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Abstract
We explore how to make the benefits of modularity available for
syntactic specifications and present Rats!, a parser generator for
Java that supports easily extensible syntax. Our parser generator
builds on recent research on parsing expression grammars (PEGs),
which, by being closed under composition, prioritizing choices,
supporting unlimited lookahead, and integrating lexing and pars-
ing, offer an attractive alternative to context-free grammars. PEGs
are implemented by so-called packrat parsers, which are recursive
descent parsers that memoize all intermediate results (hence their
name). Memoization ensures linear-time performance in the pres-
ence of unlimited lookahead, but also results in an essentially lazy,
functional parsing technique. In this paper, we explore how to lever-
age PEGs and packrat parsers as the foundation for extensible syn-
tax. In particular, we show how make packrat parsing more widely
applicable by implementing this lazy, functional technique in a
strict, imperative language, while also generating better performing
parsers through aggressive optimizations. Next, we develop a mod-
ule system for organizing, modifying, and composing large-scale
syntactic specifications. Finally, we describe a new technique for
managing (global) parsing state in functional parsers. Our experi-
mental evaluation demonstrates that the resulting parser generator
succeeds at providing extensible syntax. In particular, Rats! enables
other grammar writers to realize real-world language extensions in
little time and code, and it generates parsers that consistently out-
perform parsers created by two GLR parser generators.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Parsing; D.3.3 [Programming Languages]:
Language Constructs and Features—Modules

General Terms design, languages

Keywords parser generator, extensible syntax, parsing expression
grammar, packrat parsing, module system, Rats!

1. Introduction
In this paper, we explore how to make the benefits of modularity
available for syntactic specifications and hence how to make syn-
tax easily extensible. Our research is motivated by the observation
that systems and language researchers alike have been exploring
how to leverage domain-specific programming languages for sim-
plifying complex systems. Examples include support for accessing
hardware in device drivers [29], controlling information flow [31],
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event-based programming [27, 30], pattern matching for distributed
messages [25], and specifying network protocols [24, 35]. While
these efforts differ considerably in methodology, design, and im-
plementation, they all build on C, C++, or Java. An important chal-
lenge, then, is how to gracefully extend C-like programming lan-
guages and, more specifically, how to provide language implemen-
tors with the appropriate tools for realizing their domain-specific
compilers. While our larger research agenda is to explore the ex-
pression, composition, and implementation of fine-grained exten-
sions for C-like languages, for the purposes of this paper, we focus
on the extensibility of programming language grammars and their
parsers. After all, parsing program sources is a necessary first step
for any language processor, be it a compiler, interpreter, syntax-
highlighting editor, API documentation generator, or source mea-
surement tool. Furthermore, easily extensible syntax is beneficial to
any developer realizing complex syntactic specifications, be they
significant extensions to an existing programming language, sev-
eral dialects of the same language, or distinct languages with con-
siderable syntactic overlap, such as C-like languages and their ex-
pressions and statements.

A practical solution for extensible syntax can substantially ben-
efit from having three properties. First, the employed syntactic for-
malism and parsing algorithm should be closed under composition,
to enable modularity, and unambiguous, as computer formats rarely
have more than one valid interpretation. Additionally, the syntactic
formalism should support scannerless parsing [37], i.e., the inte-
gration of lexing with parsing, to also provide extensibility at the
lexical level [9, 20, 39]. Second, the module system should be suf-
ficiently expressive to manage large-scale syntactic specifications.
In particular, it needs to provide encapsulation by grouping related
productions into syntactic units, support the concise expression of
modifications to existing units, and enable the flexible composi-
tion of syntactic units and their extensions with each other. For ex-
ample, when adding aspects to C, the grammar writer should only
need to change the modules affected by the extension and be able to
reuse existing modules, even if they now depend on modified syn-
tax. Third, the parsing algorithm and module system should allow
for the expression of syntax as code, since no syntactic formalism
can conveniently and precisely capture all languages. Notably, C
and C++ already are context-sensitive and require global parsing
state to disambiguate typedef names (i.e., type aliases) from other
names.

Unfortunately, context-free grammars (CFGs) and the corre-
sponding LR, LL, and even GLR parsing algorithms, while well
understood and widely used, already fall short of the first property.
LR, which, for example, is used by Yacc [26], and LL, which is
used by ANTLR [34] and JavaCC [16], only recognize a subset
of CFGs and consequently are not closed under composition. To
make matters worse, they can also be fairly brittle in the face of
change [6, 28]. In contrast, GLR [38], which is used by Bison [21],
Elkhound [28] and SDF2 [9, 40], and Earley parsing [1, 14] can
recognize all CFGs and thus are closed under composition. How-



ever, if a CFG is ambiguous, they return either all abstract syntax
trees, which is inefficient when only one tree is the correct one, a
heuristically chosen one, which may not be the right one, or require
explicit disambiguation [39], which adds complexity to a syntactic
specification.

In contrast, parsing expression grammars [3, 4, 20] (PEGs) and
packrat parsers [18, 19] do have the first property and thus pro-
vide a more attractive foundation for extensible syntax. Notably,
PEGs are not only closed under composition but also intersection
and complement. Furthermore, they rely on ordered choices instead
of the unordered choices used in CFGs, thus avoiding unnecessary
ambiguities in the first place. Next, they offer additional expres-
sivity through syntactic predicates, which match expressions but
do not consume the input. Finally, they are scannerless by default.
PEGs are implemented by so-called packrat parsers, which are re-
cursive descent parsers that may backtrack. To ensure linear-time
performance, they also memoize all intermediate results (hence the
name). So far, Ford [18, 19] has implemented several handwritten
packrat parsers as well as a packrat parser generator, called Pappy,
for and in Haskell. As a lazy, functional programming language,
Haskell certainly provides a convenient platform for implementing
this memoizing parsing technique. However, it also raises the is-
sue of how to utilize PEGs and packrat parsers in C-like languages,
which dominate among system builders.

