Information and Computation 207 (2009)945-967

Contents lists available at ScienceDirect =

Information

and
Computation

Information and Computation

journalhomepage: www.elsevier.com/locate/ic

Well-founded semantics for Boolean grammars”™

Vassilis Kountouriotis ?, Christos Nomikos?, Panos Rondogiannis **

@ Department of Informatics & Telecommunications, University of Athens, Panepistimiopolis, 157 84 Athens, Greece
b Department of Computer Science, University of loannina, P.O. Box 1186, 45 110 loannina, Greece

ARTICLE INFO ABSTRACT

Article history: Boolean grammars [A. Okhotin, Boolean grammars, Information and Computation 194 (1)
Received 1 August 2007 (2004) 19-48] are a promising extension of context-free grammars that supports con-
Rev!sed 27 May 2009 junction and negation in rule bodies. In this paper, we give a novel semantics for Boolean
Available online 9 June 2009 . . . K .
grammars which applies to all such grammars, independently of their syntax. The key idea
of our proposal comes from the area of negation in logic programming, and in particular
from the so-called well-founded semantics which is widely accepted in this area to be the
“correct” approach to negation. We show that for every Boolean grammar there exists a
distinguished (three-valued) interpretation of the non-terminal symbols, which satisfies
all the rules of the grammar and at the same time is the least fixed-point of an operator
associated with the grammar. Then, we demonstrate that every Boolean grammar can be
transformed into an equivalent (under the new semantics) grammar in normal form. Based
on this normal form, we propose an ©(n?) algorithm for parsing that applies to any such
normalized Boolean grammar. In summary, the main contribution of this paper is to provide
a semantics which applies to all Boolean grammars while at the same time retaining the
complexity of parsing associated with this type of grammars.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Boolean grammars constitute a new and promising formalism, proposed by Okhotin in [8], which extends the class of
conjunctive grammars introduced by the same author in [7]. The basic idea behind this new formalism is to augment context-
free rules by allowing intersection and negation to appear in their right-hand sides. It is immediately obvious that the class
of languages that can be produced by Boolean grammars is a proper superset of the class of context-free languages.

Despite their syntactical simplicity, Boolean grammars appear to be non-trivial from a semantical point of view. As we
are going to see in the next section, the existing approaches for assigning meaning to Boolean grammars suffer from certain
shortcomings (one of which is that they do not give a meaning to all such grammars).

In this paper, we propose a new semantics (the well-founded semantics) which applies to all Boolean grammars. More
specifically, we demonstrate that for every Boolean grammar there exists a distinguished (three-valued, see below) inter-
pretation of the non-terminal symbols, which satisfies all the rules of the grammar. This interpretation is the unique least
fixed-point of an appropriate operator associated with the grammar. The language assigned by this interpretation to the start
symbol of the grammar, can be taken as the intended meaning of the grammar.

™ This work is supported by the 03EA 330 research project, implemented within the framework of the “Reinforcement Programme of Human Research
Manpower” (TTENEA) and co-financed by National and Community Funds (75% from E.U.-European Social Fund and 25% from the Greek Ministry of
Development-General Secretariat of Research and Technology and from the private sector).

" Corresponding author.
E-mail addresses: bk@di.uoa.gr (V. Kountouriotis), cnomikos@cs.uoi.gr (C. Nomikos), prondo@di.uoa.gr (P. Rondogiannis).

0890-5401/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2009.05.002

http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic

946 V. Kountouriotis et al./Information and Computation 207 (2009) 945-967

Our ideas originate from an important area of research in the theory of logic programming, that has been very active for
more than two decades (references such as [1,9] provide nice surveys). In this area, there is nowadays an almost unanimous
agreement that if we seek a unique model of a logic program with negation, then we have to search for a three-valued one. In
other words, classical two-valued logic is not sufficient in order to assign a proper meaning to arbitrary logic programs with
negation. Actually, it can be demonstrated that every logic program with negation has a distinguished three-valued model,
which is usually termed the well-founded model [13].

We follow the same ideas here: we consider three-valued languages, namely languages in which the membership of
strings may be characterized as true, false, or unknown. As we will see, this simple extension solves the semantic problems
associated with negation in Boolean grammars. Actually we show that this extension to three values is in some sense
necessary: we prove that the problem of whether a Boolean grammar defines under the well-founded semantics a classical
(that is, two-valued) language, is undecidable. We then proceed by demonstrating that under this new semantics, every
Boolean grammar has an equivalent grammar in normal form (similar to that of [8]). Finally, we show that for every such
normalized grammar, there is an O(n°) parsing algorithm under our new semantics. Our results indicate that there may be
other fruitful connections between formal language theory and the theory of logic programming.

The rest of the paper is organized as follows: Section 2 presents the basic issues regarding Boolean grammars and discusses
the existing approaches to their semantics. In Section 3 the notion of a three-valued formal language is proposed and the basic
tools that will be used in our semantic investigations are developed. In Section 4 the well-founded semantics of Boolean
grammars is defined and its basic properties are demonstrated. In Section 5 a normal form for Boolean grammars is introduced
based on the well-founded semantics. In Section 6 a parsing algorithm for Boolean grammars is derived based on the normal
form introduced in Section 5. Finally, Section 7 concludes the paper giving pointers to future work.

2. Why an alternative semantics for Boolean grammars?

In [8] Okhotin proposed the class of Boolean grammars. Formally:

Definition 1 [8]. A Boolean grammar is a quadruple G = (X, N, P, S), where X and N are disjoint finite non-empty sets of
terminal and non-terminal symbols, respectively, P is a finite set of rules, each of the form

A— o1& - &op&—p1&---&f, (m+n>1, o B € (EUN)Y),

and S € N is the start symbol of the grammar. We will call the non-terminal A the head of the rule, the «;’s positive conjuncts
and the —8;’s negative ones.

We will often use the short notation A — ¢1] - - - |¢k to represent k rules of the form A — ¢;.
To illustrate the use of Boolean grammars, consider the following example from [8] (presented here in a slightly modified
form):

Example 2. Let X = {a, b}. We define:

S — —(AB)&—(BA)& —A&—B
A — a|CAC
B — b|CBC

C — alb

The above grammar defines the language L,,,, = {ww|w € {a, b}*}, which is well-known to be non-context-free. This can be
justified as follows: first, it is easy to see that the language L(A) (respectively, the language L(B)) produced by the non-terminal
A (respectively, the non-terminal B) contains the strings of odd length in which the symbol in the middle is a (respectively, b).
Consider now any string y of length 2n for some n, that is not in L. This implies that there exists somei, 1 < i < n,suchthat
the ith symbol of y is different from the (n + i)th symbol of y. Suppose that the ith symbol of y is a and the (n 4 i)th symbol
of y is b (the other case is completely symmetric). Then, y = y,yp, where |y,| = 2i — 1, |yp| = 2(n — i) + 1, yq € L(A) and
¥p € L(B) (since the ith and the (n 4 i)th symbol of y are the symbols in the middle of y, and y}, respectively).

Therefore, a string that is not in L,;,,, belongs to L(A) U L(B) if it has odd length, and belongs to L(A) o L(B) U L(B) o L(A)
if it has even length. Using De Morgan’s law, we obtain the first rule, which defines the language produced by the grammar.

Okhotin proposed two semantics intended to capture the meaning of Boolean grammars. In this section, we demonstrate
some deficiencies of these two approaches, which led us to the definition of the well-founded semantics. Both semantics
proposed in [8] are defined using a system of equations, which is obtained from the given grammar as follows: consider a
Boolean grammar G = (X, N, P, S), where N = {X1, Xy, . . ., Xi}. The equation for the non-terminal X; is

e Yoo (o

Xi—> o1& - &m&—P1&--&—preP \j=1

V. Kountouriotis et al./ Information and Computation 207 (2009) 945-967 947

We denote the formula in the right-hand side of the above rule (which in general involves the non-terminal symbols in N)

by ¢i(X1,...,Xk). An interpretation I of G (i.e., an assignment of a language from ¥ to every non-terminal symbol in N) is
said to be a solution of the system of equations

X1 = ¢1X1,... Xk)

Xk = ¢I((le L vXk)
if for every i, 1 < i < k, it holds I(X;) :T(c/)i(X], ..., Xk)), where T is the extension of I to expressions that may appear in

the right-hand sides of equations, which can be obtained in a straightforward manner (for more details see Definition 7 of
Section 3, where the extension of three-valued interpretations is defined).

In the first approach proposed in [8], the semantics of a Boolean grammar is defined only in the case that the corresponding
system of equations has a unique solution. This is a restrictive choice: actually many interesting grammars do not correspond
to systems of equations having a unique solution. For example, even simple context-free grammars (such as for example the
grammar with a single rule S — S), may give systems of equations which have infinitely many solutions. For such grammars,
it seems that the desired property is a form of minimality rather than uniqueness of the solution.

Apart from its limited applicability, the unique solution semantics also exhibits a kind of instability. For example, let
> = {0, 1} and consider the Boolean grammar consisting of the two rules A — —A&—B and B — 0&1. The corresponding
system of equations has no solution and therefore the unique solution semantics for this grammar is not defined. Suppose
that we augment the above grammar with the rule B — B. Seen from a constructive point of view, the new rule does not
offer to the grammar any additional information. It is reasonable to expect that such a rule would not change the semantics
of the grammar. However, the augmented grammar has unique solution semantics, namely (A, B) = (¥, £*). On the other
hand, suppose that we augment the initial grammar with the rule A — A. Then, the unique solution semantics is also
defined, but now the solution is (A, B) = (Z*, #). Consequently, by adding to an initially meaningless grammar two different
information-free rules, we get two grammars defining complementary languages. To put it another way, three grammars
that look equivalent, have completely different semantics.

Let us now turn to the second approach proposed in [8], namely the naturally reachable solution semantics defined as
follows (for convenience, given an interpretation I of G and a finite language M we denote by I the interpretation with
I"™(A) = I(A) N M for every A € N):

Definition 3. Let X; = ¢1(Xq,...,Xk), ..., Xk = ¢ (X1, ..., Xy) be a system of equations which corresponds to a Boolean
grammar G = (X,N,P,S), with N = {Xj, ..., X}. An interpretation I is called a naturally reachable solution of the system if
for every finite language M closed under substring and for every string u ¢ M such that all proper substrings of u are in M,
every sequence of interpretations of the form: 1O M 1® . which satisfies the properties

° I(O) — IﬂM

o 10D £ [and —
o there exists some j such that 1D (X;) = 10 (¢;(Xy, ..., X)) N (M U {u}) and 17V (X)) = 1D (X,) forall £ # j

converges to [NMU{) finitely many steps.

Contrary to the unique solution semantics, the naturally reachable solution semantics generalizes the semantics of
context-free and conjunctive languages (see [8] [Theorem 3]). However, when negation appears, there are cases that this
approach does not behave in an expected manner. Consider for example the Boolean grammar with rules:

A— —-B B—(C&D, C—D, D—A

This grammar has the naturally reachable solution (A, B,C,D) = (Z*, @, ¥*, ¥*). It is reasonable to expect that composing
two rules would not affect the semantics of the grammar. For example, in context-free grammars such a composition is a
natural transformation rule that simply allows to perform two steps of the production in a single step. However, if we add
C — Atothe above set of rules, then the naturally reachable solution semantics of the resulting grammar is not defined. On
the other hand, the technique we will define shortly, does not suffer from this shortcoming.

Furthermore, there exist grammars for which the naturally reachable solution semantics is undefined, although they may
have a clear intuitive meaning. For example, let ¥ = {a} and suppose that the grammar contains the following rules:

A— —B|D, B— —C|D, C— —A|D, D — aD|e

The semantics of this grammar s clearly (4, B, C,D) = (X*, ¥*, £*, ¥*), and actually this is what the well-founded semantics
will produce. On the other hand the naturally reachable solution semantics is undefined.

The problem of giving semantics to recursive formalisms in the presence of negation has been extensively studied in the
context of logic programming. Actually, the unique solution semantics can be paralleled with one of the early attempts to
give semantics to logic programs with negation, namely what is now called the Clark’s completion semantics (which actually
presents similar shortcomings as the unique solution approach). On the other hand, the naturally reachable solution can be
thought of as a first approximation to the procedure of constructing the intended minimal model of a logic program with
negation (see also Theorem 28 that will follow). Since the most broadly accepted semantic approach for logic programs with

948 V. Kountouriotis et al./ Information and Computation 207 (2009) 945-967

negation is the well-founded semantics, in this paper we investigate the possibility of applying such an approach to Boolean
grammars.

At this point we should also mention two other recent works on the semantics of Boolean grammars, namely the stratified
semantics [14] and the locally stratified one [5,6]. Both of these approaches also have their roots in the theory of non-monotonic
logic programming. However, these two semantics differ from the well-founded one in the sense that they aim to identify
interesting (syntactic) subclasses of Boolean grammars that have a well-defined meaning (while the present approach aims
at providing a formal framework for the whole class of Boolean grammars).

