
Unambiguous Boolean grammars

Alexander Okhotin?

1 Academy of Finland
2 Department of Mathematics, University of Turku, Turku FIN–20014, Finland

alexander.okhotin@utu.fi

Abstract. Boolean grammars are an extension of context-free gram-
mars, in which all propositional connectives are allowed. In this paper,
the notion of ambiguity in Boolean grammars is defined. It is shown that
the known transformation of a Boolean grammar to the binary normal
form preserves unambiguity, and that every unambiguous Boolean lan-
guage can be parsed in time O(n2). Linear conjunctive languages are
shown to be unambiguous, while the existence of languages inherently
ambiguous with respect to Boolean grammars is left open.

1 Introduction

Unambiguous context-free grammars are those that define a unique parse tree
for every string they generate, that is, a syntactic structure is unambiguously
assigned to every grammatical sentence. A theoretical study of this class of gram-
mars was carried out already in the first years of formal language theory. The
undecidability of the problem whether a given grammar is ambiguous was first
proved by Floyd [3], while Greibach [6] extended this result to one-nonterminal
linear context-free grammars. Some properties of unambiguous languages were
determined by Ginsburg and Ullian [5]. In the later years a sophisticated theory
was developed around the notion of ambiguity, and recent results of Wich [18]
on the degree of ambiguity are worth particular attention.

As compared to context-free grammars of the general form, unambiguous
context-free grammars are notable for lower parsing complexity. A logarithmic-
time parallel algorithm was proposed by Rytter [16]. An adaptation of the well-
known Cocke–Kasami–Younger algorithm for unambiguous grammars developed
by Kasami and Torii [8] works in square time. The subclasses of even lower
parsing complexity, the LR(k) and LL(k) context-free grammars, are notable for
being the most practically used families of formal grammars.

This paper is the first to consider the notion of ambiguity in Boolean gram-
mars [13], which are an extension of context-free grammars with explicit propo-
sitional connectives. Besides giving a greater freedom of constructing grammars,
Boolean grammars are capable of specifying many non-context-free languages
[13], as well as a simple model programming language [14]. On the other hand,

? Supported by the Academy of Finland under grant 118540.

the extended expressive power of Boolean grammars does not increase the com-
plexity of parsing, which can still be done in time O(n3) using variants of Cocke–
Kasami–Younger and Generalized LR [13,15].

These results give a hope that Boolean grammars could be useful in practice,
and it is worthwhile to investigate the unambiguous subclass of these grammars.

2 Boolean grammars

Definition 1 ([13]). A Boolean grammar is a quadruple G = (Σ, N, P, S),
where Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively; P is a finite set of rules of the form

A → α1& . . . &αm&¬β1& . . . &¬βn, (1)

where m + n > 1, αi, βi ∈ (Σ ∪N)∗; S ∈ N is the start symbol of the grammar.

For each rule (1), the objects A → αi and A → ¬βj (for all i, j) are called
conjuncts, positive and negative respectively; the set of all conjuncts is denoted
conjuncts(P). Conjuncts of unknown sign will be referred to as unsigned con-
juncts, and denoted A → ±αi and A → ±βj , Let uconjuncts(P) be the set of
all unsigned conjuncts.

Fig. 1. The hierarchy of language families.

A Boolean grammar is called a conjunctive grammar [10], if negation is never
used, that is, n = 0 for every rule (1). It is a context-free grammar if neither
negation nor conjunction are allowed, that is, m = 1 and n = 0 for each rule.
Another important particular case of Boolean grammars is formed by linear
conjunctive grammars, in which every conjunct is of the form A → uBv or
A → w, where u, v, w ∈ Σ∗, w ∈ N . (1). Linear conjunctive grammars are equal
in power to linear Boolean grammars with conjuncts A → ±uBv or A → w, as
well as to one-way real-time cellular automata [12]. These three language families
are denoted Bool , Conj and LinConj in the hierarchy in Figure 1 [13], where the
rest of the classes are regular (Reg), linear context-free (LinCF), context-free (CF)
and deterministic context-sentitive languages (DetCS).

Intuitively, a rule (1) of a Boolean grammar can be read as follows: every
string w over Σ that satisfies each of the syntactical conditions represented by

2

α1, . . . , αm and none of the syntactical conditions represented by β1, . . . , βm

therefore satisfies the condition defined by A. Though this is not yet a formal
definition, this understanding is sufficient to construct grammars.

Example 1. The following grammar generates the language {anbncn | n > 0}:

S → AB&DC
A → aA | ε

B → bBc | ε
C → cC | ε
D → aDb | ε

This grammar, which is actually conjunctive, represents this language as an
intersection of two context-free languages:

{anbncn | n > 0}︸ ︷︷ ︸
L(S)

= {aibjck | j = k}︸ ︷︷ ︸
L(AB)

∩{aibjck | i = j}︸ ︷︷ ︸
L(DC)

A related non-context-free language can be specified by inverting the sign of
one of the conjuncts in this grammar.

Example 2. The following Boolean grammar generates the language
{ambncn |m,n > 0,m 6= n}:

S → AB&¬DC
A → aA | ε

B → bBc | ε
C → cC | ε
D → aDb | ε

This grammar is based upon the following representation.