In this paper, we address this issue and present Rats!,1 a parser
generator for Java that leverages PEGs to provide all three prop-
erties of extensible syntax. Our parser generator is implemented
within our own framework for building extensible source-to-source
transformers [22], includes working grammars for C and Java, and
has been released as open source. It provides the three properties
by integrating this paper’s three contributions.

First, we show how to implement packrat parsers in a strict, im-
perative programming language through a careful layout of data
structures and a common interface to semantic values and parse er-
rors. We also show how to make the corresponding specifications
more concise—by automatically deducing semantic values—and
the resulting parsers considerably faster—by aggressively optimiz-
ing grammars.

Second, we present a module system for organizing, modify-
ing, and composing syntactic specifications. Notably, the module
system relies on so-called module modifications to concisely ex-
press how to add, override, or remove individual alternatives in a
production. Furthermore, it relies on module parameters to com-
pose different syntactic units, including module modifications, with
each other. While the main ideas behind our module system are not
novel, their application on syntactic specifications is new—and also
suitable for other syntactic formalisms that are closed under com-
position.

Third, we describe a new technique for managing (global) pars-
ing state in functional parsers, which models state modifications as
lightweight transactions and supports the recognition of context-
sensitive languages.

Our experimental evaluation demonstrates that Rats! is indeed
practical for easily extending syntactic specifications. In partic-
ular, it enables other grammar writers to realize real-world lan-
guage extensions—including an aspect-enhanced version of C
and a combination of Java and C to simplify Java native inter-
face programming—in little time and code. Furthermore, Rats!-
generated parsers perform reasonably well, out-performing parsers
created by two GLR-based parser generators by at least a factor of
1.9, while being at most 2.7 times slower than parsers created by
more conventional LL-based parser generators.

1 The name is pronounced with the conviction of a native New Yorker when
faced with a troublesome obstacle.

Operator Type Prec. Description
’ ’ Primary 6 Literal character
" " Primary 6 Literal string
[ ] Primary 6 Character class

Primary 6 Any character
{ } Primary 6 Semantic action
(e) Primary 6 Grouping
e? Unary suffix 5 Option
e* Unary suffix 5 Zero-or-more
e+ Unary suffix 5 One-or-more
&e Unary prefix 4 And-predicate
!e Unary prefix 4 Not-predicate

id:e Unary prefix 4 Binding
" ":e Unary prefix 4 String match
void:e Unary prefix 3 Voided value

<name> e1 . . . en n-ary 2 Sequence
e1 / . . ./ en n-ary 1 Ordered choice

Table 1. The operators supported by Rats!. Note that “Prec.”
stands for precedence level. Further note that the name for se-
quences is optional.

2. Overview of Rats!
From a developer’s point of view, he or she first writes a grammar
specification for the language to be parsed. In doing so, he or
she can omit explicit semantic actions and rely on Rats!’ facilities
for automatically deducing productions’ values (Section 3). The
developer can also organize the grammar into modules and reuse
already existing modules (Section 4). Finally, he or she can manage
global parser state through lightweight transactions (Section 5).
While these features have been designed to integrate with each
other, they also do not depend on each other, thus enabling the
grammar writer to use only those features he or she needs.

To generate the corresponding parser, the developer invokes the
Rats! tool itself, which resolves all module dependencies. It starts
with the top-level module specified on the command line, loads
dependent modules from the file system based on their names, and
produces a single global grammar. Rats! also adds explicit semantic
actions where it can deduce productions’ values. Furthermore, it
performs extensive optimizations on the grammar to reduce both
heap utilization and latency (Section 8). Finally, it emits the parser’s
source code, which is then compiled to the final parser. While Rats!
currently targets only Java, all language-specific aspects have been
carefully isolated to ease future ports to other languages.

At runtime, the recursive descent parser generated by Rats! tries
to match the input and generate the corresponding abstract syntax
tree. In general, the parser has one method per production in the
grammar and memoizes each method’s result for a given input
position. Consequently, a method’s code is executed at most once
for an input position, ensuring linear time performance even if
the parser needs to backtrack. Upon completion, the parser returns
either an error describing the mismatched input (Section 6) or the
semantic value corresponding to the well-formed input (Section 7).

3. Grammar Specification
At the core of a grammar specification are the productions relating
nonterminals to expressions. Rats!’ productions are of the form:

Attributes Type Nonterminal = e ;

The Attributes are a space-separated list of zero or more per-
production attributes, Type is the Java type of the semantic value,
Nonterminal is the name of the nonterminal, and e is the expression
to be parsed.



Table 1 summarizes the expression operators supported by
Rats!. They mostly mirror the operators of parsing expression
grammars [20], with extensions to create and manipulate semantic
values. The PEG operators are used to specify a language’s syntax
and are comparable to the familiar EBNF notation [23, 42], in-
cluding literals, sequences, choices, repetitions, and options. They
differ in that choices, repetitions, and options are greedy and in the
inclusion of syntactic predicates, which match expressions without
consuming them. As discussed in detail in [20], the greediness of
PEG operators helps avoid common shortcomings of CFGs, such as
the “dangling else” problem or declarations taking precedence over
other constructs in C++, by letting grammar writers express order-
ing constraints directly in a language’s grammar. Where greediness
is not appropriate, syntactic predicates can limits its effects—with
the full expressivity of PEGs. For example, the following (slightly
simplified) production from Rats!’ own grammar recognizes a pro-
duction’s attributes:

Pair Attributes =
&(Type Nonterminal "=":Symbol)

{ yyValue = Pair.EMPTY; }
/ a:Attribute as:Attributes

{ yyValue = new Pair(a, as); } ;

The and-predicate operator “&” followed by the parenthesized ex-
pression in the first alternative denotes a syntactic predicate. It re-
quires that any list of attributes be followed by a type, nonterminal,
and “=” symbol and thus prevents the production from consum-
ing the type and nonterminal, which, like attributes, can be simple
names. It also eliminates the need for treating any names as re-
served and thus avoids restricting the Java type names appearing in
Rats!’ productions.

