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Abstract

A new generalization of context-free grammars is introduBedailean grammarallow the

use of all set-theoretic operations as an integral part of the formalism of rules. Rigorous
semantics for these grammars is defined by language equations in a way that allows to
generalize some techniques from the theory of context-free grammars, including Chomsky
normal form, Cocke—Kasami—Younger cubic-time recognition algorithm and some limited
extension of the notion of a parse tree, which together allow to conjecture practical appli-
cability of the new concept.
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1 Introduction

Context-free grammars are the most intuitively obvious syntactical formalism, and
their formal properties, such as the decidability and complexity, are close to perfec-
tion. However, their generative power often turns out to be insufficient for denoting
languages that arise in practice. Already Chomsky considered a more potent class
of transformational grammarspntext-sensitive grammarsut they proved to be
much too powerful — equivalent tdSPACE(n), — which, besides grave implica-
tions on the complexity of decision problems, makes them an intricate program-
ming language rather than a tool for describing syntax. The position of a language
specification formalism adequate to the intuitive notion of syntax thus remained
vacant.

Email addressokhotin@cs.queensu.ca (Alexander Okhotin).
L An earlier version of this paper was presented at the DLT 2003 conference held in
Szeged, Hungary, July 7-11, 2003, and its extended abstract appeareflsik, Z. Filop
(Eds.),Developments in Language ThepkNCS 2710, 398—-410.

Preprint submitted to Elsevier Science 19 March 2004



Consequently, the search for formalisms with good properties has been a subject
of efforts of formal language theorists for many years. Most of the attempts started
from context-free grammars and proceeded with extending them with extra con-
structs. Among the formalisms thus obtained, let us memtidexed grammargl],

in which a stack of special symbols is attached to any nonterminal, and context-free
derivation is modified to manipulate with these stacks; numerous typgsaof-

mars with controlled derivatiorfl1], where some sequences of applications of
context-free rules are disallowed by the means of a control langliagey in-
dexed grammar§l3], a computationally feasible subclass of indexed grammars;
tree-adjoining grammargl7], which define transformations of context-free parse
trees and contribute a new operation of inserting a subtree in the middle of an exist-
ing tree;head grammarswhich transform pairs of words and contain a wrapping
operation. The last three formalisms mentioned were eventually proved equivalent
[18,35], and an extensive parsing theory for them was developed.

One more recently introduced extension of context-free gramnsargunctive
grammars[21] feature an explicit intersection operation. While context-free rules
are of the formA — «, the rules in conjunctive grammars allow the use of con-
junction: A — a1&...&a, (n > 1). The semantics of these grammars can be
defined either by derivation [21], or using language equations with union, intersec-
tion and concatenation [22]. Several parsing algorithms for conjunctive grammars
with worst-case cubic time performance, including extensions ok} .a(d gener-
alized LR, were developed and implemented in a parser generator [23].

Conjunction is an intuitively obvious operation, as it denotes a set of strings that
satisfy several conditions simultaneously. Another related operation is negation,
which expresses that a string shoaotat have some property, and including it in the
formalism of rules is no less justified than including conjunction. The goal might
appear clear —to introduce a class of grammars with rules of the form

A—-a&.. . &apn&—6&... &6, (m+n>1) Q)

but meeting this goal presents certain difficulties. For instance, what to do with
clearly contradictory rules lik6€ — —S? Should such grammars be considered ill-
formed, what grammars are well-formed then, and how to define their semantics?

These difficulties associated with negation have already been encountered in the
literature, and no direct way to solve them has been found. In the formal first-order
theory over strings developed by Rounds [27], every variable is syntactically re-
quired to be within the scope of an even number of negations; this solves all the
problems at once, but at the expense of generality. And the mere fact that one
is forced to “exclude such cases for reasons of smoothness” [27] evelogica
systentlearly points at the semantical nontriviality of negation. In the related sub-
sequent work on negative range concatenation grammars, equipped with explicit
Boolean operations and reduplication, Boullier [4] simply dismisses these defini-
tion problems with a brief remark that “some grammars are inconsistent”.



This paper takes the challenge of adding syntactically unrestricted negation to
the context-free grammars, and doing it with the appropriate rigorousness. The
language generated by a grammar is defined using language equations with all
Boolean operations and concatenation [25]. Two semantics for language equations
are proposed in Section 2; one of them has a solid justification in terms of solu-
tions of equations, while the other relies upon an adaptation op#ngal fixed

point method [16,34] to generalize the notion of derivability from context-free and
conjunctive grammars [21]. The next Section 3 introduces Boolean grammars, us-
ing language equations as a formal semantics, and defines parse trees for them.
In Section 4, a normal form for Boolean grammars that naturally extends the bi-
nary normal form for conjunctive [21] and Chomsky normal form for context-free
grammars is proposed, and it is shown that every Boolean grammar can be effec-
tively transformed to this normal form. Two recognition and parsing algorithms
for Boolean grammars are developed in Section 5: one of them, operating in time
O(n?®) and spac®(n?), naturally generalizes the similar algorithm for conjunctive
grammars [21], which is in turn an extension of the Cocke—Kasami-Younger algo-
rithm for context-free grammars [36]; the other uses sp2@e (at the expense of
exponential time), thus proving that any language generated by a Boolean grammar
is deterministic context-sensitive. Section 7 summarizes the theoretical properties
of the language family generated by Boolean grammars, and compares it to other
families of languages.

2 Semantics for language equations

2.1 Language equations

Definition 1 (Language formula) Let X be a finite nonempty alphabet and let
X = (Xy,...X,) (n > 1) be a vector of language variables. Language formu-
lae over the alphabéet in variablesX are defined inductively as follows:

the empty string is a formula;

any symbol fronk is a formula;

any variable fromX is a formula;

if o and) are formulae, theriy - ¥), (p&)), (¢ V 1) and(—p) are formulae.

As in logic formulae, the parentheses will be omitted whenever possible, and the
following default precedence of operators will be used: the concatenation has the
highest precendence and is followed by the logical connectives arranged in their
usual order:—, & and V. If needed, this default precedence will be overridden
with parentheses; the dot for concatenation will be most of the time omitted. For
instance XY V —aX&aY means the same aX - Y) V ((—(a - X))&(a-Y)).

Note that all the mentioned binary logical operations, as well as concatenation, are



associative, and therefore there is no need to disambiguate formulae€ Yikeor
X VY V Z with extra parentheses.

The syntax of formulae has been defined; let us now define their semantics by inter-
preting the connectives with operations on languages, thus associating a language
function with every formula:

Definition 2 (Value of a formula) Let be a formula over an alphabet in vari-
ablesX = (Xi,...,X,). LetL = (L,,...,L,) be a vector of languages over
¥.. The value of the formula on the vector of languages, denoted asp(L),
is defined inductively on the structure of (L) = {¢}, a(L) = {a} for ev-
erya € X, X;(L) = L; for everyi (1 < i < n), ¥v&(L) = ¥(L) - &(L),
(¥ VEL) = $(L) UE(L), ($&€)(L) = (L) NE(L) and (=) (L) = £\ ¥(L).

The value of a vector of formulag = (¢, ..., ) on a vector of languages =
(Li,...,Ly,)is the vector of languages(L) = (p1(L), ..., pe(L)).

Definition 3 (System of equations)Let 3 be an alphabet. Let > 1. Let X =
(Xy,...,X,) be aset of language variables. Let= (¢4, ..., ¢,) be a vector of
formulae in variablesX over the alphabeX. Then

X1 = gOl(Xl,...,Xn)
: (2)
Xn = on(X1, ..., X})

is called a resolved system of equations oXein variables X. (2) can also be
denoted in vector form a&¥ = ¢(X).

A vector of language$ = (L4, ..., L,) is said to be a solution of the system (2),
if for everyi (1 < i < n)itholds thatl; = ¢;(L4, ..., L,). In the vector form, this
is denoted. = ().

Let us introduce some simple language-theoretic terminology that will be used in
the following. For a pair of languagds, L, C >* and another language C >*,

we say thatl,; and L, are equal moduld/ if L; N M = L, N M; this is denoted

L, = Ly (mod M). The relation of equality moduld/ is easily extended to vectors

of languages. A vector of languagéss a solution of a systemY = ¢(.X') modulo

M, if the vectorsL andy(L) are equal moduld/.

For every stringev € >*, y € ¥X* is asubstringof w if w = zyz for somez, z € ¥%,
y is aproper substringf w if additionally |y| < |w|. A languagel is closed under
substring if all substrings of everyw € L are inL.

Vectors of languages are partially ordered with respect to componentwise inclusion
as follows: (L, ..., L)) < (LY,..., L) ifand only if L; C LY foralli (1 < ¢ <



Example 1 The following system of equations over the alphabet {a, b}

X1 = _|X2X3&_|X3X2&X4 X3 = ((I \ b)Xg(CL V b) Vb
Xy =(aVb)Xs(aVb)Va Xy = (aaVabVbaVbb)X,Ve

has the unique solutiof{ww | w € {a,b}*}, {zay | z,y € {a,b}*, |z| =
ll}, {xby |2,y € {a, b}, x| = [y[}, {u|u € {a, b} n>0}).