{anbmcm |m,n > 0,m 6= n}︸ ︷︷ ︸
L(S)

= {aibjck | j = k and i 6= j} = L(AB) ∩ L(DC)

Let us now give a formal definition of the language generated by a Boolean
grammar. Actually, this definition can be given in several different ways [9,13],
which ultimately yield the same class of languages. For simplicity, we shall use
the most straightforward of these definitions, but it can be mentioned that the
results of this paper are applicable to other semantics as well. This simplest
definition departs from the interpretation of a grammar as a system of equations
with formal languages as unknowns:

Definition 2. Let G = (Σ,N,P, S) be a Boolean grammar. The system of lan-
guage equations associated with G is a resolved system of language equations
over Σ in variables N , in which the equation for each variable A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[m⋂

i=1

αi ∩
n⋂

j=1

βj

]
(2)

Each instance of a symbol a ∈ Σ in such a system defines a constant language
{a}, while each empty string denotes a constant language {ε}. A solution of such
a system is a vector of languages (. . . , LC , . . .)C∈N , such that the substitution of
LC for C, for all C ∈ N , turns each equation (2) into an equality.

3

Definition 3. Let G = (Σ, N, P, S) be a Boolean grammar, let (2) be the as-
sociated system of language equations. Suppose that for every finite language
M ⊂ Σ∗ (such that for every w ∈ M all substrings of w are also in M) there
exists a unique vector of languages (. . . , LC , . . .)C∈N (LC ⊆ M), such that a
substitution of LC for C, for each C ∈ N , turns every equation (2) into an
equality modulo intersection with M .

Then, for every A ∈ N , the language LG(A) is defined as LA, while the
language generated by the grammar is L(G) = LG(S).

A useful property of Boolean grammars is that they define parse trees of
the strings they generate [13], which represent parses of a string according toSee Appendix A.
positive conjuncts in the rules.

3 Defining ambiguity

Unambiguous context-free grammars can be defined in two ways:

1. for every string generated by the grammar there is a unique parse tree (in
other words, a unique leftmost derivation);

2. for every nonterminal A and for every string w ∈ L(A) there exists a unique
rule A → s1 . . . s`, such that w ∈ L(s1 . . . s`), and a unique factorization
w = u1 . . . u`, such that ui ∈ L(si).

Assuming that L(A) 6= ∅ for every nonterminal A, these definitions are equiv-
alent. In the case of Boolean grammars, the first definition becomes useless,
because negative conjuncts are not accounted for in a parse tree. The require-
ment of parse tree uniqueness can be trivially satisfied as follows. Given any
grammar G over an alphabet {a1, . . . , am} and with a start symbol S, one can
define a new start symbol S′ and additional symbols Ŝ and A, with the following
rules:

S′ → A&¬Ŝ

Ŝ → A&¬S
A → a1A | . . . | amA | ε

This grammar generates the same language, and every string in L(G) has a
unique parse tree, which reflects only the nonterminal A and hence bears no
essential information.

Let us generalize the second approach to defining ambiguity.

Definition 4. A Boolean grammar G = (Σ, N,P, S) is unambiguous if

I. Different rules for every single nonterminal A generate disjoint languages,
that is, for every string w there exists at most one rule

A → α1& . . . &αm&¬β1& . . . &¬βn,

such that w ∈ LG(α1) ∩ . . . ∩ LG(αm) ∩ LG(β1) ∩ . . . ∩ LG(βn).

4

II. All concanenations are unambiguous, that is, for every conjunct A →
±s1 . . . s` and for every string w there exists at most one factorization
w = u1 . . . u`, such that ui ∈ LG(si) for all i.

For instance, both grammars in Examples 1 and 2 are unambiguous. To see
that condition II is satisfied with respect to the conjunct S → AB, consider
that a factorization w = uv, where u ∈ L(A) and v ∈ L(B), implies that
u = a∗ and v ∈ b∗c∗, so the boundary between u and v cannot be moved. The
conjuncts S → DC and S → ¬DC are treated similarly. Different rules for each
of A,B, C, D clearly generate disjoint languages.

On the other hand, here is an example of an ambiguous grammar, and it is
not known whether there exists an unambiguous grammar for the same language:

Example 3 (cf. [13, Example 4]). The language {a2n |n > 0} is generated by the
following ambiguous Boolean grammar:

S → A&¬aA | aB&¬B | aC&¬C
A → aBB
B → E&¬CC

C → E&¬DD
D → E&¬A
E → aE | ε

To see that the grammar is ambiguous, consider the string w = aa and the
conjunct A → aBB: there exist factorizations w = a ·ε ·a and w = a ·a ·ε, where
ε, a ∈ L(B), and thus condition II is violated.

Though, as mentioned above, the uniqueness of a parse tree does not guar-
antee that the grammar is unambiguous, the converse holds:

Proposition 1. For any unambiguous Boolean grammar, for any nonterminal
A ∈ N and for any string w ∈ LG(A), there exists a unique parse tree of w from
A (assuming that only terminal nodes may have multiple incoming arcs).

Another thing to note is that the first condition in the definition of unambi-
guity can be met for every grammar using simple transformations. Consider any
nonterminal A and assume each of its rules consists of a single positive conjunct,
that is, its rules are

A → α1 | . . . | αn (where αi ∈ (Σ ∪N)∗) (3)

There is no loss of generality in this assumption, because any rule for A can be
replaced with a rule of the form A → A′, where A′ is a new nonterminal with a
single rule replicating the original rule for A. Then the rules (3) can be replaced
with the following n rules, which clearly generate disjoint languages:

A → α1

A → α2&¬α1

A → α3&¬α1&¬α2

...
A → αn&¬α1&¬α2& . . . &¬αn−1

(3′)

If this transformation is applied to every nonterminal, the resulting grammar
will satisfy condition I. Additionaly, condition II, if it holds, will be preserved
by the transformation.

5

Proposition 2. For every Boolean grammar there exists a Boolean grammar
generating the same language, for which the condition I is satisfied. If the original
grammar satisfies the condition II, then so will the constructed grammar.