Rats!’ additional operators are used to manage semantic values.
In particular, semantic actions may appear anywhere in a produc-
tion and, as shown in the example above, define that production’s
semantic value through an assignment to yyValue (so named in
deference to Yacc [26]). Bindings assign the semantic value of a
component expression to a variable and, as also shown above, make
the value available for creating a production’s overall value in sub-
sequent actions. An and-predicate operator “&” directly followed
by a semantic action is interpreted as a semantic predicate, whose
code must evaluate to a boolean value and which can be used to re-
strict expressions based on their values. A string match "text":e
is semantically equivalent to:

fresh-id:e &{ "text".equals(fresh-id) }

However, this is a common idiom for matching specific keywords
or symbols in PEGs—see, for example, the above production for
attributes—and thus directly supported by Rats!. Finally, a voided
value ignores an expression’s semantic value when automatically
deducing a production’s overall value.

3.1 Determining Semantic Values
While semantic actions provide considerable flexibility in creating
a production’s semantic value, they are not always necessary, thus
cluttering a grammar and making it harder to modify the grammar.
For instance, it is often convenient to create productions that con-
sume keywords or punctuation before or after another nonterminal
or that combine several nonterminals into a larger choice. In either
case, the semantic value of the higher-level production is the same
as the semantic value of one of the nonterminals. In other words,
the higher-level production only passes the semantic value through
and does not create a new one.

More importantly, productions that recognize lexical syntax ei-
ther do not need to return semantic values at all—they may, for ex-
ample, simply consume white space and comments—or they only

need to return the text matched in the input as a string. However,
explicitly creating such a string within a semantic action is not only
tedious, but can also lead to inefficient or incorrect packrat parsers.
The underlying issue is that semantic values for packrat parsers
must be implemented by functional data structures: mutating a data
structure after it has been memoized invalidates the parser’s state.
As a result, the common idiom for efficiently building up Java
strings through string buffers must not be used in packrat parsers.

Finally, many tool writers do not require an optimized represen-
tation for an input’s abstract syntax tree (AST). Rather, a generic
tree representation is sufficient and lets the developer focus on pro-
viding a tool’s functionality instead of first creating an AST repre-
sentation. To address these issues, Rats!, when compared to Ford’s
Pappy, adds support for easily passing a semantic value through a
production, for simplifying lexical analysis through void and text-
only productions, and for automatically creating the AST for hier-
archical syntax through generic productions. We now discuss these
features in turn.

Passing the Value Through
Rats! provides two ways of passing a semantic value through a
production; in either case, no semantic actions are required. First,
grammar writers can explicitly bind yyValue. This technique is
illustrated in the following production from our Java grammar:

String Identifier = yyValue:Word
&{! JAVA_KEYWORDS.contains(yyValue)} ;

The production recognizes identifiers; its semantic value simply is
the word representing the identifier, with the semantic predicate
ensuring that the word is not a keyword. Second, for many expres-
sions, Rats! can automatically deduce the semantic value. As an
example, consider this (slightly simplified) production from our C
grammar:

GNode PrimaryExpression =
<Identifier> PrimaryIdentifier

/ <Constant> Constant
/ <Parenthesized> void:"(":Symbol Expression

void:")":Symbol ;

Since the first two alternatives contain only a single nonterminal
each, Rats! can easily deduce that each alternative’s semantic value
is the value of the referenced production. The semantic value of the
third alternative is the value of the Expression production, as the
values of the string match expressions are explicitly voided.

Void and Text-Only Productions
A void production is a production with a declared type of void; its
semantic value is null. Void productions are useful for recogniz-
ing punctuation elements or ignored spacing including comments.
For example, the following void production from our C grammar
recognizes ignored space characters:

transient void Space = ’ ’ / ’\t’ / ’\f’ ;

The transient attribute disables memoization for a production
and is explained in Section 8. Void productions also improve the ac-
curacy of Rats!’ automatic deduction of a compound expression’s
semantic value: If the compound expression references only a sin-
gle non-void nonterminal, that nonterminal’s semantic value must
be the overall expression’s value.

A text-only production is a production with a declared type of
String. Additionally, it must not contain assignments to yyValue
and may reference only other text-only productions. The seman-
tic value of a text-only production is the text matched in the input.
Consequently, text-only productions eliminate the need for explic-
itly building up strings through Java’s string buffers; on a success-



ful match, the implementation simply creates the string from the
buffered input characters. Text-only productions are typically used
for recognizing identifiers, keywords, and literals. For example, the
following text-only production from our Java grammar recognizes
string literals:

String StringLiteral =
["] (EscapeSequence / !["\\] _)* ["] ;

The semantic value of this production is the entire string literal, in-
cluding the opening and closing double quotes. The “!["\\] _”
expression uses a not-followed-by syntactic predicate, which in-
spects the input but does not consume it. In this example, the cor-
responding parser looks one character ahead, checks whether the
input contains a double quote or backslash, and, if not, continues,
recognizing any (other) character. The expression is read as “any
character but a double quote or backslash”.

Generic Productions
A generic production is a production with a declared type of
generic. Its semantic value is a generic AST node, GNode. The
generic node has the same name as the production and the values
of the component expressions as its children, with the exception
of character terminals, void nonterminals, and voided expressions,
which are ignored. For example, the following (slightly simpli-
fied) generic production from our C grammar recognizes return
statements:

generic ReturnStatement =
void:"return":Keyword Expression?
void:";":Symbol ;

It is semantically equivalent to the production:

GNode ReturnStatement =
"return":Keyword e:Expression? ";":Symbol
{ yyValue =

GNode.create("ReturnStatement", e); } ;

To pass a value through a generic production, the corresponding
alternative explicitly binds yyValue, which instructs Rats! not to
create a GNode for that alternative.