If the first variable is interpreted as a “start symbol”, then the system of language
equations given in Example 1 can be said to denote the langliage| w €
{a,b}*}. This abstract language is often given as an example that captures the
notion of “reduplication”, which is viewed as an essential property of natural lan-
guages. The languadevw | w € {a,b}*} is co-context-free, but not context-free;
moreover, it is known not to be representable as a finite intersection of context-
free languages. Although conjunctive grammars can denote a very similar language
{wew | w € {a,b}*} [21], it is not known whethefww | w € {a,b}*} is a con-
junctive language, or, equivalently, whether it can be denoted using a system of
language equations containing concatenation, union and intersection, but not nega-
tion.

For language equations with negationly it was shown by Leiss [20] that there
exists a single language equation that has unique soldtioa {a" | Ik >

0, such thae®** < n < 232} which is a nonregular unary language. Using
symmetric difference, one can denote the languageal = {a" | Ik >

0, such thatr = 23% or n = 23*+2} [12], which is “almost”{a*" | n > 0}, one

more standard example of a non-context-free language. Let us define exactly the
latter language:

Example 2 Lety? abbreviatep - ¢. The system

S = (X&aX)V (- X&aX)V (Z&-aZ)V (~Z&aZ) (3a)
X = a(~(=(~X)?)?)? (3b)
Y = aa(=(=(=Y &T)*&T)*&T)? (3¢)
Z=YVaY (3d)
T=aal Ve (3e)

over the alphabet{a} in variables {S, X,Y,Z, T} has the unique solution
{a®" |n=0}{a"|Fk>=0: 2 <n <252 -1} {a"|Fk >0 2P <n
23k+3 9 andnis evenr}, {a" | 3k > 0: 231 < n < 233 — 1} (aa)¥).

The equation (3b) is from Leiss [20]; the equation (3c) uses the same technique to
construct the language of strings twice as long. The next equation (3d) adds a string
of odd length to each string in (3c), thus filling the gaps between the strings of even



length. NowsS is the union of two symmetic difference¥, A aX = {a" |3k > 0 :
n=2%orn=2%72YandZAaZ = {a" | Ik > 0: n= 2% orp = 233}
This union equals precisely®" | n > 0}.

2.2 Semantics of unique solution in the strong sense

In Examples 1 and 2, languages are defined as first components of unique solutions
of systems; it would be natural to use this as a semantics for language equations.
However, it has recently been proved [25] that the set of systems that have exactly
one solution is in the second level of the arithmetical hierarchy, and even worse,
the class of languages defined in this way is exactly the class of recursive sets. This
is definitely too much; in order to use language equations as a basis for a practical
language specification formalism, the source of this enormous expressive power
has to be located, and a natural way to limit it has to be invented.

To begin with, consider the following first-order characterization of systems with a
unique solution:

Theorem 1 (Criterion of solution uniqueness [25]) A system of language equa-
tions has a unique solution if and only if for every finite languagelosed under
substring there exists a finite languag€ O M closed under substring, such that
there exists at least one solution of the system modiflpand all the solutions
moduloM’ are equal modulad/.

So, if a system has a unique solution and one wants to check the membership of
a stringw in the components of this solution, then one can/deto be the set of
substrings ofv and look for a finite modulug/’ © M that satisfies the condition
formulated in Theorem 1. The existence of sudhis guaranteed by the theorem,

the domain of search is countable and effectively enumerable, and hé&nel
eventually be found. Once it is found, the solutions modulbcoincide modulo

M, which gives (modula\/) the unique solution of the system.

The only problem is that there is r@opriori lower bound on the cardinality of/’

and hence on the time of search. The characterization of recursive sets by unique
solutions of language equations [25] is based upon a peculiar way to extract the
language recognized by a Turing machine out of the language of its computations;
so, M’ can well contain computations of some Turing machine on all strings from
M. 1t is known that|M’| is a recursive function ofM| [25], but that can be an
arbitrary recursive function!

Taking note of the origin of unbounded complexity, let us impose an additional
restriction upon the systems of equations with a unique solution. We require that
a system has a unique solution modulo every finifeclosed under substrings’

in Theorem 1 is thus forced to be always equall\io making the search for it



immediate.

Definition 4 A system of language equations is said to be compliant to the seman-
tics of the unique solution in the strong sense if for every fihiteelosed under
substring the system has a unique solution modulo

As mentioned above, Definition 4 implies the condition of Theorem 1, and thus a
system compliant to this semantics indeed has a unique solution. This solution can
be computed modulo every finite by simply finding the unique solution modulo

M, which can be done by an exhaustive search.

This search is best conducted by increasiigstring by string. If the unique so-
lution modulo M is known, then the unique solution moduld U {«} can be
determined by tryin@" possible candidates:

Proposition 1 Let a system of equation$ = ¢(X) have a unique solution mod-
ulo every language closed under substring. LEbe a finite language closed under
substring, let: € >* be a string not inM/, such that all of its proper substrings are
inM.If L =(Ly,...,L,) (L; € M) is the unique solution moduld/, then the
unique solution moduld/ U {u} is of the form(L, U L', ..., L, U L} ) for some
Ly,....,L, C{u}.

It should be noted that one cannot effectively decide whether a system complies to
this semantics.

Theorem 2 The set of systems compliant to the semantics of unique solution in the
strong sense is cBE-complete.

The membership in c&E is witnessed by a nondeterministic Turing machine that
recognizes the complement of the problem by guessing a finite modluargd then
accepting if and only if the given system has none or multiple solutions madulo
Co-RE-hardness is proved by a standard reduction from the complement of the
Post Correspondence Problem, very similar to the proof dREehardness of the
solution existence problem [25, Theorem 2].

2.3 Semantics of naturally reachable solution

The previous section gives a well-formed semantics for language equations, which
associates a language with every compliant system. What it lacks, is an assign-
ment of a syntactical structure to strings, and this deficiency appears to be inherent.
Consider the system

X=X

Y =-Y&X @



It is easy to see that it has unique solut{att, @), its solution modulo every lan-
guage is unigue, and thus the system denotes the languiaggethe first compo-
nent. However, if one considengiysome particular string is in this language, the
only answer will be that the second equation would form a contradiction otherwise,
which explanation can hardly count as a syntactical parse.

In derivation-based formal grammars, syntactical structure is giveshebyation

trees and thus the process of proving a string to be in the language is linked to
producing its parse. In terms of language equations, this is the semantics of the least
fixed point of a system of equations with union [7,14] or with union and intersection
[21,22]. This essentially relies on the monotonicity of the operations involved.

Can one extend derivability for the nonmonotone negation? A similar problem has
been encountered in restricted applied logics, and a solution was proposed by Vardi
[34, Section 4]. In loose terms, his approach can be described as trying to compute
the solution iteratively, using a certain method that always converges to the least
solution if negation is not used. In the presence of negation, the process is not
guaranteed to terminate; if it does terminate, it converges to a solution, but not
necessarily to the least one. This method became known in the literature under the
name of gpartial fixed poin{{16].

Applying a variation of this method to the language equations, the inductive ap-
proach of Proposition 1 is slightly modified to define the parse-oriesgehntics
of the naturally reachable solution

Definition 5 (Naturally reachable solution) Let X = (X)) be a system of equa-
tions. A vector. = (L4,...,L,) is called a naturally reachable solution of the
system if for every finite modulud closed under substring and for every string
u ¢ M (such that all proper substrings afare in M) every sequence of vectors of
the form

U ACIE (5)

(where L®) = (L, N M,...,L, N M) and every next vectot.t+" =£ L in
the sequence is obtained from the previous veé&tér by substituting somg-th
component withp, (L) N (M U {u})) converges to

(L1 N (M U{u}),..., Ly N (M U{u})) (6)
in finitely many steps regardless of the choice of components at each step.

Note that such a sequence can only converge to a solution madulo{u} —
otherwise further transformations would be applicable to (6), and hence (5) would
never actually converge to it.

Lemma 1 (Consistency of Definition 5)A naturally reachable solution is a solu-
tion. A system cannot have more than one naturally reachable solution.



PROOF. Since a naturally reachable solution is a solution modulo every finite
M closed under substring, it is known to be a solution [25, Lemma 2]/,If.”

both satisfy Definition 5, then they can be proved to coincide modulo every finite
M closed under substring, inductively on the cardinalityMf indeed, if L’ =

L” (mod M), then the sequence (5) should converge to a single vector modulo
M U {u}, and thereforel’ = L” (modM U {u}). Hence [25, Proposition 1],
L'="L". O

Also note that all vectors forming the sequence (5) are equal madu{because

the initial term is a solution moduld/), and therefore the derivation is confined to
transforming Boolean vectors of the membership of the components, similarly

to Proposition 1. It follows that a sequence (5) cannot be longer2habecause
otherwise it will go into an infinite loop and consequently violate the definition.
Thus the naturally reachable solution modulo every finite language can be com-
puted by following Definition 5 and carrying out the derivation (5), repeating this
inductively on the cardinality of a modulus.