This property does not hold for context-free grammars. Consider the stan-
dard example of an inherently ambiguous context-free language:

{aibjck | i, j, k > 0, i = j or j = k}.
Following is the most obvious ambiguous context-free grammar generating this
language:

S → AB | DC
A → aA | ε

B → bBc | ε
C → cC | ε
D → aDb | ε

The condition II is satisfied for the same reasons as in Examples 1 and 2. On
the other hand, the condition I is failed for the nonterminal S and for strings of
the form anbncn, which can be obtained using each of the two rules, and this is
what makes this grammar ambiguous.

If the above context-free grammar is regarded as a Boolean grammar (am-
biguous as well), then the given transformation disambiguates it in the most
natural way by replacing the rules for the start symbol with the following rules:

S → AB | DC&¬AB .

We have thus seen that ambiguity in the choice of a rule represented by
condition I can be fully controlled in a Boolean grammar, which is a practically
very useful property.

4 Normal forms

It is known that every Boolean grammar can be transformed to an equivalent
grammar in the binary normal form [13], in which all rules are of the form

A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε (m > 1, n > 0)
A → a

S → ε (only if S does not appear in right-hand sides of rules)

Let us refine this result by showing that this known transformation converts
an unambiguous Boolean grammar to an unambiguous grammar in the normal
form.

The transformation of a Boolean grammar G = (Σ,N,P, S) to the binary
normal form proceeds as follows. For every s1 . . . s` ∈ (Σ ∪N)∗, denote

ρ(s1 . . . s`) = {si1 . . . sik
|1 6 i1 < . . . < ik 6 `, j /∈ {i1, . . . , ik} implies ε ∈ LG(sj)}

At the first step, a new grammar G1 = (Σ,N, P1, S) is constructed, where, for
every rule

A → α1& . . . &αm&¬β1& . . . &¬βn,

6

from P , in which ρ(αi) = {µi1, . . . , µiki
} and ρ(βj) = {νj1, . . . , νj`j

}, the set P1

contains a rule

A → µ1t1& . . . &µmtm
&¬ν11& . . . &¬ν1`1& . . . &¬νn1& . . . &¬ν1`n

&¬ε,

for every vector of numbers (t1, . . . , tm) (1 6 ti 6 ki for all i). It is known that,
for every A ∈ N , LG1(A) = LG(A) \ {ε} [13].

At the second step, another grammar G2 = (Σ, N,P2, S) is constructed on
the basis of G1. This grammar is free of unit conjuncts of the form A → ±B.
The most important property of the constructed grammar is as follows. Let
R = {γ | A → ±γ ∈ uconjuncts(P1), γ /∈ N} = {η1, . . . , η`}. Then every rule in
P2 is of the general form

A → α1& . . . &αm&¬β1& . . . &¬βn, where {α1, . . . , αm, β1, . . . , βn} = P

In other words, the body of every conjunct in P1 appears either positively or
negatively in every rule in P2.

The rest of the transformation is obvious. At the third step, every “long”
conjunct of the form A → ±sα, where s ∈ Σ ∪N and |α| > 2, is shortened by
adding a new nonterminal A′ with a rule A′ → α and by replacing the body
of the original conjunct with sA′. This is done until every conjunct is either
A → ±α with |α| = 1, 2 (where |α| = 1 implies α = a ∈ Σ) or A → ¬ε. Let
G3 = (Σ, N ∪ N ′, P3, S) be the resulting grammar; obviously, L(G3) = L(G2).
At the final fourth step every conjunct A → ±as or A → ±sa, where a ∈ Σ
and s ∈ Σ ∪ N , has its body replaced with Xas or sXa, respectively, where
Xa is a new nonterminal with a rule Xa → a. The resulting grammar G4 =
(Σ, N ∪N ′ ∪N ′′, P4, S) generates the same language L(G4) = L(G3).

The following property of this transformation is important for this paper.

Lemma 1. Let G = (Σ,N,P, S) be a Boolean grammar compliant to the se-
mantics of strongly unique solution, assume LG(A) 6= ∅ for any A ∈ N . Then,
in course of the transformation of G to the binary normal form according to the
above description,

– The grammar G2, as well as the subsequent grammars obtained, satisfies
condition I from the definition of an unambiguous grammar.

– If G satisfies condition II, then each grammar obtained satisfies condition II.

5 Parsing unambiguous languages

One of the important properties of unambiguous context-free grammars is
efficient parsing. Some cubic-time algorithms for general context-free gram-
mars work in square time in the unambiguous case [2,8]. Similarly, log-square-
time parallel algorithms can be speeded up to logarithmic time [16]. While
logarithmic-time parallel parsing seems to have no analogues for Boolean gram-
mars, the square-time Kasami–Torii algorithm [8], can be extended to unam-
biguous Boolean grammars, once its data structures and loops are refactored.
Such an algorithm will be constructed in this section.

7

The algorithm uses dynamic programming to construct a two-dimensional
table E indexed by positions in the input and nonterminals. Each entry of this
table assumes the value of a set of positions in the input string, which are
stored as a list in an ascending order. The element corresponding to a position
k (1 6 k 6 n) and a nonterminal A ∈ N is denoted Ek[A].

By definition, i should be in Ek[A] if and only if 0 6 i < k and ai+1 . . . ak ∈
LG(A). In the end of the computation, each list Ek[A] will contain exactly these
numbers. Then, accordingly, the entire string a1 . . . an is in L(G) if and only if
the position 0 is in En[S].