3. Interpretations and models for Boolean grammars

In this section, we initiate our study of the semantics of Boolean grammars. We begin by defining the notions of interpreta-
tion and model for Boolean grammars, two concepts that have been borrowed from mathematical logic (see for example [3]).
In context-free grammars, an interpretation is a function that assigns to each non-terminal symbol of the grammar a set
of strings over the set of terminal symbols of the grammar. An interpretation of a context-free grammar is a model of the
grammar if it satisfies all the rules of the grammar. The usual semantics of context-free grammars dictate that every such
grammar has a minimum model, which is taken to be as its intended meaning.

When one considers Boolean grammars, the situation becomes much more complicated. For example, a grammar with the
unique rule S — —S appears to be meaningless. More generally, in many cases where negation is used in a circular way, the
corresponding grammar looks problematic. These difficulties arise because we are trying to find classical models of Boolean
grammars, which are based on classical two-valued logic. If however we shift to three-valued models, every Boolean grammar
has a well-defined meaning. We need of course to redefine many notions, starting even from the notion of a language:

Definition 4. Let ¥ be a finite non-empty set of symbols. Then, a (three-valued) language over X is a function from * to
the set {O, % 1}.
Intuitively, given a three-valued language L and a string w over the alphabet of L, there are three cases: either w € L (i.e,,
L(w) =1),orw &L (i.e, L(w) = 0), or finally, the membership of w in L is unclear (i.e.,, L(w) = %). Given this extended
notion of langua§e, it is now possible to interpret the grammar S — —S: its meaning is the language which assigns to every
string the value 5.

The following definition, which generalizes the familiar notion of concatenation of languages, will be used in the rest of
the paper:

Definition 5. Let X be a finite non-empty set of symbols and let Ly, . . ., L, be (three-valued) languages over . We define
the three-valued concatenation of the languages L4, . . ., L, to be the language L such that for every w € X*:

L(w) = max (mjn Li(Wi)>

W1,wn): \1<i<n
W=W1--Wn
The concatenation of L1, . . ., L, will be denoted by L1 o - - - o Lj,.

The above definition can be explained as follows:

e A string belongs to L; o - - - o L, (truth value 1) if it can be partitioned into n parts so that for every i < n, the i'th part
belongs to L;.

e Astring is excluded from the concatenation (truth value 0) if in every partition, there exists some i such that the i’th part
is excluded from the language L;.

e The membership of a string w is undefined in the concatenation (truth value %) if there exists a partition of w such that no
part is excluded from the corresponding language, and there does not exist a partition of w such that every part belongs

to the corresponding language.

It can be easily checked that when the languages involved are total (i.e., with no % values assigned to strings) then the
above definition reduces to the familiar definition of concatenation.
We can now define the notion of interpretation of a given Boolean grammar:

Definition 6. An interpretation I of a Boolean grammar G = (X, N, P,S) is a function : N — <E* — {0, % 1 })

An interpretation I can be recursively extended to apply to expressions that appear in the right-hand sides of Boolean
grammar rules:

Definition 7. Let G = (X, N, P,S) be a Boolean grammar and let I be an interpretation of G. Then, the extension [of I is
defined as follows:

V. Kountouriotis et al./ Information and Computation 207 (2009) 945-967 949

e Foreveryw € =% itisT(e)(w) = 1ifw = €, and 1(¢)(w) = 0 otherwise.

e Let A € N. Then, for every w € X%, it is I(A)(w) = I(A)(w).

e Leta € X. Then, for every w € =*, itis I(a)(w) = 1 if w = g, and I(a)(w) = O otherwise.
eleta = a1 --apn >2,a; € X UN.Then, for everyw € X%, itis T(@)w) = (1) 0 - - - o T(an)) (W).
eleta € (T UN)* Then, for every w € X%, it lSI(—'Ol)(W) =1-T(a)(w). R R

e Letly, ..., I, be conjuncts. Then, for every w € =%, itisT(h&- - - &lp) (W) = min{I(l;)(w), ..., I(l)(w)}.

We are now in a position to define the notion of a model of a Boolean grammar:

Definition 8. Let G = (X, N, P,S) be a Boolean grammar and [an interpretation of G. Then, I is a model of G if for every rule
A — L&---&l,inPand foreveryw € X* itisI(A)(w) > [(Lh&--- &) (w).

Certain explanations regarding the notion of model are needed, since this concept is not broadly used in formal language
theory - despite its fundamental applicability in mathematical logic. A model of a set of formulas in logic, is an interpretation
that satisfies all the formulas in the set. In the context of Boolean grammars, each rule can be thought of as a formula which
states that the membership value of a string in the language that corresponds to the head of the rule, is greater than or
equal to the membership value of the string in the language that corresponds to the body of the rule. This idea restricted to
total languages states that, for every rule, the language that corresponds to the head of a rule is a superset of the language
that corresponds to the body. Clearly, a model of a grammar does not necessarily capture the meaning of a grammar (for
example, an interpretation that assigns X* to every non-terminal of a grammar, is a model of the grammar). However, the
interpretation that captures the intended meaning of a grammar, has to be a model of the grammar. In other words, the first
basic property that an interpretation has to satisfy in order to be eligible as a candidate for the correct meaning of a Boolean
grammar, is to be a model of the grammar.!

In the definition of the well-founded model, two orderings on interpretations play a crucial role (see [9] for the corre-
sponding ordering in the case of logic programming). Given two interpretations, the first ordering (usually called the standard
ordering) compares their degree of truth:

Definition 9. Let G = (X, N, P,S) be a Boolean grammar and I, be two interpretations of G. Then, we write I <] if for all
A € Nand forallw € X%, I(A)(w) < J(A)(w).

The following lemma is easy to establish:

Lemma 10. Let G = (X,N,P,S) be a Boolean grammar and I,] be two interpretations of G such that I <]. Then, for all
o € (X UN)*and forallw € X%, I(a)(w) < J(a)(w).

Proof. The statement is obvious wheno = e orwheno € X UN.Foro = a1 -+ -y, > 2,5 € X UN, it is:

T@yw) = (l(ar)o---oT(an)) (W)

max (wy,...wn): (min]sifn I(a,)(Wl))

W=wq-Wpn

< MaX e (ming <j<n J (o)) (Wy))
= (Jlay) o oJ(an)) (w)
= J(@)(w)

This completes the proof of the lemma. [

Among the interpretations of a given Boolean grammar, there is one which is the least with respect to the < ordering and is
denoted by L. That is, for all A and all w, 1 (A)(w) = 0.

The second ordering (usually called the Fitting ordering) compares the degree of information of two interpretations. We
first need to define the corresponding numerical ordering:

Definition 11. Letvq,v; € {0 1}. We write v{ <f v, if and only if either vi = v, orv; =

1
’ 2 ’ 2 :
Definition 12. Let G = (X, N, P,S) be a Boolean grammar and I,] be two interpretations of G. Then, we write I <g J if for all
A € Nand forallw € X%, I(A)(w) <g J(A)(w).

We now establish a lemma regarding < which is similar to Lemma 10 for <:

1 One could avoid the use of models by first transforming a Boolean grammar into a set of equations (see [8] or the corresponding definition in Section 2),
and then looking for a solution to this set of equations. We prefer to follow the model-based approach, which is closer to the logical background of Boolean
grammars.

950 V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967

Lemma 13. LetG = (X, N, P,S) be a Boolean grammar and 1,] be two interpretations of G such thatI < J. Then, for any conjunct
[(either positive or negative) and for any w € T*, I(l)(w) <p J(I)(w).

Proof. Assume first that!is a positive conjunct. When! = € orl € ¥ U N, the result holds trivially. For[= oty - - - o, 1 > 2,
o; € ¥ U N, we distinguish two cases:

Case 1:1(I)(w) = O or equivalently (I(a1) o - - - o I(ety)) (W) = 0. From Definition 5, this means that
Max w;..wn): (Ming<i<p I(e;) (W;)) = 0, or equivalently that for all (wy, . . ., wy) such thatw = wy - - - wy, there exists o; such

W=Wwq--Wp

that T(er;) (w;) = 0. But for every such «; it is alsoJ(e;) (w;) = 0, which implies that max w, ..w: (Min<j<xJ(c)(W;)) = O.
~ ~ R w=w1---wn
Therefore, (J(1) o - - - o J(ay)) (W) = 0 or equivalently J(I)(w) = 0.

Case 2: 1(1)(w) = 1 and therefore (7(%) o-+-ol(ctn))(w) = 1. Therefore, from Definition 5, there exists (wy, . . ., wy) with
w = wq - - - wy, such that for all ¢ it is I (@) (w;) = 1. This implies that for all «;, it is also J («;) (w;) = 1, from which it follows
that J()(w) = 1. R R

When | = —« is a negative conjunct the result follows from the fact that I(—«) (W) = 1 — I() (w). This completes the
proof of the lemma. [

Among the interpretations of a given Boolean grammar, there is one which is the least with respect to the <f ordering and
is denoted by L r. That is, for all A and all w, Lg (A)(w) = %

Given a set U of interpretations, we will write lub<U for the least upper bound of the members of U under the standard
ordering. Formally:

1, if there exists I € U such that I(A)(w) = 1
(lub<U)(A)(w) = {0,ifforalll € U 1A (w) =0
5, Otherwise

The situation changes when one wants to define lub<.U, that is, the least upper bound of the members of U under the
Fitting ordering, since this notion cannot in general be defined for an arbitrary set of interpretations U. However, lub<, U can
be defined if U is a directed set of interpretations, i.e., if for every I1, I, € U there exists J] € U such thatl; < Jand I, <f]J.
In this case lub<, U is defined as follows:

1, if there exists I € U such that [(A)(w) = 1
(lub<,U)(A)(w) = {0, if there exists I € U such that I(A)(w) =0
5, otherwise

Obviously, an increasing sequence U = I <g I, <f - - - of interpretations constitutes a directed set of interpretations, and
therefore in this case lub<, U is well-defined.

4. Well-founded semantics for Boolean grammars

In this section, we define the well-founded semantics of Boolean grammars. The basic idea behind the well-founded
semantics is that the intended model of the grammar is constructed in stages that are related to the levels of negation used
by the grammar. At each step of this process and for every non-terminal symbol, the values of certain strings are computed
and fixed (as either true or false); at each new level, the values of more and more strings become fixed (and this is a monotonic
procedure in the sense that values of strings that have been fixed for a given non-terminal in a previous stage, are not altered
by the next stages). At the end of all the stages, certain strings for certain non-terminals may have not managed to get the
status of either true or false (this will be due to circularities through negation in the grammar). Such strings are classified as
unknown (i.e., %).

Consider the Boolean grammar G = (%, N, P, S). Then, for any interpretation J of G we define the operator [O¢]; : T — T
on the set 7 of all three-valued interpretations of G. Intuitively,] represents information that we have already derived and is
considered stable (and therefore it can be safely used to compute the value of negative conjuncts). More specifically, given
IeZ,Ae Nandw € ¥ [BO¢]; (I)(A)(w) is the value that w gets in one step when using J in order to evaluate the negative
conjuncts in rules defining A in G and I to evaluate the positive ones. More formally:

Definition 14. Let G = (3, N, P,S) be a Boolean grammar, let Z be the set of all three-valued interpretations of G and let
J € Z.The operator [O¢]; : T — 7 is defined as follows. For every I € 7, forallA € N and forallw € £*:

1. [®¢]; (DA (w) = 1, if there exists a rule A — [;&- - - &l; in P such that for every positive [; it isT(l,-)(w) =1, and for
every negative [; it is J(I;))(w) = 1; _

2.[6¢]; (D(A)(w) = 0, iffor every rule A — ;& - - - &I, in P, either there exists a positive I; such that I(l;) (w) = 0, or there
exists a negative [; such that J(I;) (w) = 0;

3.[0¢]; (DA (W) = % otherwise.

V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967 951

Some remarks are in order. The operator [©¢]; is analogous to the ones that have been used in the logic programming domain,
but has some important differences from them. More specifically, in [10] two operators are used which produce two sets of
atoms corresponding to true and false conclusions of the program, respectively. When applied to arbitrary interpretations,
these operators may produce inconsistent sets of atoms. However, it is demonstrated in [10] that these operators when used
appropriately, never give rise to inconsistent sets of atoms. In [9], one operator ©; is introduced whose definition however
is not precise in the sense that it is not truth-functional: given arbitrary interpretations I,]J and atom A it is possible that
©;(I)(A) can be assigned both the values 0 and 1. Note however that this problematic case never arises in the construction
of the well-founded model. This imprecise definition was also present in the original conference version of our paper [4].
The above functional definition of [@¢]; remedies this deficiency.
An important fact regarding the operator [®¢]; is that it is monotonic with respect to the < ordering of interpretations:

Lemma 15. Let G = (%, N, P, S) be a Boolean grammar and let] be an interpretation of G. Then, the operator [@¢]; is monotonic
with respect to the < ordering of interpretations.