According to this semantics, some systems with multiple solutions become well-
formed. Consider

(7)

Although (L, L) (L C ¥*) are all solutions of (7), one of them is the naturally
reachable solution £*, @) — and this distinction is quite deserved: indeed, from
the intuitive point of view)Y can “derive” nothing, and hencE denotes-*.

While the semantics of the naturally reachable solution does not have the same clear
theoretical justification as the semantics of the unique solution in the strong sense
has, the new semantics has a pleasant property of being “backward compatible”
with conjunctive and context-free grammars.

Theorem 3 If a systemX = ¢(X) contains no negation, then its least solution is
naturally reachable.

PROOF. It is known that such a system has least solution [22]; the proof is
a straightforward adaptation of the fixed point techniques used for the context-
free grammars [2], showing that the sequefig&(2, ..., @)}3°,, monotonely in-
creases and converges to the least solution of the system. thethe limit of this
sequence, and let us prove that for evéfyandu it satisfies Definition 5. Fix a
sequence (5).

The first thing to prove is that the sequence (5) is increasing,/i®.,< LY
for all 7+ > 0. This is proved by induction om, and it suffices to show that if



u e LY, thenu € ¢;(LY). Indeed, ifu € L\, thenu was added at some step
i (0 < i \ i), which means that € ¢;(L%~V). Sinceiy — 1 < i < i + 1,
L= < L holds by the induction hypothesis, and hepgéL(0~Y) < ¢, (L)
by the monotonicity ofy;. Thereforeu € ¢;(L®).

Thus the sequence (5) converges to some langliagehich must be a solution
modulo M U {u}. Let us take this’ and iteratively applyy to it, obtaining a
sequence* (L)}, such thatpo*(L') = L' (modM U {u}) for all & > 0
(established by an induction d@n. This sequence is monotone, i.e.,

I'sol) (L) 5. <" (L)< (8)

and hence converges to some languagg ¢*(L') = L”, which equald.’ modulo
MU{u}. L" can be proved to be a solution of the system using the standard method
based upon applying to each term of (8), showing that the resulting sequence
converges tap(L”) (the lattice-theoretic continuity af is essentially used here),
and then observing that this sequence is the same as (8), and thus their respective
limits, L” andy(L"), have to coincide. Now, sinckis the least solution], < L”,
and therefore

LxL'"=L (modMU {u}) 9)

Because the sequen{xek( : @)} converges td,, there exists a numbég >
0, such thatp*o*+*(&, ,@) (modM) for all & > 0. Let us prove that

(@, )= LW (forallk > 0) (10)

Induction on k. The basis casek = 0, holds becausey™(2,...,2) =
L (modM), L©® = L (modM) andL®® = @ (modX*\ M). For the induc-
tion step, leti be the component modified in th{é + 1)-th element of (5), and
denotel = o**(z, ..., @); then:

A2, 8) =(er(D); - i (L), @il L), pia (D), on(D)) =

(f/l,.. z 1,@1( ) LZ+17"'7‘£TL>%
(Lgk)a ER) L(ﬁ)la sz(L(k))a Lgfr)la cee 7L(k)) - L(k+1)7

3 n

where the first relation is based upon the monotonicity@f(@, ..., @)}, while
the second relation employs the induction hypothesis. The claim (10) is proved.

By (10), L = ¢t (z,...,@) = L*¥) = [/ (modM U {u}), where ¥’
is the number of the last element of (5). This, together with (9), proves that
L'=L(modMU{u}) O

The semantics of the naturally reachable solution suffers from the same unfortu-
nate undecidability as the semantics of the unique solution in the strong sense. The
following result can be proved exactly as Theorem 2.
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Theorem 4 The set of systems compliant to the semantics of naturally reachable
solution is coR E-complete.

It should be noted that if a system complies to both semantics, then it defines the
same vector under both semantics, because the solution is unique by the first se-
mantics, and therefore the second semantics cannot define any other solution. Thus
they do not contradict each other, but the classes of systems compliant to the two
semantics are easily seen to be incomparable: consider (4) and (7). Later on it will
be proved that these two semantics nevertheless define a single class of languages.

3 Definition of Boolean grammars
3.1 Grammars

The class of Boolean grammars can now be defined, using systems of language
equations as formal semantics.

Definition 6 A Boolean grammar is a quadrup@é = (X, N, P, S), whereX and
N are disjoint finite nonempty sets of terminal and nonterminal symbols respec-
tively; P is a finite set of rules, each of the form

A— k.. &an&—0i&.. &6, (m+n>1, a5, € (EUN)Y), (11)

where objects of the form — «; and A — —3; are called conjuncts, positive and
negative respectivel\§ € N is the start symbol of the grammar.

The right hand side of every rule is a formula, and a grammar is interpreted as a
system of equations ov&rin variablesN of the form

A= \/ ¢ (forall AeN) (12)

A—peP

The vector of languages generated by a grammar is then defined using either
the semantics of unique solution in the strong sense or the semantics of naturally
reachable solution (see Sections 2.2 and 2.3 respectively).

For every formulap, denote the language of the formulg () = ¢(L). Denote
the language generated by the grammardé/) = Lq(S).

Every conjunctive grammar is a Boolean grammar, in which every rule (11) con-
tains only positive conjuncts, i.en, > 1 andn = 0; itis compliant to the semantics

of the naturally reachable solution by Theorem 3. In particular, every context-free
grammar is a Boolean grammar, in which every rule (11) contains a single positive
conjunct (n = 1, n = 0).

11



Consider the system of equations from Example 1, and let us use its general idea to
produce the following Boolean grammar:

Example 3 LetG = ({a,b},{S, A, B,C, X}, P, S) be a Boolean grammar, where
P consists of the following rules:

S — —AB&BA&C A— XAX B—-XBX (C—-XXC X-—a

A—a B —b C—e¢ X —b

ThenL(G) = {ww | w € {a,b}*} with respect to either of the two semantics.
The system from Example 2 can be written as a grammar in a similar way:

Example 4 Let G = ({a},{S, X, X", X", X" Y, Y Y" Y" Z T} P,S) be a
Boolean grammar, wher® contains the rules

S — X&—aX X — aX'X' Y — aaY'Y’ Z =Y
S — " X&aX X' — - X"X" Y — =Y"Y'&T Z —aY
S — Z&—-aZ X" — = X" X" Y — 2Y"Y"&T T — aaT
S — ~Z&aZ X" — =X Y" — =Y&T T — ¢

ThenL(G) = {a*" | n > 0} under both semantics.

Although Boolean grammars, unlike context-free and conjunctive grammars, are
defined using language equations, and the arrow in their rules has lost its original
interpretation of string rewriting, they nevertheless have a lot in common with these
classes of transformational grammars. In fact, much of the theory of context-free
grammars can be equally developed using language equations over the algebraic
operations of union and concatenation [19], and now somewhat similar methods
shall be developed for a formalism that has neither string rewriting nor semiring
theory behind. The first thing to be generalized is the notion of a parse tree.

3.2 Parse trees

The reason for introducing the semantics of the naturally reachable solution was
to associate a syntactical structure with sentences. Using Boolean grammars, this
association will now be defined.

LetG = (3, N, P, S) be a Boolean grammar compliant to this semantics, and sup-
pose without loss of generality that every rulefincontains at least one positive
conjunct (every grammar can be converted to this form by adding a new nontermi-
nal that generates*, and by referring to it in every rule). Let= | N|. A parse tree

12



of a stringw € Lg(A) (A € N) from A is an acyclic directed graph with shared
leaves that has a terminal leaf for every symboliinDefine it inductively on the
length ofw.

Let L(O, ..., L) be a sequence of vectors satisfying Definition 5 for a strirand
a modulusM. For allp (0 < p < 2), let L® = (L, ..., L®). Let us construct
the sequencé(t&p), . ,t(P))};:O of vectors of trees corresponding to the sequence

of vectors of languages. For the initial term of the sequence, defirtéo)alb be
empty. For every next-th term, if the stringu is added to someé-th component,
then there should exist a rule

Ay — k.. &am&—Bi& ... &6, (13)

such thatw € «;(L®~Y) for all i andw ¢ 3;(L~V) for all 5. In the construction,

the negative conjuncts are completely ignored and the positive ones are used. The
goal is to construct a tree with a root labeled with (13), which will hame+. . . +

|, | descendants corresponding to all symbols from these positive conjuncts.

For eachn; = s, ... s, there are descendants to add. There exists a factorization
u = v;...v, such that; € s;(LP~Y) for all j. Fors; € ¥, a leaf labeleds; is
simply added. Fos; € N, if the corresponding; is shorter than, then, by the
induction hypothesis, a parse treevpfrom s; is known, and hence can be used as
a subtree. If; is of the same length ag thenv; = v, and therefore: € Lg.”*l).

Then this subtree is already storedtj’h‘l) and can now also be connected to the
new root.