Algorithm 1 Let G = (Σ, N, P, S) be a Boolean grammar in binary normal
form. For every X ⊆ conjuncts(G), define

f(X) = {A | ∃A → B1C1& . . . &B`C`&¬D1E1& . . . &¬DmEm&¬ε ∈ P,

s.t. A → B1C1, . . . , A → B`C` ∈ X,A → ¬D1E1, . . . , A → ¬DmEm /∈ X}

Let w = a1 . . . an, where n > 1 and ai ∈ Σ, be a string given as an in-
put. For all j = 1, . . . , n, let Ej [A] be a variable ranging over subsets of
{0, . . . , j − 1}; for all k = 0, . . . , n − 1, the variable T [k] ranges over subsets
of uconjuncts(P).
1: let Ej [A] = ∅ for all j = 1, . . . , n and A ∈ N
2: for j = 1 to n do
3: for all all A ∈ N do
4: if A → aj ∈ P then
5: Ej [A] = {j − 1}
6: else
7: Ej [A] = ∅
8: let T [k] = ∅ for all k (0 6 k < j)
9: for k = j − 1 to 1 do

10: for all A → ±BC ∈ uconjuncts(P) do
11: if k ∈ Ej [C] then
12: for all i ∈ Ek[B] do
13: T [i] = T [i] ∪ {A → ±BC}
14: for all A ∈ f(T [k − 1]) do
15: Ej [A] = Ej [A] ∪ {k − 1}
16: accept iff 0 ∈ En[S]

Each Ej [A] is stored as a list, with elements sorted in an ascending order.
The operations on this data structure are implemented as follows:

Lines 1, 5 and 7: A one-element list or an empty list is created.
Line 11: The first element in the list is checked. If it is not k, it is assumed

that k is not in the list.
Line 12: The list is traversed.
Line 15: The new element is inserted in the beginning of the list.
Line 16: As in line 11, only the first element is checked.

8

Now there are three properties to establish: first, that the given implementa-
tion of Ej [A] by lists faithfully represents the high-level set operations. Second,
it has to be shown that the algorithm is a correct recognizer, that is, it accepts
w if and only if w ∈ L(G). Third, it remains to demonstrate that the algorithm
works in time O(n2) on every unambiguous grammar.

Let us see that, indeed, the lists Ej [A] stay sorted in course of the computa-
tion, and the tests in lines 11, 16 and the insertion in line 15 can be implemented
as described.

Lemma 2. Each list Ej [A] always remains sorted. Each time the algorithm See Appendix C.

checks the condition in line 11, every set Ej [A] does not contain elements less
than k. Each time the algorithm is about to execute line 15, the set Ej [A] does
not contain elements less than k.

Let us continue with the correctness statement of the algorithm, which claims
what values should the variables have at certain points of the computation. It
will refer to iterations of the outer loop by j (line 2) and of the nested loop by
k (line 9), the latter will be denoted by pairs (j, k). To unify the notation, let
us refer to the point before the iteration j = 1, that is, to the very beginning of
the execution, as “after the iteration 0”. Similarly, the point before the iteration
(j, k = j−1), that is, inside iteration j right before the loop by k is entered, will
be referred to as “after the iteration (j, j)”. Then the statement of correctness
can be succinctly formulated as follows:

Lemma 3 (Correctness of Algorithm 1). For every Boolean grammar in
the binary normal form, in the computation of the above algorithm on a string
w ∈ Σ+,

i. after iteration j, for each A ∈ N and for each t = 1, . . . , j, the set Et[A]
equals

{i | 0 6 i < t and ai+1 . . . at ∈ LG(A)};
ii. after iteration (j, k), every Ej [A] (A ∈ N) equals

{i | k − 1 6 i < j and ai+1 . . . aj ∈ LG(A)};
iii. after iteration (j, k), every T [i] (0 6 i < j) equals

{A → ±BC | ∃` (k 6 ` < j) : ai+1 . . . a` ∈ L(B) and a`+1 . . . aj ∈ L(C)}.
Lemma 4 (Algorithm 1 on unambiguous grammars). Assume G satisfies
condition II in the definition of an unambiguous grammar, let w be an n-symbol
input string. Then the assignment statement T [i] = T [i] ∪ {A → ±BC} in the
inner loop is executed at most |uconjuncts(G)| · n2 times.

Theorem 1. For every Boolean grammar G = (Σ, N, P, S) in binary normal
form and for every input string w ∈ Σ∗, Algorithm 1 accepts if and only if
w ∈ L(G). Implemented on a random access machine, it terminates after O(n3)
elementary steps, where n = |w|, or after O(n2) elementary steps, if the grammar
is unambiguous.

9

The algorithm relies upon the normal form, but Lemma 1 shows that there
is no loss of generality in this assumption.

Theorem 2. For every unambiguous Boolean grammar G there exists and can
be effectively constructed an algorithm to test the membership of given strings in
L(G) in time O(n2).

6 The class of unambiguous languages

Let us consider the language family generated by unambiguous Boolean gram-
mars, which will be denoted UnambBool . The family generated by unambiguous
conjunctive grammars will be similarly denoted UnambConj . The hypothetical
corresponding sets of inherently ambiguous languages are UnambBool \ Bool and
UnambConj \ Conj . As for linear conjunctive languages, it is not hard to prove
that each of them is unambiguous.

Theorem 3. For every linear conjunctive grammar there exists and can be ef-
fectively constructed an equivalent unambiguous linear conjunctive grammar.

Note that every linear conjunctive grammar satisfies condition II on unique-
ness of factorization, because there is at most one nonterminal in every conjunct.
So it remains to reconstruct the grammar so that different rules for any nonter-
minal generate disjoint languages. The proposed construction is based upon the
representation of linear conjunctive languages by trellis automata [12].