Proof. LetIy, I, be interpretations of G suchthatl; < I andletA € Nandw € X*. We show by a case analysis on the value
of [B¢]; (I1)(A) (w) that [B¢]; (I1) (A) (w) =< [B¢]; (I2)(A)(w). The case [O¢]; (I1) (A)(w) = 0 is immediate.

Consider now theAcase [O¢]; (1) (A)(w) = 1. Then, from Eeﬁnition 14, there is a rule A — 1 & - - - &I, in P such that
for all positive [; it is Iy (I;) (w) = 1 and for all negative J; it is J(I;)(w) = 1. But since I; < I, using Lemma 10 we get that
I(I;)(w) = 1 for all positive I;, which implies that [@¢]; (I2)(A)(w) = 1.

Consider now the remaining case [O¢]; (I1) (A)(w) = % and assume for the sake ofcontradicﬁion that[O¢]; (I2) (A)(w) =
0. This implies that for every rule A — ;& - - - &I, in P, either there exists a positive [; such that I (li)y(w) = 0, or there exists
a negative [; such that J(l;)(w) = 0. But since I; < I, using Lemma 10 we get that [O¢]; (I1)(A)(w) = 0 (contradiction).
Therefore, in any case [O¢]; (I1) (A) (W) < [6¢]; (L) (A)(w). O

The following definition will be useful in the subsequent discussion:

Definition 16. Let G = (X, N, P,S) be a Boolean grammar, let I be an interpretation of G and let w € ¥*. We denote by I/w
the interpretation defined as follows:

I(A)(u), if u is a substring of w
0, otherwise

(1w = |
We now have the following lemmata:

Lemma 17. Let G = (X, N, P,S) be a Boolean grammar, w be a string in ¥*, and {I,},<, be an increasing sequence of in-
terpretations with respect to the ordering < (respectively, <p). Then there exists some m such that (lub<{In}n<w)/W = In/w
(respectively, (lub<,{In}n<w) /W = Im/wW).

Proof. We give the proof for <; the proof for < is similar.

Let] = lub<{In}n<e. It is easy to verify that the sequence {I,/w}n<, is also increasing with respect to < and that
lub<{ly/W}n<w = J/w.Moreover, the set {I/w|l is an interpretation of G} is finite, since N is finite and there is a finite number
of substrings of w. The above facts imply that there exists some m < w such thatl;/w < I;/w forevery i < w, thatis, I,/w
is an upper bound for {I, /w}, .. Since J/w is the least upper bound of this sequence, we obtain that J/w < I,;/w, and since
I;m/w belongs to the sequence it holds I, /w < J/w. The last two inequalities imply that J/w = I,/w. [

Lemma 18. Let G = (X, N, P,S) be a Boolean grammar and let I, Iz,]1,J> be interpretations of G. Let w € X* and assume that
li/w =1L /wand]i/w = J/w. Then, for every A € N, [O¢]j, (I1)(A)(w) = [Oc]j, (I)(A)(W).
Proof. We perform a case analysis on the value of [@¢];, (I1)(A)(w).

Case 1: [O¢];, (I1)(A)(w) = 0. But this is equivalent to saying that for every rule A — ;& - - - &l in P, either there exists a

positive J; such that I; (I}) (w) = 0, or there exists a negative I; such that J; (I;) (w) = 0. But using the fact that I /w=1IL/w
and J1/w = Jo/w, this again is equivalent to the statement that for every rule A — ;& - - - &I in P, either there exists a
positive [; such that I (I;) (w) = 0, or there exists a negative /; such that J (I;) (w) = 0. Equivalently, [O¢];, (I2)(A)(w) = 0.

Case 2: [©c];, (I1)(A)(w) = 1. Entirely analogous to the proof of Case 1. [J
The next definition and theorem demonstrate that in addition, [©¢]; has a unique least fixed-point:

Definition 19. Let G = (X, N, P, S) be a Boolean grammar and let | be an interpretation of G. Define:

952 V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967

[ecl]® = 1
[©c)""! = (0] (10c]™)
[0c)]* = b {[6]" In < w}.

Theorem 20. Let G = (X, N, P,S) be a Boolean grammar and let | be an interpretation of G. Then, the sequence {[@G]jT"},Kw is

increasing with respect to < and [@G]]Tw is the unique least fixed-point of the operator [®¢]; with respect to < .

Proof. We first show by induction that the sequence {[@G]f"}nq,) is increasing with respect to <. Obviously [@G]JTO =1 =<
[@G]]M. Moreover, assuming that [@G]]Tk =< [@)G]JTH] and using the monotonicity of [®¢]; with respect to < (Lemma 15),
we get that [G)G]JTkH < [@G]]MH_Z.

Next we show that [®G]JT‘° is a fixed-point of [G¢];, i.e., that [O¢]; ([@G]]Tw) = [©¢]; “. We first demonstrate that
[@G]] ? < [O¢]; ([@)G]JTw). Since [@G]]Tw is the least upper bound of the sequence {[@G]]Tn}nqu, we have that for every

n>0, [@G]]Tn < [G)(;]] . Using the monotonicity of [®¢]; with respect to <, we get that for every n > 0, [(H)G]]T"H =
[Oc¢]; ([@G]JT") =< [O¢]; ([@c]f’”), or equivalently that [©¢]; ([@G]]Tw) is an upper bound of the sequence {[@G]]T"H}Mw.

]Tn+l

Then [O¢]; ([@)G]]T")) is also an upper bound of the sequence {[@G]]T"}nq, = {L}U{[®¢];

[@G];w is the least upper bound of this sequence, and therefore [®G]]Tw = [B¢] ([G)(;]]Tw).

}n<w. But we know that

We now demonstrate that [O¢]; ([@G]]Tw) =< [@G]JT“), or equivalently that for all A€ N and for every w € ¥*,
[06]; (1Oc]; “)(A) (W) < [O¢];“ (A)(w). Consider arbitrary A € N and w € X*. Since the sequence {[@G]]T"},Kw is in-
creasing with respect to < from Lemma 17 there exists some m < o such that [O¢], “w = [@G]]Tm/w. From Lemma 18,
it is [Oc], (O])@ W) = [Oc]; (O]} ™ @B W) = [O¢]] ™ (A (W) < [O¢]]“ (A)(w). Therefore, it holds that [,
(©cl]”) < [06]]*.

It remains to show that [©¢]; “ is the least fixed-point of [®¢]; with respect to <. Suppose that Q is another fixed-
point of [@¢];. It suffices to show that [®c]] “ < Q. We show by induction that [@G]JT" =< Q for every n > 0. Obviously,
L =[0¢]/® < Q. Assume that [O¢]]" < Q. Then, [©]]"""
point of [©¢];. Consequently, [@G];n < Q foreveryn > 0, i.e., Q is an upper bound of the sequence {{@G]]Tn}nq”_ Now, since

< [@G]] (Q) = Q, since we have assumed that Q is a fixed-

[@c;];(‘J is the least upper bound of the sequence {[@c];n}nq), we get that [@G]J “ < Q, which proves [@G]J “ to be the least
fixed-point of [@¢];. [

We will denote by Q2 (J) the least fixed-point [@G]]Tw of [®¢];. Given a grammar G, we can use the Q¢ operator to construct
a sequence of interpretations whose least upper bound Mg (with respect to <g) will prove to be a distinguished model of G.
Notice that here we have an essential difference with respect to the well-founded semantics of logic programming: there,
the construction of the well-founded model may require a transfinite number of iterations which is greater than w. An
undesirable consequence of this fact is that the well-founded semantics of logic programs is not computable in the general
case. However, in the case of Boolean grammars, the model is constructed in at most w iterations. Intuitively, this is due to
the following reasons: (i) Boolean grammars are finite, and (ii) the membership of a string w in the language defined by a
non-terminal, depends only on the memberships of a finite number of strings (namely the substrings of w) in finitely many
languages (corresponding to the non-terminal symbols of the grammar).

The definition of M¢ has as follows:

Definition 21. Let G = (X, N, P,S) be a Boolean grammar. Define:

Mco = 1f
Mgny1 = Qc(Mgp)
Mg = lub<.{M¢pln < w}

From the above definition, it is not immediately obvious that M is well-defined (since as we have remarked at the end of
Section 3, lub<, is not always well-defined). However, as we are going to see shortly, the operator ¢ is monotonic with
respect to <r and this ensures that the sequence {M¢ }n< is increasing (which ensures that lub<; is well-defined).

Lemma 22. LetG = (X, N, P, S) be a Boolean grammar. Then, Q¢ is monotonic with respect to the <p ordering of interpretations.

V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967 953

Proof. Let J1,J, be two interpretations of G such that J; <r Jo. We show that Q¢(J1) <r Q¢(J2), or equivalently that

[G)(;]]T]w =<F [@G]]Zw. We first prove that for all n > 0, [®G]]Tln <F [®G]]2n. The proof is by induction on n. The basis case
obviously holds. Assume the statement holds for n; we demonstrate the casen + 1.Let A € N and w € X*. We distinguish

two cases regarding the value of [®G]]T1n+1 A)(w).

Case 1: [@G]ﬁ"'|r1 (A)(w) = 0, or equivalently [O¢]}, ([®G]]1n)(A) (w) = 0. From Definition 14, this implies that for every
ruleA — 1&- - - &I, in P, either there exists a positive I; such that ([@Z;\]]]")(l,') (w) = 0, or there exists a negative [; such that
J1(lj)(w) = 0.In the former case, from Lemma 13 and the induction hypothesis, we obtain that there exists a positive I; such
that ([©¢]]Zn)(li)(w) = 0. In the latter case, from Lemma 13 and the fact that J; <r J,, we obtain that there exists a negative
I; such that J5 (I;) (w) = 0. Therefore, [@G]]Z”+ LA (w) = 0.

Case 2: Entirely analogous to the proof of Case 1.

We can now prove that [@G]]T]w <p [@G]]Zw. Suppose first that [G¢];“ (A)(w) = 1. Then there exists some m such
that [@(;]]1m (A)(w) = 1. Thus, it is also [@G]]sz (A)(w) = 1, which implies that [®G]]2w (A)(w) = 1. Suppose now that
[@G]hw (A)(w) = 0. Then [G)G]h"(A)(W) = 0 for every n. Thus, it is also [@G]]ZH(A)(W) = 0 for every n, which implies that
[©6];,” A)(w) =0. O
Apart fromits monotonicity, ¢ has another important property (whichis the analogue of the property described in Lemma 18

for the [®¢] operator):

Lemma 23. Let G = (X, N, P,S) be a Boolean grammar and let |1,], be interpretations of G. Let w € ¥* and assume that
Ji/w = Jo/w. Then, for every A € N, Qc(J1) (A) (W) = Qc(2) (A) (W).

Proof. We first prove by induction on n that for everyn > 0, [@G]]T]"/w = [@c]bn/w.
The basis case is trivial. For the induction hypothesis, let us assume that [@c]hn/W = [@G]h" /w.This implies that for every

substring u of w, it is also [®(;]hn Ju= [G)G]hn /u.Moreover, J1 /u = J/u.From Lemma 18 we obtain that [G)(;]]TI'H_1 A)(u) =

[®G]]T2n+l (A)(u), for every A € N and every substring u of w. Thus, [(9G]IT1'H_1

inductive proof.
Therefore, for every n and every A € N, [@G]h"(A) (w) = [@G]hn (A)(w). The lemma follows from the definition of Q.
(I

Theorem 24. Let G = (X, N, P,S) be a Boolean grammar. Then, the sequence {Mc n}n<e is increasing with respect to the <g
ordering of interpretations. Moreover, Mg is the least fixed-point of the operator Q.

Jw= [@G]]TZ"H/W, which completes the

Proof. Using the monotonicity of ¢ with respect to the <y (Lemma 22), it can be proved (by similar arguments as in
Theorem 20) that the sequence {M¢n}n<. is increasing with respect to <r and that Mg < Q¢(Mg).

In order to prove that Mg is a fixed-point, it remains to prove that Q¢(Mg) <p Mg. Consider arbitrary A € N and w €
¥*. Since the sequence {M¢;}n<(is increasing with respect to <p from Lemma 17 there exists some m < such that
Mg /W = Mg m/w. From Lemma 23, Q¢ (Mg)(A) (W) = Q¢ (Mgm)(A)(W) = Mg m+1(A) (W) <p Mg(A)(w). In other words,
Qc(Mg) =<F Mg.

Therefore, Mg is a fixed-point of €2¢. Using a similar reasoning as in Theorem 20, we can show that M is actually the
least fixed-point of s with respect to the < ordering. [

The above results lead to the following theorem, which demonstrates that M satisfies all the rules of the grammar G:
Theorem 25. Let G = (X, N, P,S) be a Boolean grammar. Then, M is a model of G (which will be called the well-founded model
of G).