The subtrees collected for all positive conjuncts have the same set of terminal leaves
— those corresponding to the symbols frano the corresponding leaves in these
subtrees are identified (i.e., glued together), connected to a single root and the newly
constructed tree is placed ﬁﬁ). In the endt(j) contains the required tree.

A-a A 018&..&00 Ao 01&..&0 & B1&...& By
o o o o o o o o
7 a i Om az Om
(@ (b) (©)
w w w

Fig. 1.Parse trees in (a) context-free (b) conjunctive (c) Boolean grammars.

Note that, in view of Theorem 3, this technique is a generalization of the tree con-
struction method for conjunctive grammars, which in turn generalizes the context-
free case (see Figure 1). For grammars that use negation as the principal logical
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connective, such as those from Examples 3 and 4, this method does not have much
sense, because the resulting tree contains no meaningful information. But if nega-
tion is used sparingly, such trees can contain enough “positive” information on the
syntactic structure of the string according to the grammar.

4 Normal form

One of the most important context-free techniques to generalize is the Chomsky
normal form and an effective algorithm for transforming a grammar to this normal
form. All of this has been generalized for the case of conjunctive grammars [21]
without any major difficulties, simply by extending the proof techniques due to
Bar-Hillel, Perles and Shamir [3], based on remowinwiles and then unit rules; a
further generalization of the method is presented in this section.

In the case of Boolean grammars, the proof methods substantially deviate from the
prototype and are technically more difficult, but the main schedule of removing
epsilon rules first and unit rules next is preserved.

4.1 Epsilon conjuncts

Given a Boolean grammar that generates a vector of languages$Li,..., L,)

under one of the mentioned semantics, the goal is to construct a Boolean grammar
that generated’ = (L, \ {¢},..., L, \ {¢}) under the same semantics. As in the
cases of context-free and conjunctive grammars, this is being done by removing
the so-callegpositive epsilon conjunctsf the form A — <. The case of Boolean
grammars is more complicated, because positive epsilon conjuncts are not the only
way of generating the empty string: in fact, putting negation over any formula that
preservesg-freeness immediately creates it. In order to baentirely, the formal
constuction includes megative epsilon conjuncif the formA — —e in every rule.

LetG = (X, N, P, S) by a Boolean grammar, and 1&f = (L5) 4cy be a solution
modulo{¢} of the corresponding system. With respectGand L¢, definep(«)
(for eacha € (X U N)*) to be the set of all nonempty strings= s, ... s (k > 1,
s; € XUN), such thaty = vys11v1 85 . .. vg_1Sk1, fOr somevy, . . ., v, € Nullable*,
whereNullable C N denote A | e € L5 }.

Lemma?2 LetG = (X, N, P,S) be a Boolean grammar, let* be a vector of
languages, lep be defined with respect to these. ILet.’ be vectors of languages,
such thatZ = L' (modX*), L = L¢ (mod{e}) and L' = @ (mod{e}). Then, for
everyw € ¥ anda € (XU N)*, w € a(L) holds if and only ifw € o'(L') for
somed’ € p(w).
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PROOF. If a = ¢, thenw ¢ «(L) andp(a) = @; the statement trivially holds.
Leta = s,...s,, Wheres; € XU N andl > 1.

& If w € a(L), thenw can be factorized a® = u; ...uy,, Whereu; € s;(L)
foralli (1 < i < /). Letl < i < ... < i, < ¢ be the numbers of all
nonempty factors«;, # ¢); k > 1, becausev # c. For every empty factor
w = ¢ (t ¢ {i;}) we know thats € s,(L) and therefores, € {A|ec € L}
ands; € {A|e € L5}. SO, = S1...8i,-1Si,Siy41 - - - Sip—15i, Sip+1 - - - S¢, Where
S1 ... 8ij—1s8ij41 - - - Sig—1s -+ -3 Sip+1-- - S¢ € Nullable*. and thusa = s;,...s;,
is in p(cr) by the definition ofp. On the other hand, since every (1 < j < k)
is nonemptyu;, € s;, (L) impliesu;, € s;,(L'). Thereforew = u;, ... u;, €
si (L) .8 (L)) = a/(L)).

© Letw € (L), whereo/ € p(a). Let o/ = s;...s,. Then there exists
a factorizationw = wy...u, Wherew; € s;(L'). Since L’ is e-free, all the
strings u; are nonempty, and thereforg € s;(L). By the definition ofp(«),
a = YS111S2. .. Vk_1SkVk, Wherewy,...,vy € Nullable®, i.e., e € v;(LF)
and hences € y;(L). Consequentlyw = e -uj -+ ... € up-€ €
vo(L)s1(L)vi(L) ... vpg1(L)sk(L)vg(L) = a(L). O

Construct a Boolean gramméf = (X, N, P’, S), such that for every rule
A— a&. . &a&—0& ... &0, (14)

from P, where p(ci) = {pa,. ..,y (ki = 0; for all 4) and p(3;) =
{vj1, ..., vy, } (L = 0; for all ), the setP’ contains the rule

A— /thl& cee &,Umtm&ﬁl/ll& . &_‘Vlll& R &ﬁl/nl& R &ﬁljun&_\E (15)
for every vector of numberg., ..., t,,) (1 < t; < k; for all 9).

Lemma 3 LetG = (X, N, P, S) be a Boolean grammar. Léf be a solution mod-
ulo {e} of the system corresponding €o Let the Boolean grammat’ be con-

structed out of7 and L by the method above. Lat = ¢(X) and X = ¢/(X) be

systems of language equations corresponding emd G’ respectively.

Let L = (Ly,...,L,) (WhereL; C ¥* andn = |N|) be a vector of languages

that equals.® modulo{c}. Let L' = (L1 \ {e},..., L, \ {¢}). Thenyp(L) =
¢'(L') (modXT).

PROOF. It has to be proved that for every nonempty stringnd for everyt-th
componentw € (L) ifand only ifw € ¢} (L').
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w € (L) if and only if there exists a rule of the form (14) for the¢h nonterminal

in the original grammar, such that € «;(L) for all  andw ¢ 3;(L) for all 5. By
Lemma 2, this holds if and only if there exists a rule of the form (14) in the original
grammar, such that for everyth positive conjunct there exisis, € p(a;), such
thatw € p;,(L'), and for everyj-th negative conjunct and for every, € p(5;) it
holds thatw ¢ v;,(L’). By the construction of the new grammar, this is equivalent
to the existence of a rule of the form (15) in the new grammar, such that all of its
positive conjuncts and none of its negative conjuncts produasden evaluated on

L'. The latter statement is true if and onlyife ¢;(L'). O

Lemma 4 Under the conditions of Lemma 3, for evévy closed under substring,
L is a solution of the first system if and onlyifis a solution of the second system.

PROOF. § ltis known thatl’ = L (modX*). L = ¢(L) (mod M), because.
is a solution of the first systemp(L) = ¢/(L') (mod%™) by Lemma 3. All these
equalities hold modul&™ N M as follows:

L'=L=¢(L) =¢(L) (mod M\ {e}), (16)

which implies that.’ = ¢/(L") (mod M \ {¢}). SinceL’ is anc-free vector by def-
inition, while ¢/(L') is e-free because every, is a disjunction of expressions (15)
each containing a negative epsilon conjunct, in follows fliat ©'(L’) (mod{c})
as well, and one can conclude tHatis a solution ofX = ¢'(X) modulo)/.

© Again, L = L' (modXt). Sincel’ is a solution of the second system modulo
M, L =¢'(L') (modM). By Lemma 3p(L) = /(L") (modX™). This implies

L=1L"=¢ (L) =¢(L) (modM\ {c}) (17)

On the other hand, = L¢ (mod{c}), and therefore. satisfies the first system
modulo{c}. This proves thaL is a solution of the first system moduld. O

Theorem 5 For every Boolean grammat = (X, N, P,S) compliant to the se-
mantics of the unique solution in the strong sense there exists and can be effectively
constructed a Boolean grammat compliant to the semantics of the unique solu-
tion in the strong sense, such thatG') = L(G) \ {¢}.

PROOF. Let L¢ be the unique solution of the system corresponding tmodulo
{e}, and construct the gramméf out of G and L* as specified above.

Existence of solutionLet . = (L4, ..., L,) be the unique solution of the system

corresponding t@7. ThenL = L (mod{e}), L' = (L1 \ {¢},..., L, \ {e})isa
solution of the second system by Lemma 4, and its first componéntis \ {c}.
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Uniqueness of solution modulo every languagédf the second system had two
distinct solutions modulo som#/, they would differ modulo) \ {¢}, and by
Lemma 4 that would imply that the first system also has two distinct solutions
modulo M, which is untrue. O

A similar statement can be proved for the semantics of the naturally reachable so-
lution. First, an auxiliary result.

Lemma 5 Let the grammars comply to the semantics of the naturally reachable
solution, and letZ® be this solution moduldc}. Let G’ be constructed out off
and L¢ as specified above. L&t be a finite language closed under substring. Let
all proper substrings ofv ¢ M be inM. LetL = (Ly,...,L,) (L; € M U {w})

be a vector that equalt® modulo{c}.