This result immediately provides us with many interesting examples of un-
ambiguous languages.

Proposition 3. The language {wcw | w ∈ {a, b}∗} is a linear conjunctive lan-
guage [10] and hence it is unambiguous.

Proposition 4. Let M be a Turing machine over an alphabet Σ, let Γ be an al-
phabet, let CM (w), where w ∈ L(M), be an appropriate encoding of its accepting
computation on w, let \ /∈ Σ ∪ Γ . Then the language of computations of M ,

V ALC(M) = {w\CM (w) | w ∈ L(M)},

is a linear conjunctive language, and hence it is unambiguous.

The last example implies some standard undecidability results for unam-
biguous linear conjunctive grammars (such as the undecidability of emptiness
problem, etc.) which carry on to unambiguous Boolean grammars.

Recalling some known examples of P-complete linear conjunctive languages
[7,11], one can construct unambiguous grammars for these languages.

Proposition 5. There exists a P-complete unambiguous linear conjunctive lan-
guage.

10

Fig. 2. Unambiguous language families in the overall hierarchy.

As in the theory of context-free languages, let us say that a language is in-
herently ambiguous with respect to conjunctive (Boolean) grammars, if it is gen-
erated by some conjunctive (Boolean) grammar, but all conjunctive (Boolean)
grammars generating it are ambiguous. The hypothetical sets of inherently am-
biguous languages are UnambBool\Bool and UnambConj\Conj , but it is interesting
indeed whether these sets are nonempty.

Let us consider some candidate languages for being inherently ambiguous.
One of them, given in Example 3, is the language {a2n | n > 0}. Another pair of
candidates are Lww = {ww |w ∈ {a, b}∗} and its complement, Lww. The former
is non-context-free, and the only known way of representing it by a Boolean
grammar essentially uses a context-free grammar for Lww and a negation on top
of it. However, Lww is an inherently ambiguous context-free language, so any
Boolean grammar constructed in this way is also ambiguous. Unfortunately, no
proofs of inherent ambiguity have so far been obtained; determining whether
UnambBool = Bool and whether UnambConj = Conj are the main open problems
on unambiguous variants of conjunctive and Boolean grammars.

Having introduced two new families of languages, UnambConj and UnambBool ,
let us place them in the hierarchy of language families. The updated hierarchy is
shown in Figure 2. The natural expectation is that all inclusions are proper, and
every two families not connected by a directed path are incomparable. However,
at present as many as six inclusions are not known to be proper. Also, for a
few pairs of classes it is not known whether they are incomparable or not; these
are: UnambCF and LinConj , CF and UnambConj , CF and UnambBool , Conj and
UnambBool . These challenging open problems deserve investigation.

Let us compare the parsing complexity of these families of languages. Another
partition is given by the degree of the polynomial of the time complexity of
recognition algorithms: some classes of languages, The previously known families
UnambLinCF , LinCF , UnambCF and LinConj can be parsed in time O(n2), and both
families introduced in this paper, UnambConj and UnambBool , join them in the
same class. For conjunctive and Boolean grammars of the general form, no better
bound than O(n3) is known, while context-free grammars can be parsed at least
as quckly as matrix multiplication, which, according to the current knowledge,
can be done in time O(n2.376).

11

To conclude, a useful subclass of Boolean grammars with an improved worst-
case parsing time has been introduced, which becomes one more step towards
practical applicability of these theoretically attractive grammars. This justifies
continued attention to these grammars, and will hopefully lead to a conjectured
family of deterministic Boolean grammars.

References

1. K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata”, I and II, Inter-
national Journal of Computer Mathematics, 15 (1984), 195–212, and 16 (1984),
3–22.

2. J. Earley, “An efficient context-free parsing algorithm”, Communications of the
ACM, 13:2 (1970), 94–102.

3. R. W. Floyd, “On ambiguity in phrase structure languages”, Communications of
the ACM, 5:10 (1962), pp. 526, 534.

4. S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal
of the ACM, 9 (1962), 350–371.

5. S. Ginsburg, J. S. Ullian, “Ambiguity in context free languages”, Journal of the
ACM, 13:1 (1966), 62–89.

6. S. A. Greibach, “The undecidability of the ambiguity problem for minimal linear
grammars”, Information and Control, 6:2 (1963), 119–125.

7. O. H. Ibarra, S. M. Kim, “Characterizations and computational complexity of
systolic trellis automata”, Theoretical Computer Science, 29 (1984), 123–153.

8. T. Kasami, K. Torii, “A syntax-analysis procedure for unambiguous context-free
grammars”, Journal of the ACM, 16:3 (1969), 423–431.

9. V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “Well-founded semantics for
Boolean grammars”, Developments in Language Theory (DLT 2006, Santa Bar-
bara, USA, June 26–29, 2006), LNCS 4036, 203–214.

10. A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Com-
binatorics, 6:4 (2001), 519–535.

11. A. Okhotin, “The hardest linear conjunctive language”, Information Processing
Letters, 86:5 (2003), 247–253.

12. A. Okhotin, “On the equivalence of linear conjunctive grammars to trellis au-
tomata”, RAIRO Informatique Théorique et Applications, 38:1 (2004), 69–88.

13. A. Okhotin, “Boolean grammars”, Information and Computation, 194:1 (2004),
19–48.

14. A. Okhotin, “On the existence of a Boolean grammar for a simple programming
language”, Automata and Formal Languages (Proceedings of AFL 2005, May 17–
20, 2005, Dobogókő, Hungary).

15. A. Okhotin, “Generalized LR parsing algorithm for Boolean grammars”, Interna-
tional Journal of Foundations of Computer Science, 17:3 (2006), 629–664.