Options, Repetitions, and Nested Choices
A final issue that impacts how semantic values are determined
is Rats!’ processing of options, repetitions, and nested choices.
Our parser generator, similar to Ford’s Pappy, lifts options, rep-
etitions, and nested choices into their own productions (though,
nested choices appearing as the last element of a sequence need
not be lifted). Furthermore, it desugars options into choices with
an empty, second alternative and repetitions into the correspond-
ing right-recursive expressions. The semantic value of the second,
empty alternative of a desugared option is null. Furthermore, the
semantic value of a desugared repetition is a functional list of the
component expressions’ semantic values; just like the correspond-
ing lists in Scheme or Haskell, Rats!’ functional lists are imple-
mented as sequences of pairs. To better integrate with Java, func-
tional lists can easily be converted into the corresponding lists in
the Java collections framework. Finally, the semantic values of a
nested choice must be specified individually in the different alter-
natives of the choice, unless, of course, Rats! can automatically
deduce them. Processing options, repetitions, and nested choices in
this way ensures that parser generation is correct and manageable.
However, as discussed in Section 8, our parser generator includes
several optimizations that avoid the lifting and desugaring wher-
ever possible. While these optimizations increase parser generator
complexity, they also reduce runtime overheads.

4. Module System
Rats!’ module system leverages the fact that parsing expression
grammars are closed under composition and provides the frame-
work for organizing, modifying, and composing syntactic specifi-
cations. More specifically, Rats! relies on modules to provide en-
capsulation by grouping related productions, controlling their vis-
ibility, and tracking their dependencies. Next, it relies on mod-
ule modifications to concisely express syntactic extensions. Mod-
ule modifications specify how one module differs from another by
adding, overriding, or removing individual alternatives and, after
application, produce a new module that combines the modifying
and modified modules. Finally, Rats! relies on module parameters
to compose different syntactic units and their extensions with each
other. Parameters specify module names and allow for the instanti-
ation of a module with different, actual dependencies. Comparable
to functors in ML and templates in C++, module modifications and
parameterized modules delay the creation of actual syntactic spec-
ifications from grammar development time until parser generation
time, i.e., when invoking Rats! on a grammar’s top-level module.
They differ in that module modifications affect a module’s contents
while module parameters affect a module’s dependencies.

In general, we expect a grammar writer to use module parame-
ters for all dependencies in a newly developed module. That way,
the module can be instantiated with modules unforeseen by the de-
veloper, thus maximizing reuse. Only a grammar’s top-level mod-
ule does not have parameters and, instead, instantiates all mod-
ules with their actual dependencies. The grammar writer uses mod-
ule modifications when a new syntactic specification represents a
(small) delta on an existing specification. Examples include adding
a new operator to an existing programming language’s expression
syntax or restricting a language’s features for educational applica-
tions. Of course, the module modification’s dependencies, includ-
ing the modified module’s name, are specified by module param-
eters as well, thus maximizing flexibility in applying the module
modification.

In detail, a module starts with a module declaration followed
by zero or more dependency declarations. The module declara-
tion specifies the module’s name, which exists in a global name
space, followed by an optional parameter list. Module parameters
are treated as module names and replaced with the actual arguments
throughout the module on instantiation. For example, the following
declaration introduces a parameterized module defining the sym-
bols common to C and Java:

module xtc.util.Symbol(Spacing);

Modules are named and organized similarly to Java class files,
which avoids name clashes even across projects and organizations
and facilitates the automatic loading of modules from the file sys-
tem.

The dependency declarations specify how a module interacts
with other modules. Rats!’ module system supports three types
of dependency declarations. First, import declarations make an-
other module’s productions referenceable from within the current
module. Second, modify declarations make another module’s pro-
ductions not only referenceable but also modifiable. Each module
can modify at most one other module and the closure of modifica-
tion dependencies cannot be circular. Finally, instantiate dec-
larations instantiate parameterized modules and make their names
directly available in other dependency declarations. They can also
rename a module, thus allowing for multiple instantiations of the
same parameterized module within the same grammar. For pro-
grammer convenience, the instantiation syntax can also be used
in import and modify declarations. For example, the module
xtc.util.Symbol declared above imports the module defining
spacing, or layout, as following:



import Spacing;

Note that the actual imported module is only known after xtc.
util.Symbol has been instantiated by supplying an argument for
the Spacing parameter.

In contrast to the global name space for module names and to
provide encapsulation, nonterminals are only meaningful in rela-
tion to a specific module. Without import and modify declara-
tions, a module can only reference the nonterminals defined in that
module. However, in the presence of import and modify declara-
tions, a module can also reference the imported or modified mod-
ules’ nonterminals, which may lead to ambiguous references. To
resolve such ambiguities, Rats! gives precedence to nonterminals
that are defined in either the same module as the reference or in a
modified module (modifying modules cannot contain a production
with the same name as a production in the modified module). Any
remaining ambiguities—for example, when the same nonterminal
is defined in several imported modules—can be resolved by using
a fully qualified nonterminal in a grammar specification. For exam-
ple, consider the productions defining the symbols common to Java
and C in module xtc.util.Symbol:

String Symbol = SymbolCharacters Spacing ;

transient String SymbolCharacters =
<GreaterGreaterEqual> ">>="

/ <LessLessEqual> "<<="
/ <GreaterGreater> ">>"
/ <LessLess> "<<"

/* and so on... */ ;

The production recognizing layout after a symbol can be referenced
through the unqualified nonterminal “Spacing”, as shown, or the
fully qualified nonterminal “Spacing.Spacing”. In the latter case,
the nonterminal’s qualifier is a module parameter and also renamed
during module instantiation. Note that the nonterminal Spacing
must be defined by the imported module, since it is not defined
in xtc.util.Symbol. Further note that, if module Spacing also
defines a nonterminal SymbolCharacters, the definition in xtc.
util.Symbol takes precedence, thus avoiding surprises.

