to guide a concrete implementation. As discussed in
Section 5.6.5 of [9], the implementation of Priority Inheritance in Solaris uses sophis-
ticated linking data structure. Except discussing two scenarios to show how the data
structure should be manipulated, a lot of details of the implementation are missing. In
[3,4,11] the protocol is described formally using different notations, but little informa-
tion is given on how this protocol can be implemented efficiently, especially there is no
information on how these data structure should be manipulated.

Because the scheduling of threads is based on current precedence, the central is-
sue in implementation of Priority Inheritance is how to compute the precedence cor-
rectly and efficiently. As long as the precedence is correct, it is very easy to modify the
scheduling algorithm to select the correct thread to execute.

First, it can be proved that the computation of current precedence cp of a threads
only involves its children (cp rec):

vt step s =⇒ cp s th = Max ({preced th s} ∪ cp s ‘ children s th)

where children s th represents the set of children of th in the current RAG:

children s th
def
= {th ′ | (Th th ′, Th th) ∈ child s}

where the definition of child is:

child s
def
= {(Th th ′, Th th) | ∃ cs. (Th th ′, Cs cs) ∈ depend s ∧ (Cs cs, Th th) ∈ depend s}

The aim of this section is to fill the missing details of how current precedence should
be changed with the happening of events, with each event type treated by one subsec-
tion, where the computation of cp uses lemma cp rec.
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6.1 Event Set th prio

The context under which event Set th prio happens is formalized as follows:

1. The formation of s (s def ): s
def
= Set th prio·s ′.

2. State s is a valid state (vt s): vt step s. This implies event Set th prio is eligible to
happen under state s ′ and state s ′ is a valid state.

Under such a context, we investigated how the current precedence cp of threads change
from state s ′ to s and obtained the following conclusions:

1. All threads with no dependence relation with thread th have their cp-value un-
changed (eq cp):

[[th ′ 6= th; th /∈ dependents s th ′]] =⇒ cp s th ′= cp s ′ th ′

This lemma implies the cp-value of th and those threads which have a dependence
relation with th might need to be recomputed. The way to do this is to start from
th and follow the depend-chain to recompute the cp-value of every encountered
thread using lemma cp rec. Since the depend-relation is loop free, this procedure
can always stop. The the following lemma shows this procedure actually could stop
earlier.

2. The following two lemma shows, if a thread the re-computation of which gives an
unchanged cp-value, the procedure described above can stop.
(a) Lemma eq up self shows if the re-computation of th’s cp gives the same re-

sult, the procedure can stop:
[[th ∈ dependents s th ′′; cp s th = cp s ′ th]] =⇒ cp s th ′′= cp s ′ th ′′

(b) Lemma eq up) shows if the re-computation at intermediate threads gives un-
changed result, the procedure can stop:
[[th ∈ dependents s th ′; th ′∈ dependents s th ′′; cp s th ′= cp s ′ th ′]]
=⇒ cp s th ′′= cp s ′ th ′′

7 Related works

1. Integrating Priority Inheritance Algorithms in the Real-Time Specification for Java
[11] models and verifies the combination of Priority Inheritance (PI) and Priority
Ceiling Emulation (PCE) protocols in the setting of Java virtual machine using ex-
tended Timed Automata(TA) formalism of the UPPAAL tool. Although a detailed
formal model of combined PI and PCE is given, the number of properties is quite
small and the focus is put on the harmonious working of PI and PCE. Most key fea-
tures of PI (as well as PCE) are not shown. Because of the limitation of the model
checking technique used there, properties are shown only for a small number of
scenarios. Therefore, the verification does not show the correctness of the formal
model itself in a convincing way.
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2. Formal Development of Solutions for Real-Time Operating Systems with TLA+/TLC
[3]. A formal model of PI is given in TLA+. Only 3 properties are shown for PI us-
ing model checking. The limitation of model checking is intrinsic to the work.

3. Synchronous modeling and validation of priority inheritance schedulers [4]. Gives
a formal model of PI and PCE in AADL (Architecture Analysis & Design Lan-
guage) and checked several properties using model checking. The number of prop-
erties shown there is less than here and the scale is also limited by the model check-
ing technique.

4. The Priority Ceiling Protocol: Formalization and Analysis Using PVS [2]. For-
malized another protocol for Priority Inversion in the interactive theorem proving
system PVS.

There are several works on inversion avoidance:

1. Solving the group priority inversion problem in a timed asynchronous system [10].
The notion of Group Priority Inversion is introduced. The main strategy is still
inversion avoidance. The method is by reordering requests in the setting of Client-
Server.

2. A Formalization of Priority Inversion [1]. Formalized the notion of Priority Inver-
sion and proposes methods to avoid it.

Examples of inaccurate specification of the protocol ???.

8 Conclusions
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