16. W. Rytter, “Parallel time O(log n) recognition of unambiguous context-free lan-
guages”, Information and Computation, 73:1 (1987), 75–86.

17. V. Terrier, “On real-time one-way cellular array”, Theoretical Computer Science,
141 (1995), 331–335.

18. K. Wich, “Sublogarithmic ambiguity”, Theoretical Computer Science, 345:2–3
(2005), 473–504.

12

http://dx.doi.org/10.1145/362007.362035�
http://doi.acm.org/10.1145/368959.368993�
http://dx.doi.org/10.1145/321127.321132�
http://doi.acm.org/10.1145/321312.321318�
http://dx.doi.org/10.1016/S0019-9958(63)90149-9�
http://dx.doi.org/10.1016/S0019-9958(63)90149-9�
http://dx.doi.org/10.1016/0304-3975(84)90015-X�
http://dx.doi.org/10.1016/0304-3975(84)90015-X�
http://dx.doi.org/10.1145/321526.321531�
http://dx.doi.org/10.1145/321526.321531�
http://dx.doi.org/10.1007/11779148_19�
http://dx.doi.org/10.1007/11779148_19�
http://dx.doi.org/10.1016/S0020-0190(02)00511-2�
http://www.elsevier.com/locate/ipl�
http://www.elsevier.com/locate/ipl�
http://dx.doi.org/10.1051/ita:2004004�
http://dx.doi.org/10.1051/ita:2004004�
http://www.edpsciences.org/ita�
http://dx.doi.org/10.1016/j.ic.2004.03.006�
http://dx.doi.org/10.1142/S0129054106004029�
http://dx.doi.org/10.1016/0890-5401(87)90041-1�
http://dx.doi.org/10.1016/0890-5401(87)90041-1�
http://dx.doi.org/10.1016/0304-3975(94)00212-2�
http://dx.doi.org/10.1016/j.tcs.2005.07.024�

A Parse trees for Boolean grammars

Parse trees for Boolean grammars [13] are, strictly speaking, finite acyclic graphs
rather than trees. A parse tree of a string w = a1 . . . a|w| from a nonterminal A
contains a leaf labelled ai for every i-th position in the string; the rest of the
vertices are labelled with rules from P . The subtree accessible from any given
vertex of the tree contains leaves in the range between i + 1 and j, and thus
corresponds to a substring ai+1 . . . aj . In particular, each leaf ai corresponds to
itself.

For each vertex labelled with a rule

A → α1& . . . &αm&¬β1& . . . &¬βn

and associated to a substring ai+1 . . . aj , the following conditions hold:

1. It has exactly |α1 . . . αm| direct descendants corresponding to the symbols
in positive conjuncts. For each nonterminal in α1 . . . αm, the corresponding
descendant is labelled with some rule for that nonterminal, and for each
terminal a ∈ Σ, the descendant is a leaf labelled with a.

2. For each t-th positive conjunct of this rule, let αt = s1 . . . s`. There exist
numbers i1, . . . , i`−1, where i = i0 6 i1 6 . . . 6 i`−1 6 i` = j, such that each
descendant corresponding to sr encompasses the substring air−1+1 . . . air .

3. For each t-th negative conjunct of this rule, ai+1 . . . aj /∈ LG(βt).

The root is the unique node with no incoming arcs; it is labelled with any rule
for the nonterminal A, and all leaves are reachable from it. To consider the
uniqueness of a parse tree for different strings, it is useful to assume that only
terminal leaves can have multiple incoming arcs.

The condition 3 ensures that the requirements imposed by negative conjuncts
are satisfied. However, nothing related to these negative conjuncts is reflected in
the actual trees. For some grammars, this effectively means that the tree does
not convey any information.

B Normal form for unambiguous grammars

Proof (Lemma 1 on page 7). Let us first prove that the grammar G2 satisfies
condition I. Assume the contrary, then for some A ∈ N there exist two distinct
rules of the form

A → α1& . . . &αm&¬β1& . . . &¬βn, where {α1, . . . , αm, β1, . . . , βn} = P

such that some string w ∈ Σ∗ can be obtained from either rule. Both rules are
formed from the same set of unsigned conjuncts, but some of them may have
different signs in different rules. Since the rules are distinct, at least one pair of
conjuncts with different signs should exist; let one rule contain a conjunct A → γ
and let the other contain A → ¬γ. Each rule generates w by assumption, and
hence w ∈ L(γ) and w /∈ L(γ), which forms a contradiction.

13

It is easy to see that condition I is preserved in the transformation of G2 to
G3 and G4. For each nonterminal A ∈ N , there is a one-to-one correspondence
between rule for A in P2 and in P3 (or in P4), such that the correponding rules
generate the same languages, and thus these languages remain disjoint. Each of
the new nonterminals in N ′ and N ′′ has a unique rule, so condition I is again
met.

Now assume G satisfies condition II, and let us prove that each step of the
transformation preserves this property. Consider the first step. For every A →
±s1 . . . s` ∈ uconjuncts(P), uconjuncts(P1) contains every A → ±si1 . . . sik

,
such that 1 6 i1 < . . . < ik 6 ` and for every j in {1, . . . , `} \ {i1, . . . , ik},
ε ∈ LG(sj). Every conjunct in G1 is formed in this way, unless it is A → ¬ε.
Consider any two representations of any string as LG1(si1) · . . . · LG1(sik

):

w = ui1 . . . uik
= vi1 . . . vik

(where uit
, vit

∈ LG1(sit
) for all t) (4)

Consider that LG1(sij) ⊆ LG(sij), and define uj = vj = ε ∈ LG(sj) for all
j ∈ {1, . . . , `} \ {i1, . . . , ik}. Then u1 . . . u` = v1 . . . v` = w, and since G satisfies
condition II, uj = vj for all j ∈ {1, . . . , `}. Hence, the factorizations (4) are actu-
ally the same, and, since the choice of the conjunct and the word was arbitrary,
G1 satisfies condition II.