To further control the visibility of productions across modules,
each production can either be public, protected, or private, as in-
dicated by the corresponding attribute of the same name. A public
production is a top-level production and visible outside the gener-
ated parser’s class. A protected production is internal to a gram-
mar and visible to any importing or modifying module. A private
production is internal to a module and only visible to the defin-
ing module and any modifying module. We chose to make private
productions visible to modifying modules, since module modifica-
tions, as discussed below, can make fine-grained changes to exist-
ing productions and thus fundamentally alter the syntax recognized
by a module. Protected visibility is the default, thus allowing for
the omission of the corresponding attribute in the common case,
where a production is neither a top-level nor a “helper” production.

Module dependencies are resolved through a breadth-first
search starting with a grammar’s top-level module, which, since
it is directly instantiated, cannot have any parameters. Because of
the breadth-first search, a lower-level module’s dependencies are
only processed after all dependencies of the higher-level module
have been resolved. As a result, the order of import, modify, and
instantiate declarations in a module header does not matter, and
mutually dependent modules can be instantiated within the same
module. For example, module xtc.lang.CSpacing has a param-
eter for a module defining constants, and xtc.lang.CConstant
has a parameter for a module defining spacing (or layout). To in-
stantiate these mutually dependent modules, the top-level module
xtc.lang.C declares:

# Syntax
1 Type Nonterminal += <Name1> e / <Name2> ... ;
2 Type Nonterminal += <Name1> ... / <Name2> e ;
3 Type Nonterminal -= <Name> ;
4 Type Nonterminal := ... / <Name> e ;
5 Type Nonterminal := e ;
6 Attributes Type Nonterminal := ... ;

Table 2. Overview of Rats!’ module modification syntax. The
different modifications (1) add a new alternative before an existing
one, (2) add a new alternative after an existing one, (3) remove an
alternative, (4) override an alternative with a new expression, (5)
override a production with a new expression, and (6) override a
production’s attributes, respectively. Note that the ellipses are part
of the syntax and indicate unmodified expressions.

instantiate
xtc.lang.CConstant(xtc.lang.CSpacing);

instantiate
xtc.lang.CSpacing(xtc.lang.CState,

xtc.lang.CConstant);

Rats! processes these two instantiate declarations before pro-
cessing the corresponding import declarations in xtc.lang.
CConstant and xtc.lang.CSpacing, which use the supplied ar-
guments. As a result, Rats! correctly instantiates the two mutually
dependent modules.

Module modifications concisely capture syntactic extensions by
adding, overriding, or removing individual alternatives in a produc-
tion’s main choice; they can also override an entire production’s ex-
pression or attributes. They are expressed as so-called partial pro-
ductions, which specify how to modify existing, full productions
and whose syntax is summarized in Table 2. Since partial produc-
tions depend on the different alternatives in a production’s main
choice having sequence names (see Table 1), it is good practice
to always name sequences in a grammar specification. A module
containing partial productions must contain a single modify dec-
laration, which specifies the module to modify. Furthermore, the
modified module must define productions with the same names and
types as the partial productions appearing in the modifying module,
and these productions, in turn, must contain sequences with the
same names as the sequence names appearing in the partial pro-
ductions. For example, module xtc.lang.JavaSymbol is imple-
mented as a modification of xtc.util.Symbol:

module xtc.lang.JavaSymbol(Symbol);
modify Symbol;

String SymbolCharacters +=
<TripleGreaterEqual> ">>>="

/ <GreaterGreaterEqual> ... ;
String SymbolCharacters +=

<TripleGreater> ">>>"
/ <GreaterGreater> ... ;

The module adds Java’s unsigned right shift operators to the
SymbolCharacters production. It is parameterized so that it can
be applied to different modules defining symbols and not just
xtc.util.Symbol. For example, since xtc.lang.CSymbol is
defined similarly, both module modifications can be applied after
each other, resulting in a single module recognizing the symbols
for both C and Java. Alternatively, both module modifications can
be applied separately, resulting in two distinct modules recogniz-
ing the symbols for either C or Java. When actually applying the
module modification, Rats! first creates a new module that has the
same name as the modifying module and contains all full produc-
tions appearing in either the modifying or modified module. It then



applies all partial productions to the full productions, processing
them in the same order as they appear in the modifying module.

5. Managing Parsing Context
Mainly due to syntactic predicates, parsing expression grammars
can recognize languages not expressible as context-free grammars,
such as {anbncn | n > 0} [20]. At the same time, syntactic pred-
icates are not sufficient for recognizing computer formats, includ-
ing programming languages such as C, that require possibly global
state and thus cannot be precisely captured by a grammar alone. In
the case of C, the challenge is to distinguish typedef names, that is,
type aliases, from object, function, or enum constant names, since
the two kinds of names yield considerably different language con-
structs and therefore ASTs. For example, consider the following
code snippet (due to [36]):

T(*b)[4];

If T is a typedef name, the snippet declares b to be a pointer to an
array containing four T’s. Otherwise, the snippet accesses the fifth
element of the array pointed to by the result of invoking function
T on *b (since C arrays are zero indexed). To more precisely
recognize such languages than possible with parsing expression
grammars alone, Rats! can optionally provide a global state object,
which is accessible through the yyState variable.

The key issue in supporting such a state object is how to man-
age state modifications without violating the functional nature of
packrat parsers. The obvious solution of invalidating all memoized
intermediate results on a state change is impractical: Invalidation
requires re-parsing any input already consumed and thus violates
the linear-time performance guarantees of packrat parsers. Alter-
natively, monads provide a general solution for managing (global)
state in functional programming languages [41]. But monads are
not supported by C-like programming languages and, likely, not fa-
miliar to users of Rats!. Furthermore, Ford’s evaluation of packrat
parsers written in Haskell suggests that the monadic version has
noticeable performance overheads when compared to those parsers
not using monads [18].