Proof. It suffices to demonstrate that for every rule A—[1&---&Il in P and for every we X" it is Mg(A)(w) >
Mc(hi&- - &l)(w). Let v = min{Mg(l1) (W), . .., Mc(l;)(w)}. Then, for every [; it is Mg (l;)(w) > v. Now, since from The-
orem 24 itis M¢ = Qc(Mg), for every I; itis (¢ (Mc)) (l;)(w) > v. This implies that there exists k > Osuch thatforalln > k
and for every positive l;, ([O¢],I,,Z)(I;) (w) > v. Applying Definition 14 we get that for every n >k, ([(H)G],T,,Z+1)(A)(w) >v,which
implies that Q¢ (Mg)(A)(w) > v. But then from Theorem 24 we get that Mg (A) (w) > v. Therefore, M is a model of G. [

We now give an example that illustrates the well-founded construction as this has been defined above:

Example 26. Let G be the grammar given in Example 2. We will demonstrate that Mz = M, i.e., that in order to converge
to the well-founded model of G we need exactly two iterations of Q.

954 V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967

First, recall that My =_Lf and M1 = Q¢(Mg) = [®G]E‘;. Since C is defined by C — a|b, we easily obtain that for every
n > 1itholds [@G]l’; ©)(a) = [@511’; (C)(b) =1and [@(;11’; (C)(w) = 0, foreveryw € =* — {a, b}. Moreover, for every
n > 1it holds

w = ujauy where uq,uy € {a,b}*, |u1| = |uz| <n

tn _ L
[Oc]L (A (W) = {0, otherwise

This can be proved by an easy induction on n. For the basis case (n = 1), itis [@G]E (A)(a) = 1, which is derived from the
rule A — a. Suppose that the claim holds for n and consider a string w = cqujauycy, where uq,u; € {a, b}*, c1,c € {a,b},

|cu1| = |cauz| < n+ 1. From the induction hypothesis it is [6011’; (A)(urauz) = 1 and since it is also [@)G]ﬁ O =
[@)G]]_T; (C)(b) = 1, from the rule A — CAC we obtain that [(“)C]E:—H A w) = 1.
Therefore:
_ [l w=ujau; where uq, uz € {a,b}", |u1]| = |uz|
M; (A)(w) = {0, otherwise
and similarly:
(1, w = ujbuy where uy,uy € {a,b}*, [u1| = |ua]|
My (B)(w) = {o, otherwise

Notice that the languages assigned by M; to the non-terminals A, Band C, which are defined by rules that are actually context-
free, coincide with the languages that would be assigned to these symbols by the standard derivation-based semantics of
context-free grammars.

On the other hand, the denotation of S remains completely undefined in My : since in the unique rule defining S all conjuncts

are negative, in order to compute the value of [G)G]I_'; (S)(w) for any n > 1 and for any w € X*, we must use (according to

Definition 14) the interpretation _Lr in order to evaluate these conjuncts. Therefore, in all cases it is [@c]ﬁ S(w) = % and
therefore:

1
Mi($)(w) = 3

However, the situation regarding S changes when we proceed to compute My : itis My = Q¢(Mp) = [@G],T,,?, and now M
contains all the information we need regarding the non-terminals A, B and C. Consider any string w = uu, whereu € {a, b}*.
Since w has an even length, it is My (A) (w) = M (B)(w) = 0, which implies My (—A)(w) = M; (—B)(w) = 1. Moreover, for
every pair of odd length strings v1, v, € {a, b}* such that v{v, = w, the symbols in the middle of v; and v, are identical (as
they are the ith and (i + |w|)th symbols of w, for some i). Therefore, if M1 (A)(v1) = 1, then M;(B)(v3) = 0, which implies
that M; (AB)(w) = 0, or equivalently M; (—AB)(w) = 1. Similarly we obtain that M;(—BA)(w) = 1. Thus, from the rule
S — —(AB) & —(BA) & —A & —B we derive [(H)(;],T/,': (S)(w) = 1, for every n > 1. On the other hand, for any string w that is

not of the form uu, one of My (—A)(w), M; (—B)(w), M; (—AB) (w), M; (—BA) (w) is 0, which implies that [@G],I/,': S)(w) =0.
In short,

o tn 1, we {uulu e ¥}
[Ocly,)W) = !0, otherwise

Moreover, it holds that M, (V) = My (V), for every V € {A, B, C}, since the rules defining these symbols are negation-free.
Additionally, My = M>, forall k > 2.Therefore, M = M. Notice that the language produced by this grammar is two-valued.

At this point we examine a natural question that springs to mind after the introduction of the three-valued well-founded
model. Since most of the current work in formal language theory is based on two-valued languages, it is reasonable to wonder
whether the problem “Given a Boolean grammar G, is Mg two-valued?” is decidable. The following theorem demonstrates
that this is not the case.

Theorem 27. The following problem is undecidable: “Given a Boolean grammar G = (%, N, P, S), decide whether for allw € ¥*,
Mc(S)(w) € {0,1}".

Proof. We present a reduction from the following well-known undecidable problem: “Given a context-free grammar over
an alphabet %, decide whether the language defined by this grammar is X*”. Let G; = (X, N1, P1,S1) be a context-free
grammar. Consider the Boolean grammar G = (X, N, P, S) where:

o N = Ny U {S}, where S & Ny,
eP =P U{S— 5,5 —> =S}

V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967 955

Suppose first that the language defined by G, is X*. We easily obtain that M (S1)(w) = 1 for every w € X%, since the well-
founded semantics extends the standard semantics of context-free grammars. Since we also have the rule S — S; in P, it
will also be the case that Mg (S)(w) = 1 for every w € X* (and therefore M is trivially two-valued).

For the other direction, suppose that for everyw € X*,itis Mg (S)(w) € {0, 1}. Since P contains the ruleS — —S it cannot
be M (S)(w) = 0 for any w. Therefore, for every w it holds that M (S) (w) = 1, which implies that M (S1)(w) = 1. Since the
well-founded semantics extends the standard semantics of context-free grammars, we get that w belongs to the language
defined by G;. O

Closing this section, we can now state the relationship between the well-founded semantics and the naturally reachable
semantics of Boolean grammars. For the definition of the naturally reachable solution and the related terminology the reader
is referred to [8] or the definition given in Section 2.

Theorem 28. Suppose that a Boolean grammar G has a two-valued (i.e., with values 0 and 1) well-founded semantics. Then the
naturally reachable solution for this grammar either coincides with the well-founded semantics or is undefined.

Proof. We present an outline of the proof.

Let {Xq,...,Xy} be the set of non-terminal symbols in G and assume that G has a two-valued well-founded model M.
Then, M¢ (X;) can be thought of as a two-valued language, i.e., as a set of strings. Moreover, let X; = ¢1(Xq,...,Xn),...,. Xp =
¢n(Xq,...,X,) be the system of equations that corresponds to G and assume that it has a naturally reachable solution
L= (..., L.

Suppose for the sake of contradiction that L # (M¢(Xq),...,Mg(Xyn)). Let w be a string of minimum length for which
there exists an index j such that w belongs to exactly one of Mg (X;) and L;. Consider the modulus M that consists of all
the proper substrings of w. From the definition of w, we have (L1 "M, ...,L, " M) = (Mg(X1) N M, ..., Mc(X;) N M) and
LiNnMU{w}),....Lh N (MU {w})) # (Mc(X1) N (MU {w}),...,Mc(Xn) N (MU {w})).

Define Q = {X;|M¢(X;) (w) = 1}. For every X; € Q there exist two integers n;, m; with the following properties: Mg, (X;) (W)
=1, Mgn—1 ()W) =1, [OcIy™ _ (X)(w)=1and [O¢]™ | (X;)(w) # 1. Intuitively, n; and m; indicate the point in the
construction of M where the fact that Mg(X;) (W) = 1 is obtained. For every X;, X; € Q we write X; < X; if n; < njorn; = n;
and m; < m;. Informally, X; < X; if Mg (X;)(w) takes the value 1 not later than M (X;)(w) does in the construction of M.

Consider now a sequence Xi,, X, - - - 'Xk\q\—l' such that X < Xkjiq for all j, in which every element of Q appears exactly

once. We construct a specific sequence of vectors of the form LO 1™ O QD where [© = LiNM,...,.L,N
M) = (Mc(X1) N M, ..., Mg(Xy,) N M) and L0+ is obtained from L by substituting the (k;)th component with P, DN
(M U {w}). It can be proved by induction that before the ith step the (k;)th component of LD is M¢(Xk;) N M and that this
step replaces it with (Mg (Xy;) N M) U {w} = M¢(Xk,) N (M U {w}). That is, the result of the ith step is the insertion of w in
the (k;)th component. The proof is based on two observations: the first is that all the information that was used to decide
that w € Mg (Xy,), also appears in LD, which implies that w € P (LD); the second is that the membership of every string
in M in the (k;)th component remains unchanged after the application of ¢j;, since L is a solution of the system of equations.

Based on the above, it is easy to prove that the selected sequence converges to (Mg(X1) N (M U {w}),...,Mc(Xp) N (M U
{w})). On the other hand, since L is a naturally reachable solution, the sequence converges to (L N (M U {w}),...,L, N
(M U {w})). Therefore, (Ly N (M U {w}),..., Ly N (MU {w})) = (Mg(X;) N (M U {w}),...,Mc(Xy) N (MU {w})), which
is a contradiction. [J

It is easy to see that if a Boolean grammar has a naturally reachable solution semantics, then it is possible that this
semantics differs from the well-founded one. For example, in the four-rule grammar of Section 2 (the one given just after
Definition 3), the well-founded semantics assigns the L ¢ interpretation to all the non-terminal symbols of the grammar.
Notice that although the naturally reachable semantics for this grammar is defined, it appears to be counterintuitive.

5. Normal form

In this section, we demonstrate that every Boolean grammar can be converted into an equivalent one that belongs to a
binary normal form. Based on this normal form, in Section 6 we derive an ©(n®) parsing algorithm for Boolean grammars.
The binary normal form is defined as follows:

Definition 29. A Boolean grammar G = (X,N U {U, T}, P,S) is said to be in binary normal form if P contains the rules
U — —Uand T — —e, where U and T are two special symbols not in N, and every other rule in P is of the form:

A — BiC1&:--&BCn&—D1E1& - - - & D E,&TT[&U] (m,n > 0)
A — aq[&U]
S — €[&U] (onlyifS does not appear in right-hand sides of rules)

where A, B;, G;, D;, E; € N, a € X, and the brackets denote an optional part.

956 V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967

The main theorem of this section is the following:

Theorem 30. LetG = (X, N, P, S) be a Boolean grammar. Then there exists a grammar G' = (X,N’, P’,S) in binary normal form
such that Mg (S) = Mg (S).

The proof of Theorem 30 is based on the definition of certain meaning-preserving grammar transformations. It can be easily
checked that each transformation step can be effectively performed; in other words, the normal form of a given grammar G
can be constructed from G in an algorithmic way.

The normal form we derive, generalizes the well-known Chomsky normal form for context-free grammars as-well-as the
binary normal form for Boolean grammars introduced in [8]. Actually, certain of the steps we adopt, were initially proposed
in [8], the main difference being that the binary normal form obtained there, always produces two-valued Boolean languages.

The steps of the proposed procedure, can be summarized as follows:

o The initial Boolean grammar is first brought into pre-normal form. This is just a simpler and more manageable form of
the initial grammar.

o The grammar is then transformed into direct form. This means that if a non-terminal of the previous form of the grammar
could produce a string of length one (possibly through the use of many rules), then this fact is recorded by using a single
rule in the new grammar. The same happens even if the status of the string of length one was undefined in the previous
grammar.

o The next step is to bring the grammar into an e-free form, i.e., a form in which no non-terminal produces the string €.

o The final step is to bring the grammar into a binary normal form, i.e., a form in which the “long” rules of the grammar contain
conjuncts which consist of two non-terminals (with the possible exception of the non-terminal U, see Definition 29 above).

In the rest of this section, we will describe one-by-one the above transformation steps.
5.1. Pre-normal form

Consider a Boolean grammar G = (X, N, P, S). Without loss of generality we may assume that S does not appear in the
right-hand side of any rule (otherwise we can replace S with S” in every rule, and add a rule S — S'). Initially, we bring the
grammar into a form, which we call pre-normal form:

Definition 31. A Boolean grammar G = (X, N, P,S) is said to be in pre-normal form if every rule in P is of the form:
A — B& --&B,&Ci& --&C, (m+n>1B,GeNU (e}

A — BC (B,C € N)
A — a (aeX)

In order to prove that for every Boolean grammar there exists an equivalent one in pre-normal form, we need the following
lemma:

Lemma 32. LetG = (£,N,P,S), ¢ = (Z,N U {Bg}, P"U{Bg — B}, S) be two Boolean grammars, such that:

eBg ¢N
efc(ZUN)T
e P is obtained from P’ by replacing in every rule each occurrence of Bg with 8.

Then, for every A € N, Mg(A) = Mg (A).

Proof. It suffices to show that for every A € N, Mg ,(A) = Mg »(A). In order to establish this fact we will use the following
idea. Let J, J be interpretations for G and G, respectively, such that J(A) = J'(A) for every A € N andf(,B) = J'(Bg). We will
demonstrate that for every A € N, Q¢ (J)(A) = Q¢ (') (A). This result will then be used in the inductive proof of the fact that
for all n, Mg, (A) = Mg (A).