ThenL can be derived (in the sense of Definition 5) from N M, ..., L, N M)
with respect ta= in i (: > 0) steps if and only if L, \ {¢},..., L, \ {¢}) can be
derived from((Ly N M)\ {e},..., (L, N M)\ {€}) with respect ta7’ in i steps.

PROOF. Induction oni. The basis, 0-step derivation, is trivial. LEt= (X ) and
X = ¢/(X) be the systems corresponding to the grammaandG’. If a vector is
derivable with respect t&' in ¢ + 1 steps, it is of the form

(Ly,...,¢;(L), ..., Ly), (18)

whereL = (L4,...,L;,...,L,) is derivable with respect t&' in i steps. By the
induction hypothesis, this implids = (L, \{¢},..., L;\{e},..., L, \{e}) being
derivable with respect t6” in i steps. Then

(Ll\{6}7‘"’90;‘([/)""7[’”\{5}) (19)

is derivable with respect t@” in i+ 1 steps. Similarly, the derivability of (19) faF’
implies the derivability of (18) foli'. ¢ ¢ (L) is evident from the construction
of ¢. It remains to prove that these two vectors are equal mo#dlofor the
components other thajthis is given by the induction hypothesis, white(L) =
¢5(L') (mod%*) by Lemma 3. O

Theorem 6 For every Boolean grammat = (3, N, P, S) compliant to the se-
mantics of the naturally reachable solution there exists and can be effectively con-
structed a Boolean gramma¥’ compliant to the semantics of the naturally reach-
able solution, such that(G’) = L(G) \ {e}.

PROOF. Let L = (Lq,...,L,) be the naturally reachable solution @f let L°
be L taken modulo{c}. ComputeL® and construcG’ with respect to it. It has to
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be proved that the vectdr = (L, \ {¢},..., L, \ {¢}) is the naturally reachable
solution ofG’. The proof is an induction on the cardinality of a finite modulus, as in
Definition 5. Forg, it clearly holds. Consider an arbitrary finite languadeclosed
under substring, and a string¢ M, such that all proper substringsofare in\/.

L (mod M) derivesL (mod M U{w}) with respect ta@~ by the assumption. Hence,
by Lemma 5,L’ (mod M) derivesL’ (mod M U {w}) with respect ta=".

It remains to show that nothing else can be derived with respeGt.t8uppose,

L’ (mod M) derives somd.” = (L{,..., L") (LY € M U{w}), such thatl.” #

L' (modM U {w}). Then, asL” is clearly e-free and equal td.’ modulo M,

L” # L' (mod{w}). Hence, by Lemma 5, it is possible to derive, with respect to
G, some vector not equal to (mod M U {w}), which contradicts the compliance
of G to the semantics of the naturally reachable solution.

4.2 Unit conjuncts

Conjuncts of the formd — B andA — —B are calledoositiveandnegative unit
conjunctsrespectively. They will be collectively referred to asit conjunctsand
our next challenge is to devise an algorithm to get rid of them.

LetG = (X, N, P, S) be a Boolean grammar compliant to one of the two semantics,
such that ¢ Ls(A) foreveryA € N. Let M C ¥* be a finite language closed
under substring and let ¢ M be a string, such that all of its proper substrings
areinM. LetL = (Ly,...,L,) be a solution of the system moduld and let
L'=(L,uly,...,L,U L) beavector, such thdt), ..., L, C {w}. Note that

the membership ob in «(L’) depends orl. alone ifa ¢ N and on{L;} alone if
a=AeN.

Let R C (X U N)*\ N be a finite set of strings that contains a stringt N

if and only if there is a conjunch — ~ or A — — in the grammar. A fixed
solution modulo}M defines a certaiassignment to conjuncta mappingfy, . .. :

R — {0,1}, such thatfy ., (o) = 1if and only if w € «(L). Once the non-

unit conjuncts are assigned values dependent owhat remains is a system of
Boolean equations, which contains all the information necessary to determine the
membership ofv in the solution (unique or naturally reachable) modaJ {w}

(as can be inferred from Proposition 1 or Definition 5). Let us put this formally.

Definition 7 LetG = (X, N, P, S) be a Boolean grammar and let¢ L (A) for

all A € N. LetM be a finite modulus closed under substring and let all proper
substrings ofv ¢ M be in M. Let L be a solution moduld/ of the system corre-
sponding taG.

Define R (with respect toG) and f : R — {0,1} (with respect toM, L and
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w) as above. Take the set of Boolean variables (z4,...,x;) (k = |N|), and
definef’ : RUN — {0,1,zy,...,x;} as follows: f'(a) = f(a) for o € R and
f(Xi) = .

Now define a system) = ¢; ( ) (1 < i < k) of k Boolean equations: for the right
hand sidep; = V(a1& . .. &am&—'ﬁl& ... &=p,) of every equation in the system
of language equations corresponding @ let <p{ in the new system of Boolean
equations ba/(f'(an)& ... &f (am)&—f"(B1)& . .. &= f"(5n)).

Proving the following two statements is just the matter of reformulating the nota-
tion.

Lemma6 Let G, M, w, L, f andx = ¢/(z) be as in Definition 7, leb
(b1,...,b;) be a Boolean vector. Theh, = (L; U{w |ifb, = 1},..., Ly
{wlif b, = 1}) isasolution ofX = p(X) if and only ifb is a solution ofr = <,0f(

VCIl

Lemma?7 Let G, M, w, L, f andx = /() be as in Definition 7, let =
(by,...,bx) be a Boolean vector. Theh, = (L; U{w |ifby = 1},..., Ly U
{w]if by = 1}) can be derived fronk using the method of Definition 5 if and only if
b can be derived fron0, . .., 0) usmg the following rulex = (xl, ey Ty TE)
can be followed by’ = (:El,...,goz( ),...,xx), provided thaty! (z) = —u;.

Now, given(, let us construct an equivalent grammar free of unit conjuncts. The
idea of the construction is to precompute processing of unit conjuncts for ev-
ery possible assignment to non-unit conjuncts. For every assignment to conjuncts
f: R — {0,1} (there are2!®l such assignments), determine the unique Boolean
vector using the method of Lemma 6 or Lemma 7. If the method fails — i.e., none
or multiple solutions are found, — then, taking into account that the grammar is
assumed to be compliant to the chosen semantics, this means that this situation is
artificial and could never happen on a real modulisind stringw. If the method
succeeds and produces a 88tC N of nonterminals that evaluate to true, then for
every nonterminall € N’ construct a rule

A—-m&. . &u&—-&... &, (20)

which listsall strings fromR, wheref () = ... = f(u) = landf(vn) =... =
f(v) = 0. Note that the seR is common to both grammars.

Lemma 8 Let G be a Boolean grammar compliant to the semantics of the unique
solution in the strong sense (naturally reachable solution, resp.)M.etv and f

be as in Definition 7. Lef~’ be as constructed above. L& = ¢(X) and X =
(X)) be the systems correspondingtcand G’ respectively. Lef be the unique
(naturally reachable, resp.) solution moduld of X = p(X).

Then the system = v/ (z) is of the formw; = b; (1 < i < k, b; € {0,1}), and the
Boolean vectob = (b4, ..., b;) is the solution ofr = gof( ) (unigue or reachable
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in the sense of Lemma 7, resp.).

PROOF. The systemrz = ¢/(z) has unique solutiorib,, ...b;) by Lemma 6
(reachable solution by Lemma 7, resp.). One has to provepﬁwai b; for all 7.

Let b; = 1 for thei-th nonterminalAd. Then, by the construction @¥’, there is a
rule (20), such thaf(u;) = ... = f(u) = landf(v,) = ... = f(r) = 0. Hence,
Vh = (1&... &1&-0& ... &-0) V... = 1.

If b; = 0, then each rule (20) foA is constructed with respect to some# f.
Since{;,v;} is the exhaustive list of the common domain pndg, f # ¢
implies f(1;)=0 or f(v;) = 1 for somei, j and thus the disjunct corresponding to
(20) is0. The overall formulais), = (0&...) V...V (0&...)=0. O

Theorem 7 Let G = (3, N, P,S) be a Boolean grammar that generates an

free vector of languages under the semantics of unique solution in the strong sense
or under the semantics of naturally reachable solution. Then there exists and can
be effectively constructed a Boolean gramnddr = (3, N, P’,.S) without unit
conjuncts, such that’ generated. underboth semantics.

PROOF. Construct the grammar as above. Dét= ¢(X) and X = ¢(X) be
the systems corresponding@andG’ respectively. It is claimed that the solution
(unigue in the strong sense or naturally reachabley of p(X) is both the unique
solution in the strong sense and the naturally reachable soluti&n-ef)(.X). The
proof is an induction on the cardinality of a modulus, trivially true dar

Consider the modulud/ U {w}, where all proper substrings af are in M. Let

L = (Ly,..., L) be the unique (naturally reachable, resp.) solutioXcf p(X)
modulo M, and definef : R — {0, 1} with respect toM, w and . By Lemma

6 (Lemma 7, resp.), the unique (naturally reachable, resp.) solutiah-efy(X)
moduloM U{w} is of the formL;, = (L, U{w]if by = 1}, ..., LyU{w]if by = 1}),
where the Boolean vector= (b4, ..., b;) is the unique (reachable in the sense of
Lemma 7, resp.) solution af = ¢/ ().