In the next phase, when G1 is converted to G2, no new conjunct bodies are
created, and thus condition II is trivially preserved. The conversion of G2 to
G3 is a series of elementary steps, and it is sufficient to prove the correctness
of one such step. Let Ĝ be a grammar with a conjunct A → ±s1s2 . . . s`, and
let G̃ be constructed by replacing this conjunct with A → ±s1A

′, where A′ is
a new nonterminal with the rule A′ → s2 . . . s`. Suppose some string w ∈ Σ∗

can be represented as w = u2 . . . u` = v2 . . . v`, where uj , vj ∈ L eG(sj) = L bG(sj)
for j = 2, . . . , `. Since it is assumed that L bG(s1)

6= ∅, there exists a string
x =∈ L bG(s1)

. Let u1 = v1 = x, then the string xw can be represented as xw =
u1u2 . . . u` = v1v2 . . . v`, where uj , vj ∈ L bG(sj) for j = 1, . . . , `. By assumption,
Ĝ satisfies condition II, hence uj = vj for all j, and hence the given factorization
of w as L eG(s2) · . . . ·L eG(s`) is unambiguous. The case of the conjunct A → ±s1A

′

has an even simpler proof, which is too elementary to be included.
In the final step, a conjunct A → ±as is replaced with A → ±Xas, where

Xa generates {a}, and A → ±sa is treated similarly. The factorizations as and
Xas are the same with respect to ambiguity. ut

C Correctness of the parsing algorithm

Proof (Lemma 2 on 9). An element k − 1 can be added to Ej [A] only at the
iteration (j, k) of loops in lines 2 and 9. Hence, in the beginning of each iteration
(j, k) the following condition holds: Ej [A] ⊆ {k, k+1, . . . , j−2}. Hence, if Ej [A]
is sorted before the assignment in line 15, it remains sorted after the assignment.
All three claims follow. ut

14

Proof (Lemma 3 on page 9). The proof is by a nested induction corresponding
to the structure of the loops. The outer claim (i) is proved by induction on j.

Basis: the beginning of the execution is the point “after iteration j = 0”,
when each Ej [A] equals ∅. Here claim (i) trivially holds, because there are no
applicable ts.

Induction step: It has to be proved that every j-th iteration of the outer loop
effectively assigns

Ej [A] = {i | 0 6 i < j and ai+1 . . . aj ∈ LG(A)} (for every A ∈ N).

To prove this, an inner induction is used to establish claims (ii–iii).

Basis, k = j: The point “after iteration (j, j)” is reached when lines 3–8 have
been executed, and the nested loop by k is about to be entered. Let us
substitute k = j into claim (ii):

{i | j − 1 6 i < j︸ ︷︷ ︸
i=j−1

and ai+1 . . . aj︸ ︷︷ ︸
aj

∈ LG(A)} =
{

∅, if aj /∈ LG(A)
{j − 1}, if aj ∈ LG(A)

Since the grammar is in the normal form, ai ∈ LG(A) if and only if A →
ai ∈ P , and hence the lines 3–7 assign the appropriate values. A similar
substitution of k = j into claim (iii) results in {A → ±BC | ∃` (j 6 ` < j) :
〈. . .〉} = ∅, which is consistent with line 8.

Induction step k + 1 → k (j > k > 1): Assume iterations (j, j − 1), (j, j −
2), . . . , (j, k + 2), (j, k + 1), have already been executed, and the iteration
(j, k) has just started, in which line 10 is about to be executed. By the
(inner) induction hypothesis, at this point, for each A ∈ N ,

Ej [A] = {i | k 6 i < j and ai+1 . . . aj ∈ LG(A)}, (5)

while for each i,

T [i] = {A → ±BC|∃`(k+1 6 ` < j) : ai+1 . . . a` ∈ L(B) and a`+1 . . . aj ∈ L(C)}.

Let us first show that the execution of lines 10–13 sets every T [i] to

{A → ±BC | ∃` (k 6 ` < j) : ai+1 . . . a` ∈ L(B) and a`+1 . . . aj ∈ L(C)}.
(6)

It has to be proved that an unsigned conjunct A → ±BC is added to T [i] if
and only if ai+1 . . . ak ∈ L(B) and ak+1 . . . aj ∈ L(C).
Suppose these statements hold. Then, according to the outer induction hy-
pothesis, i ∈ Ek[B] (since k < j), and by (5), k ∈ Ej [C]. Therefore, once
the conjunct A → ±BC is considered in line 10, the condition in line 11 will
be true, then the loop in line 12 will be executed and will eventually find
i in the list, and A → ±BC will be added to T [i] in line 13. Conversely, if
A → ±BC is added to T [i], then i ∈ Ek[B] and k ∈ Ej [C], which implies
ai+1 . . . ak ∈ L(B) and ak+1 . . . aj ∈ L(C), respectively.