We start by proving some useful facts. First notice that P’ does not contain any rule that defines Bg, since Bg & N.

Thus, the only rule in G’ that defines Bg is B — f, which from Definition 14 implies that for every n > 0, [O¢]]T," (Bg) =

([O¢]T/nfl)(,B). Moreover, since the sequence {[@G]]T,”},Kw is increasing with respect to < (Theorem 20) and [@Gr]]T/O =1,
we obtain that for every n > 0 and for all w € X* it holds [®¢]],n (Bg)(w) < ([0¢]],")(ﬁ)(w).
In order to show that for all A € N, Q¢(J))(A) = Q¢ (J')(A), we prove by induction on n that for every A € N and for all
% i s 2
w e E*itis[0¢]," (AW) < [06]]" AW) < [B¢];™ (AW).

The basis case is obvious since [@G/]JT,O

[Oc]}" ! W) < (06" W) < (0617 @) w).

= [@G];O = 1. Assume the statement holds for n; we demonstrate that

V. Kountouriotis et al./ Information and Computation 207 (2009) 945-967 957

Define the intermediate interpretation I’:

(O]} (C). CeN

e =
[0¢1)7"" (0), C=B8g

Then, [O¢]T "<r < [@G/]TZ "1 Furthermore, I'(Bg) = [@G/]T/Zn—i-l (Bg) = [@G/]T,zn B) =T (B).
Con51derany ruleA — & - - &y;&—81& - - - &8, in P. From the definition of G and G/, thereisaruleA — y]& &y
&—81&- - - &4 in P’, such that each ; (or d;) has resulted by replacing every occurrence of Bg in y, (respectlvely, ywith S.

Then it is easy to see that I’(y,) = I/(yl) From the induction hypothe51s using the fact that [O¢]], (Bg)(w) <

([(“)c/]]/)(B)(w), we get: ([Oc']]/n)(y,)(w) = ([OG’]] M w) < ([0c]] N w) < ([Oc/]TZ")(Vi)(W) <Tmw) =
THw) < ([@G/]TZ"H)(yi)(w). Furthermore, from the definition of J, J' we have thatJ(8;) = J'(5}) =JA’(81f).

The above facts imply that if there exists aruleA — 1 & - - - &yn&—§1& - - - &6, in P such that ([@:;\]] ")(yi)(w) = 1for
every/i\emdf(éj) (w) = 0 for every j, then there exists a corresponding rule A — y{& - - - &y;,&—8;& - - - &5/ in P’ such that
(O 1/”™) ()(w) = 1 for every i and] (8])(w) = 0 for every . Thus, if (8] """ (A)(W) = [Oc];([Oc]] A W) = 1,
then [@G/]T,Zn+2 A)(w) = [@C/]]/([GG/]TZHI)(A) (w) = 1. In the same way we get that, if [(E)G/]T,ZHJr2 (A)(w) = 0, then
[©c]]"" (4)(w) = 0, which implies that if [©]] """ (A)(w) = 1, then [©¢/]}"*?
holds [0 (A)(w) < [O61]*"" () (w).

In order to prove that [@G/]T”H Aw) < [®G]T"+] (A)(w), we consider analogous cases as above (using the fact that
([Oc’]]/ YY) w) < ([OG]] ") (yi)(w) and J(5;) —]/(3))-

Therefore, for alln > 0, [@G/]J, A)(w) < [®C]j A(w) < [@G/]J,Zn (A)(w).

From the definition of ¢, the above two inequalities imply that Q¢ (J) (A) = Qc/(])(A),forevery A € N.Thisimplies that,

() (B) = ¢ () (). Since we have shown that [0])"*" (Bs) = (18¢']}*")(8). we have ¢/(/)(Bp) = 25 () (B)-
Combining the last two equalities we have Q¢ (]’)(B,g) = Qc(D(P).
Using the above facts and an easy induction on n, we can prove that Mg, (A) = Mg, (A) from which the lemma follows.

A)(w) > % Therefore, in any case it

O

Lemma 33. Let G = (X, N, P,S) be a Boolean grammar. Then, there exists a Boolean grammar G' = (X,N’, P, S) in pre-normal
form, such that Mg (S) = Mg (S).

Proof. The Boolean grammar G’ is constructed from G, using a transformation that consists of three steps. In the first step,
terminal symbols are eliminated from rules containing Boolean connectives or concatenation. This is obtained by adding
a new rule A; — a, for every terminal symbol a € ¥, where A, is a new non-terminal symbol, and then replacing every
occurrence of a in the rules of the above kind by A,.

The second step of the transformation eliminates concatenation from the rules of the new grammar containing conjunc-
tion. In order to do this, for every § € N* with |8| > 2, such that at least one of the literals 8 or —8 appears in the body of
some rule that contains conjunction, we add a new rule B — B, where Bg is a new non-terminal symbol. Then, we replace
every occurrence of literal 8 (or —f) by Bg (respectively, —Bg) in any rule with conjunction.

Finally, the third step of the transformation eliminates long concatenations. More specifically, while there exists a rule
A — B1ByB3...By with k > 3 in the current grammar, we pick a new non-terminal D and replace this rule by the rules
A — DB3...Byand D — B1Bs.

It is easy to see that the third step, after finitely many iterations, produces a Boolean grammar G’ in pre-normal form.
Moreover, from Lemma 32 (which is applied several times for each step of the transformation) it follows that M (S) = Mg (S).
O

5.2. Direct form

Based on the pre-normal form derived in the previous section, we now construct the direct form of the grammar: if a
string of length one can be produced by a non-terminal in the previous form of the grammar, then a rule expressing directly
this fact is inserted into the grammar.

Definition 34. Let G = (X, N, P,S) be a Boolean grammar in pre-normal form. Then, the direct form of G, denoted by Gg,
is the Boolean grammar Gs = (X,N U {U},P UR,S), where U ¢ N is a special non-terminal symbol that represents the set

958 V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967

in which all strings have the value % and R={U - —U}U{A — ala € Z,A € Nand Mg(A)(a) = 1} U {A — a&Ulae X,
A € N and Mg(A)(a) = 3}.

The proof of the following lemma (as-well-as of Lemma 37 later on) are quite straightforward but rather tedious since
they require lengthy inductions and the analysis of different cases that are quite similar in their treatment. The proof given
below adapts and uses a well-known technique from the theory of programming languages (see for example [12] [pp. 209]):
in order to show that two grammars, say G; and G, are equivalent, it suffices to show that the well-founded model of each
grammar is a fixed-point of the €2 operator of the other grammar. In other words, it suffices to show that Mg, = ¢, (Mg,)
and Mg, = Q¢, (Mg,). Then, since we know that the least fixed-point of Qg, is M, and the least fixed-point of Q¢, is Mg,,
we get that Mg, <r Mg, and Mg, <r Mg,, which implies that Mg, = Mg, . The proof of the following lemma illustrates in a
more precise way this technique:

Lemma 35. Let G = (X,N,P,S) be a Boolean grammar in pre-normal form, and let Gs = (X,N U {U},P UR,S) be its direct
form. Then, for every C € N and for every w € X%, Mg(C)(w) = Mg, (C)(w).

Proof. We demonstrate that an appropriate extension of Mg to N U {U}, which we denote by M¢, is a fixed-point of ;.
Similarly, we argue that the restriction of Mg, to N, which we denote by MES, is a fixed-point of ¢. The result then follows
easily.

DZﬁne Mg so that M (C) = Mg(C) forevery C € N and M (U) (w) = % foreveryw € X*. We claim that M§ = Qg (M{).
It suffices to show that for allA € N U {U} and allw € £*,itis ME(A) (W) = Qg; (ME) (A) (w).

Suppose first that A = U. Since M¢(U)(w) = % and the only rule in P U R that deﬁnes Uis U — —U, it follows that
[@c] (U) (w) = for every w and for every n > 1. Therefore Q¢; (Mg) (U)(w) = 5 = ME(U)(w).

Con51der now the remaining case, namely A € N. We know that M:(A)(w) = MC(A) (w) = Qc(Mg)(A)(w) (from the
definition of M and from the fact that M is a fixed-point of Q¢). Therefore, it suffices to prove that for every A € N and for
every w € X%, Q¢ (Mg) (A)(w) = Qc,; (ME)(A)(w). In order to prove this, we will first show that there exists some integer

constant k such that for every n, [G)G]X,,':; Aw) < [®Ga] (A) (w) < [®G]T"+k (A)(w). We select k as follows: consider any
B e Nanda € X. Since Mg(B)(a) = Q¢ (Mg)(B)(a) from the definition of the Q¢ operator there exists a least integer kg4
such that M¢(B)(a) = [@G]Tk’” (B)(a). We now define k = max{kgq|B € N,a € }.

We now prove by induction on n that for every n > 0, for ever A € N and for every w € %, [@G],T/,'; (A)(w)
< [606]1&1 A(w) < [@G]Tn+k (A)(w). The basis case is obvious, since [@G],T,,?: A (w) = [965];/1% (A)(w) = 0. Assume the
statement holds for n; we first demonstrate that [OGS]T”H A)(w) < [OG]T"HH (A)(w).

Suppose first that [OGB]T”+1 (A)(w) = 1.If this value is obtained using a rule in P, then using the induction hypothesis

and the relationship between Mg and M, we get that [@G]T"JrkJrl (A)(w) = 1. On the other hand, if this value is obtained
using a rule A — a in R, then w = a and from the construction of Gs it is Mg (A)(a) = 1. From the definition of k we have
k+1
[©cll T Ay w) = 1.
tn+1 Tn+k+1

Next, suppose that [605] A)(w) = Suppose for the sake of contradiction that [©¢]y Aw) =0.Ifw =
o € ¥, then from the deﬁmtlon of k, it is M(;(A) (a) = 0.Therefore, all the rules in R with head A are of the form A — b, with
b # w.Usingthe induction hypothesis and the relationship between Mg and M, we easily obtain that [©;] T"H (A (w) =0,

which is a contradiction. Therefore, [®G]T"+k+1 A)(w) > 7.

Finally, the case in which [@GB]T"Jrl (A)(w)=0is trivial. Therefore, in any case it is [@GB]T"'H (A) (w)<[®¢;]Tn+k'H (A (w).

Now, in order to prove that [OG]TH] Aw) < [OGE]THH (A)(w), we observe that the set of rules of G that define A, is a

subset of the corresponding set of rules of Gs. This implies, usmg the induction hypothesis and the relationship between Mg
and Mg, that if [Oc] "' (A)(w) = 1 then [@GB]T’” T A)(w) = 1and if [%]m ' (A)(w) = 0then [O6]} " (A)(w) =0
from which our claim follows immediately.

From the definition of the Q operator, we get Q¢(Mg)(A)(W) = Q¢,; (M) (A)(w). Thus, we have proved that My =
Qg; (ME). Since Mg; is the least fixed-point of g, with respect to <, this implies that Mg; <r M.

Now, let Mg, be the restriction of Mg, to N. In order to use a similar technique as above, we need to show that for every

A € Nandforeverya € %, [OG]T_ (A)(a) = Mg(A)(a).

We first show that Mg(A)(a) = Mg, (A)(a). From Mg, <f M¢, it follows that Mg, (A)(a) <f M;(A)(a). Furthermore,
Mg (A)(a) <r Mg, (A)(a) follows from the following two facts:

V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967 959

e if Mg (A)(a) = 1, then R contains the rule A — a and
e if M (A)(a) = 0, then the rules in R that define A are of the form A — b with b # a.
Therefore, for every A € N and for every a € X, Mg(A)(a) = Mg, (A)(a) which by a simple induction on n, gives that
. I
[Ocliy. (A)(a) = [@d“ﬁ (4)(a). In particular [@dTi (A)(@) = [Oclly. (A)(a) = Mg(A)(a).

Now it is easy to prove that for every n, for every A € N and for every w € T%, [G)(;]T _ (A) w) < [®Ga] (A) w) <
[@G]Lnfk (A)(w). This implies that QG(MGJ)(A) (w) = Qg; (Mg;) (A) (W) = Mg, (A)(w) = Mcg (A)(w), that is Mg, isa fixed-
Gs

point of ©2¢. Since Mg is the least fixed-point of 2¢ with respect to <, we obtain that M¢ <r MES. Combining with Mg; <f
M, we get that for every A € N and for every w € £*, it is Mg(A)(w) = Mg, (A)(w). O

5.3. e-Free form

The direct form of the grammar can now be transformed into the e-free form, i.e., a form in which no non-terminal
produces the string €.