According to Lemma 8, the system= v/ (z) is of the formz; = b; (1 < i <

k), and thusb is its unique solution and is easily seen to be naturally reachable.
Therefore, by Lemma @, is the unique solution ok’ = (X)) moduloM U {w};
similarly, by Lemma 7, the definition of naturally reachable solution is satisfied for
X =¢(X), M, w and the naturally reachable solution¥f= ¢(X). O

Corollary 1 The classes of languages defined by Boolean grammars under the se-
mantics of the unique solution in the strong sense and under the semantics of the
naturally reachable solution coincide.
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4.3 The binary normal form

Finally we come to a generalization of the context-free Chomsky normal form.

Definition 8 A Boolean grammatz = (3, N, P,S) is said to be in the binary
normal form if every rule inP is of the form

A— B Ci& ... &BnCr&—~DiFri& .. . & D, E,&—e (m>1,n>0) (21a)
A—a (21b)
S — ¢ (only if S does not appear in right hand sides of rules) (21c)

As in the context-free and conjunctive case [21], the transformation of a grammar to
the binary normal form can be carried out by first removing the epsilon conjuncts,
then eliminating the unit conjuncts, cutting the bodies of the “long” conjuncts by
adding extra nonterminals, and, if the original grammar generated the empty string,
by adding a new start symbol with the rule (21c).

Theorem 8 For every Boolean grammat = (X, N, P, S) that generates some
languagelL under some of the two given semantics, there exists and can be effec-
tively constructed a Boolean gramméaf = (X, N’, P, S") in the binary normal

form that generates this languadgeunder both semantics.

Note that the effectiveness of the transformation does not extend to checking
whether the original grammar actually complies to the semantics. The latter prop-
erty, as we already know, is undecidable.

5 Recognition and parsing

5.1 A cubic-time algorithm

Binary normal form allows to devise a cubic-time recognition and parsing algo-
rithm for every language generated by a Boolean grammar. This algorithm is an
extension of a similar algorithm for conjunctive grammars [21], which in turn gen-
eralizes the well-known Cocke—Kasami—Younger algorithm [36] for context-free
grammars in Chomsky normal form. The idea is to compute the sets of nontermi-
nals deriving all substrings of the input string, starting from the shorter substrings,
continuing with the longer ones, and ending with the whole string.

LetG = (X, N, P,S) be a Boolean grammar in the binary normal form. ket
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aj ...a, € X7 (n > 1) be the input string. For all < i < j < n, define:
ﬂ,j:{A|A€N, Aiy1 ... Q5 GLg(A)} (22)

The actual task is to determine whetltee T ,,. For this purpose, the algorithm
computes alll; ; starting fromTy, ,, ..., 7T,_1, and ending withj ,,, where every
T; ; is obtained out of; , T}, ; (1 < k < j).

The following result is instrumental in reducing problems to subproblems:

Lemma9 Forall i,j (j —i > 2), a;+1...a; € L(B)L(C) if and only if

j—1
(B, C) S U T;,k X de‘ (23)

k=i+1

PROOF. a;y1...a; € L(B)L(C) if and only if there exists a numbér (i <

k < j), such thata; 1 ...a;, € L(B) andayy,...a; € L(C); by (22), this is
equivalent toB € T, andC € T} ;, or (B,C) € T,y x T} ;. Sincee ¢ L(B)

ande ¢ L(C), the statement holds if and only if therefigi < k£ < j), such that
(B,C) € T;; x Ty j, which is equivalent to (23). O

Algorithm 1 LetG = (X, N, P, S) be a Boolean grammar in the binary normal
form. For each? C N x N denote

f(R) ={A| A € N, there exists a “long” rule (21a), such that

(Bs;Cs) S Rand(Dt,Et) ¢ R for all s, t (1 <s<m, 1<t n)} (24)

Letw = a;...a, € X* (n > 1) be the input string. For alf, 7, such tha) < 7 <
J < n, computer; ;.

fori=1ton
ﬂ_17¢:{A‘A—>ai€P}
ford=1ton
fori=0ton —d
{
letj =i+d
letR=2(RCNxN)
fork=i+1toj—1
R=R U T} x Ty,
: Ti; = f(R)

To compute eaclf; ;, the algorithm doesonjunct gatheringi.e., collects the data

for checking (23); this is done in the inner loop, and the set of pairs is accumulated
in R. Then (24) is computed in constant time. Since there(Are?) entries to
compute, the time complexity is thai(n?).
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Theorem 9 Algorithm 1 is correct, i.e., every assignment to a varidbleassigns
the value (22).

PROOF. a € L(A) if and only if there is the ruled — «; none of the long rules
(21a) can produce, because ¢ L(B;) ande ¢ L(C}), and hence there are no
strings of length 1 in(B;C}).

ai+1...a; € L(A) if and only if there exists a rule (21a), such that, . ..a; €
L(Bs)L(Cy) forall1 < s < manda;;;...a; ¢ L(Dy)L(E;) forall 1 <t < n.

By Lemma 9, this is equivalent tB,, C,) € Ul_i,, Tix % Tx; and(D,, E;) ¢
UiZi1 Tox x Tij respectively.

For all i, j, the algorithm compute® = j_i,, Tix x Ty, In this notation,

the statement can be equivalently rewritten as follows: there exists a rule (21a),
such that(B,,Cs) € Rforall s (1 < s < m)and(D;,E;) ¢ R for all ¢

(1 <t < n). Using the notation (24), this holds if and onlyAf € f(R). Thus

the only assignment t&; ; sets it precisely to the set of nonterminalssuch that
air1...a; € L(A). O

Once this algorithm determines that a string is in the language, the faplean

be used to construct its parse tree (as defined in Section 3.2). This is done in the
same way as for the Cocke—Kasami—Younger algorithm: a recursive procedure
parse(inti,int j, A € N) is defined, which, assuming that € T; ;, constructs

the parse tree af;;; ...a; € Ls(A) and returns a pointer to the root. Then a call

to parse(0,n, S) gives a parse tree of the whole input string.

5.2 Recognition in linear space

Algorithm 1 uses spad@(n?), as does its context-free prototype, and in both cases
this is the best known upper bound for practical universal algorithms. However,
in the context-free case it is possible to trade time for space and use as little as
O(log®n) memory. How little space would be enough to recognize the languages
generated by Boolean grammars?

Constructing a recognizer that would uSe n logn space is straightforward: Al-
gorithm 1 can be modified to use a recursive procedUfej, A) instead of the
dynamic programming tabl€; ;; in this case the depth of recursion is at most
while each instance of the procedure requivékg n) bits to store its variables that
range over positions in the input. In this section, using a much more involved tech-
nique based upon a formal term-rewriting systempén) upper bound for space is
established; this also demonstrates inclusion in the deterministic context-sensitive
languages.
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Let G = (X,N, P, S) be a Boolean grammar in the binary normal form. As-
sume thatP is linearly ordered. LetP’ be the set of “long” rules ofy with
marked conjuncts, i.e”’ = {p; | pis ofthe form (21a)]l < k < m + n}. Let
Nt ={A"|Ae N}andN~ = {A~|A € N}.Foreveryp = A — ¢ € P,denote
L(p) = Lg(yp); if the k-th conjunct ofp is A — ¢ (wherey) = BC or ¢ = = BC),
denoteL(py) = L ().

Termsare defined over the alphalety NUNTUN-U P U{*(",")" } as follows:

e Foreveryu € ¥t andA € N, the following are terms (forl): A(u), A™(u),
A~ (u).

e If pyisaconjunctd — BC or A — —BC) andty, t, are terms (forB andC'
respectively), thep,.(t1t,) is a term (forA).

Definethe string valuer(t) of a term¢ as

o o(A(u)) = o(A*(u) = o(A () = uforall u € £
[ O'(pk<t1t2 ) = O'(tl . O'(tg).

Define the notion of &rue term

e A(u) is always true A" (u) is true if and only ifu € L(A). A~ (u) is true if and
only if u ¢ L(A).
e ¢ = pi(tits) is true if and only if all of the following conditions hold:
(I) both subtermg, andt, are true;
(I1) for every “long” ruler for A (whereA is the nonterminal on the left hand side
of r) that precedes it holds thato (t) ¢ L(r);
(1) for every conjunctp; of the rulep that precedeg;, (i.e.,i < k) it holds that
o(t) € L(py);
(IV) for every factorizatiorv (t1)o(t2) = uv, such thal) < |u| < |o(t1)| it holds
thatu ¢ L(B) orv ¢ L(C), wherep, is A — BC or A — =BC.