Instead, Rats! takes a different approach, which preserves lin-
ear time performance. Our approach requires that all state modifi-
cations are performed within possibly nested, lightweight transac-
tions. Furthermore, if an ordered choice’s alternatives may refer-
ence the same nonterminals for the same input positions, notably
by having a common prefix, the state must be modified in the same
way across all alternatives through the common nonterminals. Al-
though not as general as monads, our approach works for program-
ming languages and similarly structured formats for two reasons.
First, many programming languages declare constructs that might
cause state changes before use. Consequently, the effects of state
modifications always flow forward through the input, but never
backwards, and previously parsed and memoized expressions need
not be invalidated. Second, most programming languages are stat-
ically scoped. Consequently, state modifications also have well-
defined scopes and can be effectively modeled by nested transac-
tions.

To illustrate the use of lightweight transactions, consider our C
grammar. Using lightweight transactions, the production for exter-
nal declarations can be written as:

GNode ExternalDeclaration = {yyState.start(); }
Declaration {yyState.commit();}

/ FunctionDefinition {yyState.commit();}
/ {yyState.abort();} &{ false } ;

Since function definitions introduce a new scope, the parser needs
to start a new transaction before attempting to parse the alternatives
of an external declaration. The corresponding yyState.start();

statement at the beginning of the production is always executed
and, consequently, the transaction covers all three alternatives of
the production. The production commits the transaction on a suc-
cessful recognition of a declaration or function definition and other-
wise aborts the transaction while also causing a parse error through
the explicit semantic predicate in the third alternative. The transac-
tion must cover the recognition of both declarations and function
definitions because they share a common prefix, a sequence of dec-
laration specifiers followed by a declarator. However, the transac-
tion’s nested scope for disambiguating names is only “activated”
by setting a flag when parsing a function’s parameters and body.
Names introduced by declarations continue to be added to the outer,
top-level scope.

To eliminate the clutter of explicit transactional operations,
Rats! grammars can utilize a per-production stateful attribute,
which instructs the parser generator to automatically emit the cor-
responding code. As an added benefit, the automatically generated
code is more efficient because the parser generator can avoid emit-
ting a final alternative that always fails. In general, this attribute
should be specified for all productions that might recognize a new
language scope. For example, the above production is semantically
equivalent to the following production, which represents a simpli-
fied version of the one in our C grammar:

stateful GNode ExternalDeclaration =
<Declaration> Declaration

/ <Function> FunctionDefinition ;

The three transactional operations—start(), commit(), and
abort()—can easily and efficiently be implemented by pushing
and popping pre-allocated context records to and from a stack. For
our C grammar’s state object, each record contains a hash table
recording the different types of names and several flags indicating
previously parsed expressions, including typedef specifiers. The
state object’s class exposes methods to access and update this
contextual state within a transaction. For example, the (slightly
simplified) production for recognizing typedef specifiers in our C
grammar reads:

generic TypedefSpecifier =
void:"typedef":Keyword {yyState.typedef();} ;

Next, the production for recognizing simple declarators reads:

generic SimpleDeclarator =
id:Identifier { yyState.bind(id); } ;

Finally, the production for recognizing typedef names reads:

generic TypedefName =
id:Identifier &{ yyState.isType(id) } ;

The typedef() method sets a flag in the current context record,
indicating that a typedef specifier has been recognized. The bind()
method updates the context record’s hash table with a binding for
an identifier. The identifier is marked as a typedef name, if the
corresponding flag is set, and, otherwise, as an object, function,
or enum constant name. The isType() method tests whether the
identifier represents a typedef name by looking up the binding,
starting with the current context record’s hash table. Note that a
parse time binding is considerably simpler than the corresponding
binding created during semantic analysis: it only contains enough
information to distinguish between typedef and other names, i.e.,
the name and a boolean.

In our experience, modifying a global state object through
lightweight transactions is sufficiently powerful to recognize the
ISO, Kernighan and Ritchie, and GCC dialects of C, including sev-
eral subtle corner cases. It also allows for a cleaner C grammar
than the corresponding LR and LL grammars. In particular, we do



not require separate sets of productions for tracking type specifiers
in a sequence of declaration specifiers. This technique is used, for
example, by GCC’s grammar, noticeably complicates the syntactic
specification, and represents an incomplete solution. Additionally,
scannerless parsing helps avoid the “lexer hack”, which shares a
symbol table between a separate lexer and parser and which can
lead to subtle bugs in the presence of lexer lookahead [36]. At the
same time, global parser state clearly is not a panacea; symbol
resolution in general is best left to later compiler phases [15].

6. Error Handling
So far, we have focused on Rats!’ support for expressing extensi-
ble syntax and recognizing well-formed inputs. In reality, however,
both grammars and language source files are likely to contain er-
rors. Consequently, to assist tool developers in debugging gram-
mars and users in debugging source files, Rats! includes a number
of error detection and reporting facilities.

Like other recursive descent parsers, packrat parsers cannot sup-
port left-recursion. Accordingly, Rats!, among other grammar and
module validity checks, detects and reports left-recursive produc-
tions. However, it does automatically convert direct left-recursions
in void, text-only, and generic productions into the correspond-
ing right-recursions and includes support for promises to create
left-recursive data structures with right-recursive productions. Like
Ford’s packrat parsers, Rats!-generated parsers collect parse errors
even for successful parser steps. To illustrate the need for this, con-
sider the Java grammar fragment:

Declaration* EndOfFile

The Declaration* expression succeeds for any input. If, however,
the input contains a declaration with an embedded syntax error,
the grammar fragment fails on the EndOfFile expression. If the
parser does not track embedded parse errors, it can only generate
the not very illuminating error message “end of file expected”. By
tracking parse errors even for successful steps, it can generate a
more specific message, such as “assignment expected”.