Definition 36. Let G = (X, N, P,S) be a Boolean grammar in pre-normal form and let Gs = (X, N U {U}, Ps, S) be its direct
form. The e-free version of G, denoted by G, is the Boolean grammar (X, N U {U}, P¢, S) where P is obtained as follows:

1. For every rule of the form A — B1&- - - &B&—C1&---&—C,;,, (m+n> 1,B;,(€ NU {€}) in Ps

o If B; = € for some i, then the rule is ignored in the construction of P.
e Otherwise, if G; = € for some i, then the rule is included in P¢ as it is.
e Otherwise, P, contains the rule A — B1& - - - &Bp,&C1& - - - &, &€,

2. For every rule of the form A — BC (B,C € N) in Ps

e P, contains the rule A — BC&—e.

o If Mg(B)(e) =1 (respectively, Mg(C)(e) = 1), then P. contains the rule A — C&—e (respectively, the rule
A — B&—e€).

o If Mc(B)(¢) = % (respectively, Mg (C)(¢€) = %), then P. contains the rule A — C&U&—e (respectively, the rule
A — B&U&—e).

3. All the other rules in Py (i.e., the rules of the form U — —U,A — a,and A — a&U, where a €) are retained in Pe.

Lemma 37. Let G = (X, N, P,S) be a Boolean grammar in pre-normal form, let Gs = (X, N U {U}, Ps, S) be its direct form, and
let Ge = (=,N U {U}, P, S) be its e-free version. Then, for every A € N and for everyw € £, M¢(A)(w) = Mg, (A)(w).

Proof. We demonstrate that a slightly modified version of M¢,, which we denote by Mas, is a fixed-point of Q¢, . Similarly,

we argue that a slightly modified version Mé of Mg, is a fixed-point of Q¢;. The result then follows easily.
We start by defining the interpretation Més :

{MQ Aw), w#e

MGB A w) = otherwise

We claim that Méa = Qc, (M(*;é). It suffices to show that for allA € N and all w € X%, it is ME“;(S A)(w) = Qq, (M(*;B)(A)(w).
We distinguish two cases. The first case is for w = €. Since every rule that deﬁnes A in G, has a conjunct that is either

—e€ or a terminal symbol, by an easy induction on n, we obtain that [®(;€] (A)(e) = 0 for every A € N. Therefore,
Q, (M) (A)(€) = 0 = M, (A)(e).

Consider now the second case, namely w # €. We know that Mg, (A) (W) = Mg, (A)(w) = Q¢;(Mg;) (A)(w) (from the
definition of Ma and from the fact that Mg; is a fixed-point of ;). Thus, it suffices to prove that Q¢ (Mg;)(A)(w) =
Qc, (Méé)(A)(w) In order to prove this it suffices to prove that there exists some constant k such that for every n,

[®Ga] (A)(w) < [®Ge] (A)(w) < [®(;5]Tn+k (A)(w). We select k as follows: consider any symbol B € N. Since
Mg, (B) (e) =Q¢; (Mg;)(B) (e) from the definition of Qg;, there exists a least integer kg such that M, (B) (6):[(9(;6]“(8 (B) ().
We define k = max{kg|B € N}.
We will prove by induction on n that for every n > 0, for every A € N and for all w € =7 it is: [®Ge]1&% Aw) <
S

[0, 1iry, * W),

960 V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967

The basis case is obvious, since [@GG]ILZ (A)(w) = 0. Assume the statement holds for n; we demonstrate that
Gs

[O(;S]MH_l A(w) < [OGE]T'H'H] (A)(w). We distinguish three cases:

Case 1: [®G€]Tn+l (A)(w) = 1. We examine in P, the rule types that may have forced the value of [@GE]T"'H (A)(w) to
Gs Gs
become equal to 1 (notice that we need to consider only rules that do not have the conjunct U in their bodies):
e A — a. This implies that w = a. Moreover, this rule also appears in Ps. Therefore, [@Ga]T"H{H Aw) =1.
oA — B1&---&Bp&—C1&- - - & (&€, whichalso appears in Ps (possibly without the —e at the end). From Definition 14,
we have that for all B; it is [@GE]IL% (Bi)(w) = 1and for all Gj it is Mg, (—C;)(w) = 1. From the induction hypothesis, we
)
have [@GS]T'H_’((B;)(w) = 1 for all B;, and from the definition ofME’}lS we have ME,; (—G)(w) = 1 for all G. Since Ps also
contains this rule, we have [()GIS]TH’Hrl Aw) =1.
e A — BC&—e.Then there existw;, wo € X* suchthatw;w, = wandalso [@)Ge]% (B)(w;) = 1and [GGS]L% (C)(wy) =
8)
1. Since [@GE]M (B)(e) = [@Cg];ﬂi (C)(e) = 0, we have that w1 # € and w, # €. From the induction hypothesis we

have [OGa]Tn+k (B)(w;) = 1 and [OGg]Tn+k

[0, e AYw) = 1.
oA — B&—-e where Ps contains the rule A — BC (or the rule A — CB) for some C such that Mg, (C)(e) = 1. Then, it is
[OGE] M (B)(w) = 1. From the induction hypothesis we have [OGS]THI{ (B)(w) = 1. Furthermore, from the selection

(C)(wy) = 1. Moreover, Ps contains the rule A — BC, which implies that

of k we have that [@Ga]T"H{ (C)(e) = 1. Consequently, [O(;&]TH’(H Aw) = 1.

Case 2: [@Ge]Tn—H A)(w) = We will show that [@G(S]T'H_k'H (A)(w) > 1, orequivalently that [@GS]T'H_H] (A)(w) +£ 0.

Suppose for the sake of contradiction that [@GS]T"H{H (A)(w) = 0. We examine the rules that define A in P.. Each of them
has one of the following types:

oA — a[&U] But then, this rule also exists in Ps. Since [@GA]T"H‘H (A)(w) = 0, we have that a # w, which implies

([®c€])(a)(W) =0.
oA — B1& -&Bp&—C1& - - - & (&€, which also appears in Ps (possibly without the —e at the end). From Definition 14,
[OGS]THHH (A)(w) = 0 implies that either there exists some B; such that [®65]Tn+k (B;)(w) = 0, or there exists some
Gj such that M(;5 (—G)(w) = 0. From the induction hypothesis and the definition of MES we have that either there exists
some B; such that [(H)GE][T/;Zk (Bi)(w) = 0, or there exists some (j such that Mgs (=G)(w) =0.
e A — BC&—e. But then, Ps contains the rule A — BC. Thus, the fact that [@(;5]M+kJrl (A)(w) = 0 implies that for
]T”+ “B)(wy) =0 or [oGs]T“ ¥ (€)(wy) = 0. But then,
by the induction hypothesis, together with the fact that [G)G(] (B)(e) [@Gg] (C) (¢) = 0, we have that for

every wiq, wy such that wyw, = w we have that either [OGa

every wq, w; such that wyw, = w it will be either [®Ge]M§ (B) (wl) =0or [®Ge]M§ (C) (wy) = 0. This implies that
8 8

([Oce])(BC)(W) =0.
oA — B[&U]&—'G But then, the rule A — BC (or the rule A — CB) belongs to Ps for some C such that Mg, (C)(e) > %
From the selection of k we have that [O(;E]TnJrk (O)(€) = Mg;(C)(e) > % Now, since [OGS]THH] (A)(w) = 0 it must

be the case that [@GB]TH—H((B)(w) = 0. From the induction hypothesis, this implies that [®Gs] Mz (B)(w) = 0.
8

—

Therefore, for each rule that defines A in P, there either exists a positive I; such that ([©g,];/11)(lj)(w) = 0 or a negative
li such that MG (lj)(w) = 0.From Definition 14, this implies that [()(;E]T"Jrl (A)(w) = 0, which is a contradiction. Therefore,
[®Gg]Tn+l<+l (A)() Z 1

Case 3: [Oc,]T'H_l (A)(w) = 0. In this case our claim obviously holds.

V. Kountouriotis et al./ Information and Computation 207 (2009) 945-967 961

Thus, we have proved that |©¢ T'l A)(w) < |6¢ fntk (A)(w). By using a similar inductive proof, we can show that
eImE 5 MGS
S

for every n, [@Ga]ma A (w) < [QGS]’I”%(; A (w).

All the above lead us to the conclusion that M¢, = Q¢ (Mg,). Since Mg, is the least fixed-point of 2, with respect to
=<F, this implies that Mg, <f Méa.

Now, it remains to show that a slightly modified version of Mg, is a fixed-point of Q. More specifically, define:

Mg (A)(w), w#e€

M (A)(w) = Mc,(A)(W), w=c¢

We claim that M(‘;t = Qg; (M(J{e). It suffices to show that forall A € N and allw € ¥*,itis M(J{€ (A) (W) = Qg (Mé;)(A)(W).
For w = ¢, using the fact that Mé; (A)(e) = Mg;(A)(€), we can prove by an easy induction on n that [@Ga];ﬁ A)(e) =
Ge

[96511&13 (A)(€) for every A € N. Therefore, Q, (M{.) (A)(€) = Q¢; (M,) (A)(€) = Mg; (A)(€) = M (A)(€).
For w # ¢, it suffices to prove that Qg (M(J;:)(A) (w) = Q¢, (Mg,)(A)(w). In order to prove this it suffices to prove that
for every n, [655]1&}5 Aw) < [@GS]IL';E A (w) < [655];11:{]{ (A)(w). This can be proven in an analogous way as above.

Now, since Mg; is the least fixed-point of ¢; with respect to <r, we obtain that Mg, < Méz. Combining with Mg, =<r
ME";S, we get that for every A € N and foreveryw € £, Mg, (A)(w) = Mg, (A)(w).
The lemma then follows from Lemma 35. [

5.4. The final step: binary normal form

In order to obtain a grammar in binary normal form, we need to eliminate rules of the formA — B1& - - - &B & C1 & - - -
&—C,&—e¢. In order to do this we need to somehow pre-compute the effect of such rules. Notice now that the membership
of a string w, where |w| > 2, in M (A) depends only on the membership of w in each of Mc(BO), for all BC that appear in
the right-hand sides of rules. We can express this dependency directly by a set of rules. In order to do this we treat each BC
that appears in the right-hand side of a rule as a Boolean variable (see also [8]).

We start by giving a definition that will play an important role in our subsequent development:

Definition 38. Let G be a Boolean grammar in pre-normal form and let Gc = (X, N U {U}, P, S) be the ¢-free version of G.
Let X = {BC|A — BC&—e € P} and let V be a function from X to {0] 1}. Then, the extension of G, with respect to V is the

’ i’
grammar G/ = (Z,N" U {U},P',S), which is defined as follows:
o N’ = N U {Qo, Q1,Q:1 }, where each Q; represents the language in which all strings have value i.
2
e P’ contains the rules Q; — —¢,Q; — € and Q1 — —Q1.
2 2

e Every rule A — BC&—e in P is replaced in P’ by the rule A — Qv (Bc)&—e.
o All the other rules in P are retained in P’.

Intuitively, in the above definition the non-terminals Qg, Q1 and Q1 correspond, respectively, to the constant languages ¢,
2

>* and the language in which all strings get the value % Moreover, GL’ is a grammar is which every BC has been replaced by
a non-terminal that corresponds to one of these constant languages.

It is therefore straightforward to see that given any wq,w, € ¥* with |[wy| > 2 and |w;| > 2, and any A € N, it holds
that Mcg A)(wy) = MQ/ (A)(w»). In other words, for every language generated by a non-terminal symbol in GEV, one of the

following is true:

o All the strings in £* of length at least 2 are included in the language.
o The membership of all strings in X* of length at least 2 in the language is undefined.
o All the strings in X* of length at least 2 are excluded from the language.

This leads to our next definition:

Definition 39. Let G be a Boolean grammar in pre-normal form and let Gc = (X, N U {U}, P, S) be the e-free version of G.

Let X = {BC|A — BC&—e € P} and let V be a function from X to {O, % 1 } Then, the extension of V to non-terminal symbols

in N is denoted by V and is defined as follows: V(4) = Mgy (A)(w), forany w € X* with |w| > 2.

As we mentioned in the beginning of this subsection, for every string w with length at least 2, the value in M¢ (A)(w) can be
computed from the values Mg (BC) (w) for all BC that appear in the right-hand sides of rules. This is the intuition behind the
following technical lemma that will be used in the proof of correctness of our final transformation step:

962 V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967

Lemma 40. Let G be a Boolean grammar in pre-normal form and let Gc = (X,N U {U},P,S) be the e-free version of G. Let
= {BC|A — BC&—¢ € P} and let w € X* with |w| > 2. Define the function V from X to {0, 5 } such that for all BC € X it
is V(BC) = M(;€ (BC)(w). Then, for all A € N, Mg, (A)(w) = V(A).

Proof. It suffices to show that for all A € N, M¢, (A)(w) = Mgy (A)(w). This fact can be proved in two steps, namely that
Mcg (A)(w) <r Mg, (A)(w) and Mg, (A)(w) <f MGX (A)(w). We demonstrate the first direction; the second one is similar
and omitted.