Define the following set ofewriting rules

(1) Aterm A(a), wherea € %, is rewritten withA*(a) if A — a € P, with
A~ (a) otherwise.

(2) A term A(u), whereu = a;...a, and m > 2, is rewritten with
p1(B(a1)Clasy...an)), Wherep is the first rule forA, and its first conjunct
iSA— BCorA— -BC.

(3) Atermpy(B*(u)C*(v)) is rewritten as follows:

e If the k-th conjunct ofp,, is positive A — BC(C'), then: *)

- If the k-th conjunct is the last, rewrite witA ™ (uv);

- If there are more conjuncts, rewrite with. . 1(D(a1)E(az .. .an)),
whereuv = ajaz...a, and the(k + 1)-th conjunct isA — DFE
orA— —-DE.

e Else, if thek-th conjunct ofp, is negative i — —B('), then: (**)
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- If pis the last rule for4, rewrite with A~ (uv);
- If r is the next rule fotA afterp, rewrite withr,(D(a1)E(as . .. ap)),
whereuv = ajas...a,, and the first conjunct of is A — DFE or
A— -DE.
(4) Any of the termg, (BT (u)C~ (v)), pr(B~(u)C*(v)) or pr(B~(u)C~(v)) is
rewritten as follows:
o If [v| >1,letv =az (a € Z, z € ¥T) and rewrite withpy (B(ua)C(x)).
e If |v| = 1 and thek-th conjunct is positive, then do as in (**) above.
e If |v| = 1 and thek-th conjunct is negative, do as in (*) above.

Claim 1 The rewriting preserves truth, i.e., a true term is rewritten with a true
term.

In order to prove Claim 1, each case of rewriting has to be examined. Let us give a
complete treatment of one of these numerous cases. Consider the rewriting of

pe(B™(ay ... am_1)CF(ay)) (25)

with

r1(D(a1)E(as ... anm)), (26)
where the conjunai,, is positive A — BC') andr is the next rule ford. Since (25)
is true, the condition (IV) implies that ¢ L(B) or = ¢ L(C) for all factorizations
ap...a, = yz (y,z € X1), such thaty| < m — 1. The condition (l) gives that
a...am—1 ¢ L(B). Putting these togethey, ¢ L(B) or z ¢ L(C) for every
factorizationa; ... a,, = yz (y, z € £7). Thereforeq, ... a,, ¢ L(BC).

The conjuncpy, is positive, and se, . .. a,, ¢ L(px). Thereforeq, ...a,, ¢ L(p).
By the condition (Il) for the true term (25); ...a,, ¢ L(q) was the case for all
rulesq that precede. Combining this with the now known failure of a; . .. a,, ¢
L(q) for every ruleq for A that precedes, the immediate successor jaf

Hence, the condition (I1) for the correctness of (26) is fulfilled. The conditions (l11)
and (1V) are fulfilled simply becauss is the first conjunct of anda; - (as . .. a,,)

is the first factorization of the string. The subterms of (26) are true by definition,
which completes the proof of this case. The rest of the cases are proved — indeed —
similarly.

Claim 2 The rewriting preserves string value of terms.
Claim 3 Every term with string value contains at most|w| — 3 symbols.

These two properties are easily verifiable: Claim 2 can be directly observed from
the rewriting rules above, while Claim 3 is checked by a simple induction on the
structure of a term.

Claims 1-3 together imply that a rewriting that starts from a true term goes over
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true terms of linearly bounded size. In order to show that the rewriting eventually
terminates and the final (true) term confers all relevant information, define a linear
order on the set of terms. #f(¢,) is lexicographically less than (greater thar),),
thent,; < ty (t; > ty, resp.). For terms with the same string valugethe general
orderisA;(w) < ... < Ap(w) < pr(tits) < A7 (w) < ... < Al (w) < A7 (w) <

... < A (w). Itis left to define the relation between(t,t,) andr(tsty): if p # r,

then the terms compare by the order Bnif p = randk < [ (k > [), then
pr(tite) < pi(tsty) (*>", resp.); finally, the termgy(t1t2), px(tst4) cOmpare lexi-
cographically astq,t2) and(ts, ty).

The following statement, together with its corollaries, motivates this order:

Claim 4 The rewriting strictly increases the terms with respect to the given order.
Claim 5 Every term is eventually converted to a term of the farnjw) or A~ (w).
Claim 6 AtermA(w) is eventually converted either " (w), or to A~ (w).

Claims 1 and 6 show that this term rewriting system effectively works as a recog-
nizer for the source grammar. Direct algorithmic simulation of this rewriting yields
the following result:

Theorem 10 Every language generated by a Boolean grammar is deterministic
context-sensitive, i.e., is DSPACHn).

PROOF. Consider an arbitrary gramméat = (X, N, P,.S) and assume without
loss of generality that it is in the binary normal form. Construct the following Tur-
ing machine: given a string,

(1) If w=¢, acceptitife € L(G), reject otherwise.

(2) Write the termS(w) to the tape.

(3) While possible, transform subterms as specified above.
(4) If the resulting term IS (w), accept; if it isS—(w), reject.

The assumption that the resulting term will be eitier(w) or S~ (w) is valid by
Claim 6. Since the initial tern§(w) is true, and, according to Claim 1, truth is being
preserved in course of the rewriting, the resulting témfw) or S~ (w) must also
be true, which allows to make a justified conclusion on whethet L;(S) =
L(G)orw ¢ L(G).

Observing that all terms have string valueeach of them fits intG|w| — 3 sym-

bols by Claim 3. Hence the constructed TM can be converted to a deterministic
LBA by compressing seven symbols into one, which means that the language is
deterministic context-sensitive.O
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6 Linear Boolean grammars

6.1 Definition and a normal form

Linear context-free grammars are an important and a much-studied subclass of
context-free grammars. The concatenation in their rules is restricted to linear, i.e.,
all rules are of the formd — uBv or A — w. For conjunctive grammars, the sub-
class of linear conjunctive grammars [21,24] is defined by similarly restricting the
rules to beA — uy By & ... &u,, B,,v, or A — w; this class is worth particular
interest due to its recently discovered equivalence [26] to trellis automata [9,10,15].

It makes sense to try to restrict Boolean grammars in a similar way and to see what
comes out of it.

Definition 9 A Boolean grammaftz = (X, N, P, S) is said to be linear if every
rule in P is of the formA — u Biv & . . . &u, Bpvn, &1 Ciy & . . &2, Cyn,
whereB;,C; € N, u;,v;,z;y; € ¥*andm +n > 1, or A — w, wherew € ¥*.

The following normal form is a natural generalization of linear normal forms for
linear context-free and linear conjunctive grammars.

Definition 10 A linear Boolean grammaé = (X, N, P, S) is said to be in the
linear normal form if every rule irP is of the form

A —bBi& ... bB&Cc&k ... &Chc&—bD & ... &—bD &
&—Fic& ... & Eic(m,n, k1 >0; m+n>1),

A—a (27b)
S — e (only if S does not appear in right hand sides of rules)  (27c¢)

(27a)

The result on effective transformation to linear normal form can be proved very
much like Theorem 8, if one notes that the transformations given in Sections 4.1
and 4.2 preserve the linearity of a grammar.

Theorem 11 For every linear Boolean grammad¥ that generates some language

L under some of the two given semantics, there exists and can be effectively con-
structed a linear Boolean grammat’ in the linear normal form that generates the
same languagé under both semantics.

Using linear normal form, linear Boolean grammars can be completely character-
ized: it turns out that, by an effective transformation almost identical to the one
applicable to linear conjunctive grammars [26], every given Boolean grammar in
the linear normal form can be converted to an equivalent trellis automaton [9]. Let
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us first give a short introduction to trellis automata.

6.2 Trellis automata

Trellis automata[9] were introduced by Culik Il, Gruska and A. Salomaa as a
model of a massively parallel computer with simple identical processors connected
in a uniform pattern. In the most common type of trellis automata, céltado-
geneoustriangular or real-timg the connections between nodes form a figure of
triangular shape, such as the one shown in Figure 2.

AFAR,

N a a4 ay

Fig. 2. Computation of a trellis automaton.

Trellis automata are used as acceptors of strings loaded from the bottom, and the
acceptance is determined by the topmost element. In their original definition they
cannot handle the empty string, because a triangular trellis, as in Figure 2, cannot
be of size zero. However, as other models equivalent to trellis automata [15,26] do
not have problems of this kind, it becomes natural to augment trellis automata with
an unsophisticated means to accept or reject the empty string:

Definition 11 ([26]) A trellis automaton (TA) is a sextupld = (3,Q, I,9, Fe),
whereX: is the input alphabet is a finite nonempty set of statds; ¥ — Q is
a function that sets the initial states,: ) x ) — (@ is the transition function,
F C @ is the set of final states, and the bitc {0,1} determines whether is
accepted or rejected.