In addition to these error handling facilities also supported
by Ford’s Pappy, Rats! adds the following four features. First,
to aid with the debugging of grammars, Rats! can pretty print
grammars—either as plain text or hyperlinked HTML—after
loading and instantiating all modules, after applying all module
modifications, or after applying all optimizations. Second, Rats!-
generated parsers enforce the type of each production’s semantic
value by declaring yyValue and all bound variables with the cor-
responding type. As a result, type errors are detected when compil-
ing a parser. Delegating type checking to the compiler represents
a practical compromise between safety and parser generator com-
plexity; we believe it reasonable because Rats!-generated parsers
are carefully formatted for human readability. Third, error mes-
sages are automatically deduced from nonterminal names. For ex-
ample, a parse error within the production for ReturnStatement
results in the error message “return statement expected”. The re-
ported position in the input is the start of the production. For string
literals and string matches, which are typically used for recog-
nizing keywords or punctuation, the error message specifies the
string and the position of the corresponding expression. Fourth,
parsers automatically track file names as well as line and column
numbers. If semantic values are instances of our source-to-source
transformer framework’s AST nodes, Rats!-generated parsers can
automatically annotate these nodes with the corresponding infor-
mation. That way, later tool phases can easily report the location of
semantic errors. Overall, Rats!’ error handling facilities have been
designed so that tool implementors can focus on the functionality
of their tools and need not worry about the details of error detection
and reporting.
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Figure 1. The data structures of a Rats!-generated parser. The
parser object stores the memoization table in two arrays, one for
read-in characters and the other for column objects. Each column
object references several chunks, which, in turn, reference memo-
ized results. Each result represents either a semantic value or a
parse error.

7. Parser Implementation
The implementation of Rats!-generated parsers is guided by two
constraints. First, Rats! has to correctly implement an essentially
functional parsing technique in an imperative, stateful program-
ming language. Second, it has to enable optimizations that reduce
the overhead of memoizing intermediate results and thus the run-
time overhead of packrat parsing. Our implementation meets both
constraints through a careful layout of data structures and a com-
mon interface to both semantic values and parse errors. We present
the implementation of Rats!-generated parsers in this section, while
we discuss the corresponding optimizations in the next section.

Each parser generated by Rats! has a main class, which inherits
from a base class named PackratParser. The base class stores
the memoization table in two arrays: one array of read-in charac-
ters and one of column objects, which store memoized results and
track the file name as well as line and column numbers. Compared
to Ford’s parsers, which rely on a linked list of records represent-
ing table columns, and as discussed in Section 8, this layout lets
parsers avoid allocating column objects for input positions that do
not require memoization. Characters are read, on demand, from a
regular Java character stream. While seemingly trivial, this imple-
mentation detail avoids an important restriction when compared to
Ford’s packrat parsers: Ford states [18, 19] that his parsers need to
have the entire input available up-front, thus making them unus-
able for interactive applications. Because they use Java’s character
streams, this is not the case for Rats!-generated parsers.

The parser’s main class defines the actual column object, which,
conceptually, has one field per production to store the memoized
intermediate result. In practice and as also discussed in Section 8,
Rats! uses a level of indirection by allocating fields in chunks.
Chunks reduce heap utilization because most nonterminals are not
visited for a given input position and, consequently, do not require
a field to store the memoized result. Figure 1 illustrates the data
structures used by Rats!-generated parsers.

The parser’s main class also defines a per-production accessor
method, which takes the index representing the current input po-
sition as its only argument and returns the corresponding result.
Since the input to be parsed is implicitly available through the array
of characters, accessor methods represent functions from strings to
indices to results: String -> Index -> Result. On invocation,
an accessor method tests whether the column object for that index
has been allocated, creating it if necessary, and then tests whether
the appropriate chunk has been allocated, again creating it if nec-



public abstract class Result {
// The index into the input.
public final int index;

// Create a new result.
public Result(int idx) { index = idx; }

// Determine if the instance has a value.
public abstract boolean hasValue();

// Get the actual value.
public abstract Object semanticValue();

// Get the (embedded) parse error.
public abstract ParseError parseError();

// Select the more specific parse error.
public abstract ParseError select(ParseError e);

// Create a new value, using this result’s index.
public abstract SemanticValue

createValue(Object val, ParseError e);

// Determine whether this result has the value.
public abstract boolean hasValue(Object val);

}

Figure 2. The common base class for semantic values and parse
errors. The last three methods are used to optimize parser perfor-
mance and are explained in Section 8.

essary. Next, it tests whether the memoization field is null. If so,
the method calculates the result, stores it, and returns it. If not, the
method simply returns the stored value.

When receiving results from accessor methods, parsers need
to easily distinguish between semantic values and parse errors,
as they need to execute different code depending on the type of
result. To this end, we leverage Java’s object-oriented features and
represent semantic values and parse errors through two separate
container classes. The container class for semantic values, named
SemanticValue, stores the actual value, the index representing the
input after the parsed expression, and possibly an embedded parse
error. The field for the actual value is declared to be a Java Object,
which is an application of type erasure [7] and allows us to use the
same container class for all types of semantic values. The container
class for parse errors, named ParseError, stores the error message
and the index representing the location of the error.

Both container classes have a common base class, which pro-
vides a uniform interface for distinguishing between values and er-
rors as well as for accessing the contained information. It is shown
in Figure 2. The implementation of the concrete methods is very
simple—between one and two lines of code per method. At the
same time, the use of this common base class significantly simpli-
fies parser implementation, as illustrated in Figure 3 for the produc-
tion recognizing pointer declarators in our C grammar:

generic PointerDeclarator =
Pointer DirectDeclarator ;

In particular, no instanceof tests are necessary to distinguish be-
tween semantic values and parse errors, and no type casts are re-
quired to access each container class. Due to our use of type era-
sure, type casts are still necessary for accessing the actual seman-
tic values. However, these casts cannot fail, as the corresponding
yyValue declarations in the productions that create the values have
the same type (which also ensures the type safety of the semantic

private Result pPointerDeclarator(final int yyStart)
throws IOException {
Result yyResult;
GNode yyValue;
ParseError yyError = ParseError.DUMMY;

yyResult = pPointer(yyStart);
yyError = yyResult.select(yyError);
if (yyResult.hasValue()) {