We therefore prove that Mgy (A)(w) <r Mg, (A)(w). Suppose for the sake of contradiction that there exists some A € N
such that Mgy (A)(w) £F Mg, (A)(w). Then, there must exist a minimum index k > 0 such that there exists A € N with the
following property:

Mgy 1 (A)(w) € {0,1} and Mgy, (A) (W) # Mg, (A)(w)
Define the following sets:

Si = {AeN|Mg(AW) =13 Mg (A) (W)}
So = {A € NIMgy A (W) =0 +# Mg, (A (W)}

We distinguish the following two cases:

Case 1: Sy # (. Then, for every A € S; define r(A) to be the index that satisfies the following property:

[ocv];(v) (A)(w) = 1 and [OGV]L(‘/) A(w) £ 1

0
Since [@Gv]:ﬂ (A)(w) =0and Mgy, A (w) =1, r(A) is well-defined. Choose A € S such that r(A) is minimum. We
k 1

distinguish the following two subcases:

Subcase 1.1: There exists some rule A — Q;&=—e in grammar G From the definition of G this implies that there exists a
rule of the form A — BC&—e in grammar G, such that V(BC) = 1. From the definition of V we get that Mg, (BC)(w) = 1.
This implies that there must exist m,j > 0 such that [@¢,]TJ . (BC)(w) = 1 which implies that [OGE]T]'H Aw) =1
and therefore Mg, (A)(w) = 1 (contradiction from our assumptlon thatA € Sy).

Subcase 1.2: There exists a rule A — B1&:--&Bp&—C1&---—=C.&—€ in grammar Gé’ such that for all 1 <i<b,

A)—1

[@Gv];() (Bj)(w) =1 and for all 1 <j < c, Mgv_1(G)(w) = 0. Then, M¢v ;(B;)(w) =1 and from the minimality
CAMey < <

of k and of r(A) we have Mg, (B;)(w) = 1, for all i. Also, Mcg (G)(w) = 0 and from the minimality of k we have that

Mg, (Gj)(w) = 0, for all j. But since M, is a model of G, this implies that Mg, (A)(w) = 1 (contradiction).

Case 2: S; = (3, which implies that Sq # . Then, for every A € Sy, consider the set of rules {R/, . . . ,RﬂA} in G/ with head A.
For every such rule R? there exists a conjunct I# such that one of the following is true:

° l’idl = Qp, or

e/f =Band Mgy k—1(B)(w) = 0, or

. l{‘ = —C and MGZ,k—l(C)(W) =1,or

° l’i“ € Sy, or

. l,A € X.
In the first of the above cases, there exists at least one rule of the form A — BC&—e in G, such that V(BC) = 0. From
the definition of V we get that for every such rule it is Mg, (BC)(w) = 0. This implies that there exists a least integer
mi- > 0 such that (Mc_m,) (BC)(w) = 0. Define m? = max{m{.|A — BC&—e € P, Mg, (BC)(w) = 0}.In the second case,

using the minimality of k we get that Mg, (B)(w) = 0, which implies that there exists a least integer m{‘ > 0 such that
Mg, (B)(w) = 0. In the third case, using the minimality of k we get that Mg, (C)(w) = 1, which implies that there exists

a least integer m{‘ > 0 such that Mcf,m? (C)(w) = 1. Finally, in the last two cases, let us take m’,-“ = 0. Now, define m =
max{mf#|A € So,1 < i <na} + 1.

We will demonstrate that for every A € Sy, it is Mg,_m(A)(w) = 0, which will immediately lead us to the contradiction
that Mg, (A)(w) = 0. Consider an arbitrary A € Sp. Then for every rule R defining A in G, there exists a corresponding rule R’,“
in GV moreover R contains a literal I that corresponds to lA More specifically, if R is contained in GZ, ie,itisR = R?, then

V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967 963

Ir = l otherwise R is of the form A — BC&—e and Iz = BC. We claim that in the latter case MGE (BC)(w) = 0. In order to
prove thlS claim, suppose (for the sake of contradiction) that M(;€ (BC)(w) # 0.Then, eitherA — Q; orA — Q1 isarulein

GGV which implies that MGX (A)(w) # 0 (contradiction). Therefore, in this case the corresponding rule of R in GV isA — Qp.
We now show by induction that for every n > 0 and for every A € S it is: [®Ge]MC et (A)(w) = 0. The basis case

is trivial. Assume the result holds for n; we demonstrate it for n 4 1. Consider any rule R in G, with head A. If [€ Sy,
then from the induction hypothesis it is [OGE]MG et (lp)(w) =0.1Iflg € (N — So) U X or I = BC (where B, C € N), then

from the definition of m it holds Mg, Ic. m(Ix) (W) = 0, which implies that ([Og,]Mc . 1)(IR)(W) = 0.Finally, if g = —C (where
C € N), then from the definition of m it holds M(;E,m_1 (Ir) (W) = 0.Therefore, [Og,] tn+1 (A)(w) = 0, which completes the

Mge,m—1
inductive step. Therefore, M¢, i (A)(w) = 0 which implies that M¢, (A)(w) = 0 (contradicting our assumption that A € Sp).
O

Given a non-empty set X, the functions from X to {0, % 1 } canbe ordered by the degree of information they contain (assuming

that the value % contains no information). The minimal and maximal functions with respect to this ordering will play an
important role in the construction of the binary normal form of a given grammar G.

Definition 41. LetX be anon-emptysetand letV, W be functions fromX to {0, 2 }.We denote by V; theset {x € X|V(x) = i}.
We write V Cp W if Vg € Wy and Vq € Wy,

The following lemma states that the extensions of functions of the above form to non-terminal symbols, respects the above
ordering. The proof of the lemma is straightforward:

Lemma 42. Let G be a Boolean grammar in pre-normal form and let Ge = (%,N,P,S) be its e-free version. Moreover, let
= {BC|A — BC&—e € P} and let V, W be functions from X to {0, 3,1} such that V ¢ W. Then, V(A) <p W(A) for every
A € N.

'2'

Using all the above, we can now define the transformation that brings a Boolean grammar into normal form:

Definition 43. Let G be a Boolean grammar in pre-normal form and let Gc = (Z,N U {U} P,S) be the e-free version
of G. Let X = {BC|A — BC&—e € P} and let V be the set of all functions from X to {0 1}. The normal form G, =
(Z,NU{U,T},P,S) of G is the grammar obtained from G, as follows:

vzv

o P’ contains all the rules in P of the formA — aand A — a&U,wherea € ¥, theruleU — —UinPandtheruleT — —e,
where T ¢ N is a special symbol which represents the set in which all non-empty strings have value 1.

e For every A € N let 73 = {V € V|V(A) = 1}. For every minimal (with respect to Cr) element V of 73, P’ contains the
rule:

A— X1&... &G&y1&. .. &y &TT

where {x1,...,x} = Vyand {y1,...,ym} = Vo.
e ForeveryA € Nletuy = {V € VIV(A) = %}. For every maximal (with respect to Cr) element V of 244, P’ contains the
rule:

A— X1&... &p&Y1&. .. &Y &21&—21& .. . &2, &7, &RTT&U
where {x1,...,x¢} = Vi, {¥1,....ym} = Voand {z,...,z;} = V%.

Notice that in the former case we consider only minimal elements, because if V' Cf V and V'(A) = 1 then VSA) =1.
Similarly in the latter case we consider only maximal elements, because if V/ Cf V and V(A) = % then V/(A) = 3 These
ideas are formalized by the proof of the following lemma.

Lemmad44. Let G be a Boolean grammar in pre-normal form, let Gc = (X,N U {U},P,S) be its e-free form and let G, =
(=,NU{U,T},P,S) beits binary normal form. Then, for every A € N and for every w € £, M¢(A)(w) = Mg, (A)(w).

Proof. LetX = {BC|A — BC&—¢ € P}. We prove by induction on the length of w that for every A € N and foreveryw € X*,
Mg, (A)(w) = Mg, (A)(w).Then, the lemma follows from Lemma 37. Forw = ¢, it holds M, (A)(w) = Mg, (A)(w) = 0, since
every rule of G, with head in N contains a conjunct that is either a terminal symbol in X or —¢ and every rule of G, with
head in N contains a conjunct that is either a terminal symbol in X or TT.

Moreover, if |w| = 1 the statement follows easily due to the fact that in G all the information regarding strings of length
1is produced by simple rules (i.e., rules that have been introduced during the construction of the direct form of G); moreover,
Gy contains these same rules regarding strings of length 1 while all its other rules concern strings of length 2 or more, since

964 V. Kountouriotis et al. / Information and Computation 207 (2009) 945-967

they contain the conjunct TT. Assume now that the statement holds for all w of length less than or equal to n for some
n > 1; we demonstrate the case for n + 1. In particular, we show that for every v € {1, %}, Mg, (A)(w) = v if and only if
Mg, (A)(w) = v.

_ Consideraw € ¥* with [w| > 2 and define function V as follows: V(BC) = Mg, (BC)(w), for all BC € X. From Lemma 40,
V(A) = Mg, (A)(w).

We first prove that Mg, (A)(w) = 1ifand only if Mg, (A)(w) = 1. We examine the two directions of the statement. For the
left-to-right direction, assume that Mg, (A)(w) = 1. Then, it is also V(A) = 1. Consider a minimal function V' with respect
to CF, such that V’(A) = 1and V' Cf V. By construction, in G, there exists a rule of the form: A — > X1& .. & &y &
&y &TT where {xl, oo X} =V] CViand {yy,...,ym} = V§ € Vo. Therefore, forall 1 <i <k, MC (x;))(w) = 1 and for
all1 <j<m, MG (y])(w) = 0. From the induction hypothesis and the fact that for all D € N it holds that Mg, (D)(¢) =
Mg, (D)(e) = 0, we get thatforall 1 <i <k, M(;n (x))(w) =landforalll <j <m, Mcn (¥j)(w) = 0. But this implies that
Mg, (A)(w) = 1 (since Mg, is a model of Gp).

In order to prove the right-to-left direction of the statement, assume that Mg, (A)(w) = 1. This implies that in G, there
exists a rule of the form A — x1&...&x & y1&... & yp&TT such that for all 1 <i <k, Mcn (xi)(w) = 1, and for all
1<j<m, MG" (yj)(w) = 0.From the induction hypothesis and the fact that MGG (D)(e) = M, (D)(e) = OforeveryD € N,
we get thatforall1 <i <k, MGG (x)(w) = V(x)) = 1andforall1 <j < m, Mce pw) = V(yj) = 0. Notice now that the
existence of the rule A — x1&...&x&y1&...&yn&IT in G, implies that there exists a function V' such that for all
1 <i<kandforalll <j<mV'(x) =1,V (y;) =0,and foreveryz € X withz # x;andz # y;, V'(z) = %; additionally,
\7’(A) = 1. From the first three properties of V/, we get that V' Cp V. Using Lemma 42, we obtain that V(A) = 1, which
implies that Mg, (A)(w) = 1.

We now prove that Mg, (A)(w) = 5 if and only if M, (A)(w) = 5. For the left-to-right direction, assume that Mg, (A)(w) =
%. Then, it is also V(A) = ; C0r151der a maximal function V’ w1th respect to CF, such that V/(A) > and V Cf V. By
construction, in G, there exists a rule:
A— x1&... . &&Y1&... & Y&21&21& ... &2, &7, &RTT&U
suchthat {x1,...,x}=V{, {y1, ..., ym}=V)and {z;, . .. zr}=V' .Since V Cg V/ we have that Vi C {x,...,x} S V1 U V1
Vo € y1,.-,¥ym} S VoUViand {zy,...,z:} C V1 This means that foralll <i <k, Mce x)(w) > 2, foralll <j<m,
2

1\75E) < 3 Landforall1 <l <, MGG (z)(w) = From the induction hypothe51s and the fact that forallD € N it holds
that Mg, (D)(e) M(;n (D)(e) = 0 we get that for all 1<i<m, M(; x)(w) > 2, for all 1 <] <r, M(; pw) < and
foralll <I<r, M(;,1 (zn(w) = 2. Since Mg, is a model of G,,, we obtain that Mg, (A)(w) > 5. Notice now that it cannot be
Mg, (A)(w) = 1: we have shown that this would imply Mg, (A) (w) = 1, which s a contradiction. Therefore, Mg, (A) (w) = %

Now, consider the right-to-left direction of the statement, i.e., assume that Mg, (A)(w) = % We have to distinguish the
following two cases:
Case 1: There exists in G, a rule of the form:

A— x1&... &&Y1&... &Y &21&—21& ... &2, &7, &RTT&U
suchthatforall1l <i < k,MEn(xi)(W) > %,foralll <j< m,1\7l-c\n(yj)(w) < %and foralll <[< r,1\7IE”(z,)(w) = %.From
the induction hypothesis and the fact that Mg, (D) (¢) = Mg, (D)(e) = 0 for every D € N, we get that forall 1 <i < kitis
Mg, (x)(w) = V(x) > 1,forall1 <j < mitisMc, (y;))(w) = V(yj) < Jandforall1 < < ritisMc, (z)(w) = V(z) = 1.