15

We have thus proved that when the iteration (j, k) proceeds with the second
inner loop starting in line 3, each T [i] is already of the form (6). This, in
particular, implies

T [k − 1] = {A → ±BC | ak . . . aj ∈ L(BC)}, (7)

because the middle point in the factorization of ak . . . aj as L(B) · L(C) is
always in {k, . . . , j − 1}. Each Ej [A] remains as in (5) at this point, and the
claim is that the lines 14–15 set Ej [A] to (ii), for each A ∈ N . It suffices to
prove that k − 1 is added to Ej [A] if and only if ak . . . aj ∈ LG(A).
Note that |ak . . . aj | > 2, since k < j. Then ak . . . aj ∈ LG(A) if and only if
there exists a rule

A → B1C1& . . . &B`C`&¬D1E1& . . . &¬DmEm&¬ε,

such that ak . . . aj ∈ LG(BiCi) and ak . . . aj /∈ LG(DtEt) for all appropriate
i, t. By (7), this is equivalent to A → ±BiCi ∈ T [k − 1] and A → ±DtEt /∈
T [k − 1] for all i, t which in turn holds if and only if A ∈ f(T [k − 1]). This
completes the proof of the inner induction step, the outer induction step and
the entire lemma. ut

Proof (Lemma 4 on page 9). Let us prove that for every j, for every conjunct
A → ±BC and for every i there exists at most one number k, such that iteration
(j, k, A → ±BC, i) of four nested loops is executed.

Suppose there exist two such numbers, k and k′. For the inner loop in lines 12–
13 to be executed, both k and k′ have to be in Ej [C]. Then, by Lemma 3(ii),

ak+1 . . . aj ∈ L(C) and (8a)
ak′+1 . . . aj ∈ L(C). (8b)

Furthermore, for the corresponding iterations of the inner loop to be executed, i
must be both in Ek[B] and in Ek′ [B]. By Lemma 3(i), this means the following:

ai+1 . . . ak ∈ L(B), (9a)
ai+1 . . . ak′ ∈ L(B). (9b)

Combining (9a) with (8a) and (9b) with (8b), one obtains two factorizations
of ai+1 . . . aj as u · v, where u ∈ L(B) and v ∈ L(C). By the condition II from
the definition of an unambiguous grammar, which holds by assumption, there is
at most one such factorization. Therefore, the constructed factorizations are the
same, that is, k = k′. ut
Proof (Theorem 1 on page 9). The correctness of the algorithm is given by
Lemma 3(i): for j = n and A = S, the final value of Ej [A] is

En[S] = {i | 0 6 i < n and ai+1 . . . an ∈ L(G)},

16

and therefore 0 ∈ En[S] if and only if a1 . . . an ∈ L(G).
Next, let us note that each statement of the algorithm is executed in a con-

stant number of elementary steps. Indeed, the only data of non-constant size are
the lists Ej [A], and the implementation notes in the end of Algorithm 1 cover
each reference to these variables in the algorithm. Then the cubic time upper
bound for the execution time is evident.

Note that these are lines 14–15 that are responsible for cubic time, and each
of the rest of the statements is visited O(n2) times in any computation. Since, by
Lemma 4, on any unambiguous grammar lines 14–15 are visited O(n2) times as
well, this implies the algorithm’s square-time performance on any unambiguous
grammar. ut

D Making linear conjunctive grammars unambiguous

Trellis automata [1,7], also known as one-way real-time cellular automata, are
defined as quadruples (Σ, Q, I, δ, F), where Σ is an input alphabet, Q is a finite
nonempty set of states, I : Σ → Q is the initial function, δ : Q × Q → Q is
the transition function, and F is the set of accepting states. The computation
on a string a1 . . . an, where n > 1 and ai ∈ Σ, is arranged as a triangle of states
〈qij〉16i6j6n, where the bottom row is obtained from the symbols of the input
string as qii = I(ai), while each of the rest of the states is computed from two
of its predecessors as qij = δ(qi,j−1, qi+1,j). The string is accepted if q1n ∈ F .

Proof (Theorem 3). Construct a trellis automaton M = (Σ, Q, I, δ, F) generat-
ing L \ {ε}, where L is the language generated by the original grammar.

Let us use a known transformation of a trellis automaton to a linear conjunc-
tive grammar [12]. A grammar G = (Σ, {Aq | q ∈ Q} ∪ {S}, P, S) is constructed,
where P consists of the following rules:

S → Aq (for all q ∈ F) (10a)
AI(a) → a (for all a ∈ Σ) (10b)
Aδ(q1,q2) → Aq1c&bAq2 (for all q1, q2 ∈ Q and b, c ∈ Σ) (10c)

For this grammar it is known [12, Lemma 2] that LG(Aq) = {w |∆(I(w)) = q}
and L(G) = L(M). It will now demonstrated that this grammar is unambiguous.

The condition II satisfied. Suppose condition I is not met for some string
w ∈ Σ∗ and for some nonterminal Aq, that is, there exist two distinct rules,

Aq → Aq1c&bAq2 and (11a)
Aq → Aq3c

′&b′Aq4 , (11b)

such that w belongs to each of the four languages LG(Aq1c), LG(bAq2),
LG(Aq3c

′), LG(b′Aq4). Note that this implies b = b′, c = c′ and w = buc, where
bu ∈ LG(Aq1), bu ∈ LG(Aq3), uc ∈ LG(Aq2) and uc ∈ LG(Aq4). The latter,
according to the correctness statement of the construction [12, Lemma 2], in
turn implies ∆(I(bu)) = q1, ∆(I(bu)) = q3, ∆(I(uc)) = q2 and ∆(I(uc)) = q4.

17

Therefore, q1 = q3 and q2 = q4, and the rules (11) coincide, which contradicts
the assumption.

It remains to show that Condition I holds for the start symbol S. This
is so, because any languages LG(Aq) = {w | ∆(I(w)) = q} and LG(Aq′) =
{w |∆(I(w)) = q′}, where q 6= q′, are disjoint. ut

18