Given a nonempty string; ...a, (¢; € %, n > 1), every node of a trellis
corresponds to a certain substring...a; (1 < ¢ < j < n) of symbols on
which its value depends. The value of a bottom node corresponding to one sym-
bol of the input is/(a;); the value of a successor of two nodesiisf the val-

ues of these ancestors. Denote the value of a node corresponding. ta; as
A(I(ai...a;)) € Q: herel(a;...a;) is a string of states (the bottom row of
the trellis), while A denotes the result (a single state) of a computation start-
ing from a row of states. By definition)(/(a;)) = I(a;) andA(I(a;...a;)) =
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S(A(I(a;...aj_1)), A(L(ais1 - - .a;))). Define the language recognized hyas
LM)={weXt|A(I(w)) € F}U{e]ife=1} (28)

Once introduced [9], trellis automata were quickly noted to be isomorphic to one-
way real-time cellular automata [6], and a characterization in terms of sequential
machines was found [15]. Two decades later linear conjunctive grammars were
proved to generate the same family of languages [26], and now one more language
specification formalism joins this company.

6.3 The equivalence result

LetG = (3, N, P, S) be a linear Boolean grammar in the linear normal form, and
let us show how an equivalent TA can be constructed. Using subset construction
similar to the one used for linear conjunctive grammars [26], construct the FA
(3,Q,1,6,F,e), whereQ = ¥ x 2V x ¥ and

I(a) = (a,{A]| A — a € P},a), (29a)

5((b,Q, V), (c,R,c)) = (b,{A|thereis arule (27a), such that (29b)
B, e R,C;€Q,Ds ¢ R E, ¢ Qforalli, j,s,t},c),

F={(a,R,b)| S € R}, (29¢)

while e equals 1 ifs € L(G), e = 0 otherwise. The correctness of this construction
is stated in the following lemma:

Lemma 10 Letw € ¥t and letA(I(w)) = (b, R, ¢). Then the first symbol of is
b, the last symbol ofv is ¢, and for each nonterminall € @, w € Lg(A) if and
onlyif A € R.

Lemma 10 can be proved similarly to the corresponding statement for linear con-
junctive grammars [26, Lemma 1]. Then, using (29c), it is easy to see that, for every
we X, A(I(w)) € Fifandonly ifw € Ls(S) = L(G). The case of the empty
string follows from the construction ef showing that the automaton is completely
equivalent to the grammar.

Theorem 12 For every linear Boolean grammak = (X, N, P, S) compliant to
any of the two semantics, there exists and can be effectively constructed a trellis
automatonV = (X,Q, 1,0, F,e), such thatL.(M) = L(G).

So, linear Boolean grammars can be simulated by trellis automata, while trellis
automata can be in turn simulated by linear conjunctive grammars [26], which form
a subclass of linear Boolean grammars. This brings us to the following conclusion:

Theorem 13 The family of languages generated by linear Boolean grammars co-
incides with the family generated by linear conjunctive grammars and the family
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recognized by trellis automata.

Although this equivalence result means that linear Boolean grammars give nothing
new in terms of generative power in comparison with linear conjunctive grammars,
the additional operation they offer makes them more convenient as a practical tool
for specifying formal languages. It has been proposed that the relationship between
trellis automata and linear conjunctive grammars resembles that between finite au-
tomata and regular expressions [26]. Perhaps linear Boolean grammars can be com-
pared to extended regular expressions [37] then.

7 General properties

Let us summarize the basic properties of Boolean grammars and compare them with
some other language specification formalisms — namely, with finite automata (Reg),
linear context-free grammars (LInCF), context-free grammars (CF), linear con-
junctive grammars (LinConj), conjunctive grammars (Conj) and context-sensitive
grammars (CS). The results are put together in Table 1.

It can be proved by a straightforward construction that the language family denoted
by Boolean grammars is closed under all set-theoretic operations, concatenation,
reversal and star. It is not closed under homomorphism, because homomorphic im-
ages of linear conjunctive languages already constitute all recursively enumerable
sets [10,24]. The closure under inverse homomorphism is left as an open problem;
a positive answer can be conjectured.

Turning to the decidability results, the membership problem for Boolean grammars
can be solved according to Theorem 8 and Algorithm 1, provided that the given
grammar complies to one of the two semantics (which property, however, cannot
be effectively decided). Formally, the membership problemvimified represen-
tations i.e., for Boolean grammars with attached axiomatic proofs of compliance

to one of the semantics, can be called decidable in the most rigorous sense. On the
other hand, most other decision problems, such as emptiness or equivalence, are
undecidable already for linear conjunctive grammars [24].

Every language generated by a Boolean grammar can be recognized i tirfie

using Algorithm 1; this is the same as in the best known algorithms for conjunc-
tive grammars [21]. On the other hand, for context-free grammars, using Valiant’s
algorithm [33] together with the matrix multiplication method of Coppersmith and
Winograd [8] allows to obtain an asymptotically better resOitn?37). It seems

that this method cannot be generalized for conjunctive and Boolean grammars,
since Algorithm 1, despite all its similarity to Cocke—Kasami-Younger, can no
longer be reduced to computing the transitive closure of a matrix.
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Reg LinCF CF LinConj Conj Bool CS
Closure properties
U +  + + + +  + +
N + - — + + o+ +
~ + - — + 7+ +

+ - + - + 4+ +
* + - + - + + +
h + + + - - - -
h1 + 4 + + + 7 +
Decision problems
Membership + + + + + + +
Emptiness + + + - - - -
Equivalence + - - - - - -
Complexity of recognition
Lower bound NL[31] NL[31] P[15] P P PSPACE
Upper bound NL NC?[29,5,30] P[9,21] P[21] P PSPACE
Known algorithm n  n?[36] n237%[33,8] n2[21] »?[21] n»? cn

Table 1
Basic properties of Boolean grammars, compared to other classes.

Every language generated by a Boolean grammarks Bince already linear con-
junctive grammars can denoecomplete languages [15], thisupper bound for
complexity is tight. These complexity results put Boolean grammars, together with
conjunctive and linear conjunctive grammars, into the single class of formalisms
of “medium complexity”. Context-free languages are much easier, as they are all
in NC? (demonstrated by the Brent—Goldschlager—Rytter parsing algorithm [5,30]
that works in parallel tim& (log” n) on polynomially many processors), while the
hardest known language is ML [31]. On the other hand, context-sensitive lan-
guages are considerably harder, as therd?&RACE-complete languages among
them. In Figure 3 these classes are grouped according to their complexity.

Let us discuss the containment of these families of languages in each other, shown
by arrows in Figure 3. Itis known that context-free and linear conjunctive languages
are incomparable subsets of conjunctive languages [32,26], which is denoted in
the figure by a dotted line. Every conjunctive grammar is a Boolean grammar by
Theorem 3, whence an inclusion, not known to be proper. Every language generated
by a Boolean grammar is deterministic context-sensitive by Theorem 10. Hence,

L(Conjunctive) C L(Boolean) C L(DetCS) C L(CS) (30)
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?

>0 —>0

DetCS CS

Fig. 3. Hierarchy of language families and its relation to complexity classes.

and whether any of these three inclusions is strict is not known. It is conjectured
that {ww | w € {a,b}*} could witness the strictness of the first inclusion, while
any PSPACE-complete language is expected to separate the middle two classes
(otherwiseP would equalPSPACE).

It was conjectured before that every unary conjunctive language is regular [21],
which would imply proper inclusion in deterministic context-sensitive languages. If
this conjecture were proved, it would mean that the first inclusion in (30) is proper,
because Boolean grammars can generate some nonregular unary languages (which
can be inferred from Example 2). However, no such results for unary conjunctive
languages have been obtained so far.

8 Conclusion

Yet another family of formal grammars has been introduced. It offers an extended
but still intuitively clear formalism of rules, allows to denote many non-context-
free constructs, and at the same inherits a lot of appealing properties of context-
free grammars. Giving a logically consistent definition without unjustified sim-
plifications was the most complicated part of the study, especially in light of the
previous attempts at incorporating negation in formal grammars, but in the end a
well-defined mathematical concept was successfully produced.

To understand Boolean grammars and related formalisms (such as linear conjunc-
tive and conjunctive grammars) better, it would be important to compare them to
the most well-known derivation-based formalisms, including indexed, linear in-
dexed and tree-adjoining grammars. In order to do that, and generally for any fur-
ther study of Boolean grammars, a method for proving particular languages not
to belong to this family would be very instrumental. As usual in the field, finding
one promises to be a hard problem. For instance, no such method is known even
for conjunctive grammars; only for linear conjunctive grammars one can use quite
elaborate counting arguments for the trellis automaton representation [32]. Coming
up with a method for showing languages to be not generable by Boolean grammars
and proving the strictness of the first two inclusions in (30) could be proposed as a
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worthy theoretical problem.

Another issue is the practical applicability of Boolean grammars, and here one
can be reasonably optimistic: the formalism is easy to understand, the class of
languages is sufficiently large, the complexity of parsing is low. In light of Al-
gorithm 1, it looks that generalizing some of the parsing algorithms for conjunctive
grammars [23] for the case of Boolean grammars is quite feasible. Once done, this
will confirm the practical value of the newly introduced concept.
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