Notice now that the existence of the above rule for A in G, implies that there ex1sts a function V’ such that for alll <i < k it
isV/(x)) =1,forall 1 <j < mitis V/(y]) =0, foralll1 <[l <ritisV'(zy) = and addltlonally, V’(A) 5. From the ﬁrst

three properties of V/, we get that V T V. Using Lemma 42, we obtain that V(A) > and therefore that Mce A(w) =
Case 2: There exists in G, a rule of the form:

A— x1&... & & Y1& ... &Y, &IT

such that for all 1 <i < kit is IWEH(x,)(W) > 1 forall1<j<mitis Mal(y])(w) < 1 and there exists either some i,

1 <i < ksuch that Mcn (%;)(w) = 5 or some j,] < j < msuch that M(;n pw) = From the induction hypothe51s and
the fact that Mg, (D)(€) = Mg, (D)(e) = 0 for every D € N, we get that forall 1 < < kitis M(;G *x)(w) = V(x,) > 3, for
alll1 <j < mitisM.G:)w) = V(y]) < ancl there exists either some i such that MGe x)w) = V() = or some j such

that Mc, (y)) (W) = V(y)) = 1.
Notice now that the existence of rule A — x1&...&x&y1&... &y, &TT in G, implies that there exists a function
V' such that Vi = {xq,...,xk}, Vj = {y1,...,ym} and additionally, V" is a minimal function with respect to T with the

property V' (A) = 1. Now, define V™ so that V; =ViNVjandV, = VpN V. Also define V* so that V;* = v; UV} and
VJ“ = Vp U V{. Using the properties of V and V' it is easy to check that Vfr N VO+ = f, that is, VT is well-defined. Obviously,

V. Kountouriotis et al. /Information and Computation 207 (2009) 945-967 965

V™ Cp V' Cf VT, Thus, from Lemma 42, we obtain that \F(A) = 1. Furthermore, V~ = V’, since from the definition of V

there exists either some i, 1 < i < k, such that V(x;) = % orsomej, 1 < j < m,such that V(y;) = % From the minimality

property of V we get that V:(A) # 1. Thus, from Lemma 42 we obtain that V:(A) = % Moreover, V™ Cf V Cg VT, which
implies that V(A) = Mg, (A(w) € {%, 1}. However, it cannot be Mg, (A)(w) = 1, since we have shown that this would imply
Mg, (A)(w) = 1, which is a contradiction. Therefore, M¢, (A)(w) = % O

Given the above lemmas, a simple step remains in order to reach the statement of Theorem 30: if in the original grammar G
itisM¢(S)(€) # 0,thenarule of the formS — € orS — €&U isadded to the grammar that has resulted after the processing
implied by all the above lemmas. The resulting grammar is then in binary normal form and defines the same language as the
initial one.

6. Parsing under the well-founded semantics

We next present an algorithm that computes the truth value of the membership of an input string w # € in the language
defined by a grammar G, which is assumed to be in binary normal form. The algorithm computes the value of M¢(A) (u) for
every non-terminal symbol A and every substring u of w in a bottom-up manner. It uses two matrices M and Q to keep the
appropriate intermediate values that are needed for the computation. Suppose that the input string is w = ay - - - a,. Then
MI[A,i,j] keeps the value Mg (A)(a; - - - a;) and Q[B, C, i, j] keeps the value M¢(BC)(a; - - - a;j). By convention min?=1 vi=1.

Algorithm for parsing under G = (3, N, P,S)
Input: stringw =a; ---a, € ©7

Initialization step:
fori :=1tondo begin
forevery A € N do
if there exists arule A — q; then M[A,i,i] :=1
else if there exists a rule A — q;&U then M[A,i,i] := %
else M[A,i,i] ;=0
end

Main loop:
ford :=2tondo
fori:=1ton —d+ 1do begin
ji=i+d-—1
for every B, C € N such that BC appears in the right-hand side of a rule do
Q[B, C,i,j] := max,_; min{M[B,i, £], M[C, £ + 1,j]}
for every A € N do M[A, i,j]:=0
foreveryruleA — B1C1&...&B,Cn&D1E1&...&D:E.&TT&U do begin
V= min{%, ming;l QI[By, Gy, i,j],ming=1 (1 —Q[Dyq, Eg,i,j1)}
ifv > M[A,i,j] then M[A,i,j] :=v
end
for every rule A — B1C1&...&B;,Cn&—D1E1&. .. & D:E.&TT do begin
V= min{ming=1 Q[By, Gy, i,j],mingzl(l — Q[Dg,Eq,1,jD}
ifv > M[A,i,j] then M[A,i,j] ;= v
end
end
return M[S, 1, n]

The correctness of the above algorithm is established by the following theorem:

Theorem 45. Let G = (=, N, P,S) be a fixed Boolean grammar. Then, for every stringw = a, - - - a, € £, the above algorithm
computes the correct value Mc (A) (w), in time O(n>).

Proof. In order to verify the correctness of the algorithm, we will prove that after the termination of the main loop, for
every A € N and for every i,j, with 1 <i <j < n, M[A,i,j] = Mg(A)(a; - - - aj). Observe that, for every i,j, if i = j then the
value M[A, i,j] is determined in the initialization step and does not change in the main loop; ifi < j then the value M[A, i,j]
is determined in the iteration of the main loop in which d = j — i 4+ 1 and does not change in the next iterations.

966 V. Kountouriotis et al. / Information and Computation 207 (2009) 945-967

We will prove that M[A, i,j] = Mg(A)(a; - - - aj), by induction on the length k of g; - - - a;. For the basis case, suppose that
k = 1,thatis,i =j.

We first show that M[A, i,i] = 1if and only if M;(A)(a;) = 1. Suppose that M[A, i,i] = 1. Then there exists arule A — q;
in P, which immediately implies that Mg (A)(a;) = 1.

Conversely, suppose that M (A) (a;) = 1.This value cannot be obtained by a rule containing the conjunct TT, and therefore
it is obtained by a rule A — q;. But in this case the algorithm sets M[A, i,i] = 1 in its initialization step.

It remains to show that M[A,i,i] = % if and only if Mg(A)(a;) = % Suppose that M[A,i,i] = % Then there exists a
rule A — q;&U in P. This implies that Mz (A)(a;) # 0. Also, it cannot be Mg (A)(a;) = 1, since in this case we would have
M([A, i,i] = 1. Therefore, M (A)(a;) = %

Conversely, suppose that M¢(A)(a;) = % Obviously P does not contain the rule A — a;. We claim that P contains the rule
A — a;&U. Suppose, for the sake of contradiction, that our claim is not true. Then every rule in P with head A, contains in its
body either conjunct TT or some conjunct b € ¥ with b # a;. This implies that Mg (A)(a;) = 0 (contradiction). Therefore, P
contains the rule A — a;&U and the algorithm sets M[A, i,i] = % in its initialization step.

Suppose now that M[A, i, j] = M¢(A)(a; - - - ;) holdsforeveryA € Nandforalli,jwithj — i+ 1 < k(i.e, forall substrings
of w of length at most k).

Consider a substring a; - - - a; of w of length k + 1 (i.e,, j — i + 1 = k + 1). The value of M[A, i,j] is determined in the
iteration of the main loop in which d = k + 1. Furthermore, at this point the values of M[B, i, £] and M[C, £ + 1,j] have
already been computed, for every B, C € N and forevery £ suchthati < ¢ < j(since —i+ 1 <kandj— (£ + 1)+ 1 < k).

From the induction hypothesis M[B, i, £] = M¢(B)(a; - - - ag) and M[C, £ + 1,j] = M¢(C)(ag41 - - - ;). This implies (using
also the fact that Mg (B) (€) = M¢g(C)(e) = 0) that Q[B,C,i,j] = Mc(BC)(q; - - - aj).

Now itis easy to prove that M[A, i,j] = 1ifand onlyif Mg(A)(a; - - - aj) = 1and M[A,i,j] = % ifand only if Mg (A) (a; - - - aj)
= % We give a detailed proof only for the one direction of the first argument. The remaining parts of the proof are very
similar.

Suppose that M[A, i,j] = 1. Then there exists a rule

A — B1Gi&...&ByCn&—D1E1& ... & D E.&TT

inPsuchthat Q[By, Cp,i,j] = 1,for1 < p < mand Q[Dg, Eq,i,j] = 0,for 1 < q < r.This implies thatIT/l\G(BpCp)(a,' s gy) =
1,for1 < p < mand ME(—-DqEq)(ai ---a;) = 1,for 1 < q < r.Since M is a model of G, we have Mg(A)(q; - - - aj) = 1.

Therefore, foreveryA € N,and foreveryi,jwith1 <i <j < nitisM[A,i,j] = Mg(A)(q; - - - aj). In particular M[S, 1,n] =
Mg (S)(aq - - - ap), that is, the algorithm is correct.

We now show that the above algorithm runs in time ©(n?). The initialization step performs n iterations, each requiring
time which is independent of the input, and depends only on the grammar. Therefore the initialization step requires time
o(n).

The main loop is a nested-loop that performs ©(n?) iterations. In each iteration the computation of Q[B, C, i, j] requires
time ©(n), while all the remaining tasks require time which is independent of the input. Therefore, the main loop requires
time ©(n?), which dominates the running time of the algorithm. [

7. Conclusions

We have presented a novel semantics for Boolean grammars which has been inspired by techniques that have been
developed in the logic programming domain. Under this new semantics every Boolean grammar has a distinguished (three-
valued) model that satisfies its rules. Moreover, we have shown that this language is the least fixed-point of an appropriate
operator that is associated with the grammar. Finally, we have demonstrated that every Boolean grammar can be transformed
into an equivalent one in a binary normal form. For grammars in this normal form, we have derived an ©(n®) parsing
algorithm.

We believe that the well-founded semantics will prove to be a useful tool for the further development of the theory of
Boolean grammars. In particular, two of the authors have already used the well-founded approach in order to prove that
the locally stratified construction is well-defined (see [5] for details). Also, it is expected that the well-founded semantics
and its corresponding parsing algorithm can form the basis of general implementations of Boolean grammars. On the more
theoretical side, the formal machinery behind the well-founded semantics can help to the further development of many-
valued formal language theory (see for example [2]).

It should be noted that it is possible that the well-founded model M of a grammar G could also be obtained following
slightly different constructions. For logic programs one such construction that is based on an infinite-valued logic, has recently
been proposed in [11]. Adapting the technique of [11] to Boolean grammars would most probably require the introduction
of infinite-valued formal languages. This is probably an interesting venue for further research.

Closing, we would like to express our strong belief that a further investigation of the connections between formal language
theory and the theory of logic programming will prove to be very rewarding.

V. Kountouriotis et al. / Information and Computation 207 (2009) 945-967 967
Acknowledgments
We would to thank the anonymous reviewers for their detailed and insightful comments.

References

[1] K. Apt, R. Bol, Logic programming and negation: a survey, Journal of Logic Programming, 19, 20 (1994) 9-71.
[2] Z.Esik, W. Kuich, Boolean fuzzy sets, International Journal of Foundations of Computer Science 18 (6) (2007) 1197-1207.
[3] H.B.Enderton, A Mathematical Introduction to Logic, Academic Press, 1972.
[4] V.Kountouriotis, Ch. Nomikos, P. Rondogiannis, Well-founded semantics for Boolean grammars, in: Tenth International Conference on Developments
in Language Theory (DLT), 2006, pp. 203-214.
[5] Ch. Nomikos, P. Rondogiannis, Locally stratified Boolean grammars, in: First International Conference on Language and Automata Theory and
Applications (LATA), 2007, pp. 437-447.
[6] Ch. Nomikos, P. Rondogiannis, Locally stratified Boolean grammars, Information and Computation 206 (9-10) (2008) 1219-1233.
[7] A.Okhotin, Conjunctive grammars, Journal of Automata, Languages and Combinatorics 6 (4) (2001) 519-535.
[8] A.Okhotin, Boolean grammars, Information and Computation 194 (1) (2004) 19-48.
[9] H. Przymusinska, T. Przymusinski, Semantic issues in deductive databases and logic programs, in: R. Banerji (Ed.), Formal Techniques in Artificial
Intelligence: A Source-Book, North Holland, 1990, pp. 321-367.
[10] T.C. Przymusinski, Every logic program has a natural stratification and an iterated fixed-point model, in: Proceedings of the Eighth Symposium on
Principles of Database Systems ACM SIGACT-SIGMOD, 1989, pp. 11-21.
[11] P. Rondogiannis, W.W. Wadge, Minimum model semantics for logic programs with negation-as-failure, ACM Transactions on Computational Logic 6
(2) (2005) 441-467.
[12]]J.E. Stoy, Denotational Semantics: the Scott-Strachey Approach to Programming Language Theory, The MIT Press, 1977.
[13] A.van Gelder, K.A. Ross,].S. Schlipf, The well-founded semantics for general logic programs, Journal of the ACM 38 (3) (1991) 620-650.
[14] M. Wrona, Stratified Boolean grammars, in: International Symposium on the Mathematical Foundations of Computer Science (MFCS), 2005, pp.
801-812.

	Introduction
	Why an alternative semantics for Boolean grammars?
	Interpretations and models for Boolean grammars
	Well-founded semantics for Boolean grammars
	Normal form
	Pre-normal form
	Direct form
	-Free form
	The final step: binary normal form

	Parsing under the well-founded semantics
	Conclusions
	References