GNode v$g$1 = (GNode)yyResult.semanticValue();

yyResult = pDirectDeclarator(yyResult.index);
yyError = yyResult.select(yyError);
if (yyResult.hasValue()) {

GNode v$g$2 = (GNode)yyResult.semanticValue();

yyValue = GNode.create("PointerDeclarator",
v$g$1, v$g$2);

setLocation(yyValue, yyStart);
return yyResult.createValue(yyValue, yyError);

}
}
return yyError;

}

Figure 3. Example code for recognizing pointer declarators in
our C parser. The method body attempts to match a Pointer
followed by a DirectDeclarator. If the matches are successful,
it creates an AST node with the two productions’ values as its
children and returns a new value container with the node and any
embedded parse error. The method implicitly tracks the current
input position through yyResult, while explicitly tracking any
parse error through yyError. Note that the method’s result is not
memoized, since the corresponding production is only referenced
once in the C grammar and thus cannot be visited more than once
for a given input position.

actions). Consequently, they could be compiled away in languages,
such as C++, that support static casts.

8. Optimizations
We now turn to the optimizations performed by Rats!. The pri-
mary goals for optimizing packrat parsers are two-fold. First, the
optimizations should reduce the size of the table memoizing inter-
mediate results. Decreasing the size of this table is important not
only for keeping heap utilization as low as possible but also for im-
proving parser performance. After all, a smaller memoization table
decreases the frequency of memory allocator and garbage collec-
tor invocations and also increases the table fraction that fits into a
processor’s caches. Second, the optimizations should improve the
performance of productions that recognize lexical syntax. This is
important, because packrat parsers are scannerless, integrating lex-
ical analysis with parsing, and thus cannot utilize well-performing
techniques, such as DFAs, for recognizing tokens.

Table 3 summarizes the optimizations performed by Rats!. The
optimizations include all those performed by Ford’s Pappy, while
also introducing significant new ones. The chunks, grammar, termi-
nals, and cost optimizations, which are also performed by Pappy,
work as following. First, the chunks optimization is based on the
observation that most nonterminals are not visited for a given input
position, with the table field memoizing the production’s result re-
maining null. Consequently, as illustrated in Figure 1, the chunks
optimization introduces a level of indirection and allocates fields in
chunks, thus reducing heap utilization. Second, the grammar opti-
mization is based on the observation that the lifting and desugar-



Name Description Rats!
Chunks Organize memoized fields into

chunks.
Same
as [18]

Grammar Fold duplicate productions and
eliminate dead productions.

Same

Terminals Optimize recognition of termi-
nals, incl. using switch statements.

Improved

Cost Perform cost-based inlining. Same
Transient Do not memoize transient produc-

tions.
New

Nontransient Automatically recognize produc-
tions as transient.

New

Repeated Do not desugar transient repeti-
tions.

New

Left Implement direct left-recursions
as repetitions, not recursions.

New

Optional Do not desugar options. New
Choices1 Inline transient void and text-only

productions into choices.
New

Choices2 Inline productions that are marked
inline into choices.

New

Errors Avoid creating parse errors for
embedded expressions.

New

Select Avoid accessor for tracking most
specific parse error.

New

Values Avoid creating duplicate semantic
values.

New

Matches Avoid accessor for string matches. New
Prefixes Fold common prefixes. New
GNodes Specialize generic nodes with a

small number of children.
New

Table 3. Overview of optimizations. Rats! introduces significant
new optimizations when compared to Ford’s previous work.

ing of expressions described in Section 3.1 can result in duplicate
productions, which might even increase the size of the memoiza-
tion table. Consequently, the grammar optimization folds equiva-
lent productions into a single one and, comparable to dead code
elimination, eliminates non-top-level productions that are never ref-
erenced. Third, the terminals optimization is based on the obser-
vation that many productions for recognizing lexical syntax have
alternatives that start with different characters. Consequently, the
terminals optimization replaces successive if statements that parse
disjoint lexical alternatives with a single switch statement. It also
folds alternatives that start with the same literals into one alternative
with a common prefix and, if the matched text can be determined
statically, uses literal Java strings instead of dynamically instantiat-
ing strings. Finally, the cost optimization inlines productions, with
the goal of avoiding the overhead of invoking accessor methods
and performing memoization. However, since indiscriminate inlin-
ing can invalidate the linear-time performance guarantee of packrat
parsers, the cost optimization only inlines very small productions.

Of the new optimizations introduced by Rats!, the transient op-
timization is the most important. It is based on the observation that
packrat parsers never backtrack over many productions. For exam-
ple, many helper productions for recognizing lexical syntax, such
as the SymbolCharacters production shown in Section 4 and in-
cluding those for identifiers, keywords, operators, and punctuation,
do not require backtracking. More importantly, spacing, which in-
cludes all white space and comments, makes up large parts of most
source files but does not require backtracking. Finally, many pro-
ductions for hierarchical syntax start with distinct keywords or
symbols and do not require backtracking either. However, if the

parser can never backtrack over a production, there also is no need
to memoize the intermediate result. Consequently, the transient op-
timization gives grammar writers control over which productions
are memoized. If a production is declared to be transient, Rats!
does not allocate a field for memoizing the production’s result;
rather, as illustrated in Figure 3, the corresponding parsing code is
always executed. As a result, transient productions reduce the size
of a parser’s column objects and chunks. Furthermore, for input po-
sitions that are only touched by transient productions (such as those
in the middle of a token), no results need to be memoized at all and
the corresponding column object is never allocated, which further
reduces heap utilization.

Several other optimizations build on the transient optimization
and its motivating observation. In particular, the nontransient opti-
mization automatically marks productions as transient, thus elimi-
nating the need for grammar writer intervention. Currently, it rec-
ognizes productions that are only referenced once in a grammar,
but on-going work is trying to extend the scope of this optimiza-
tion. The repeated optimization is based on the observation that a
repetition’s component expressions do not require memoization if
the repetition appears in a transient production—after all, the tran-
sient attribute already indicates that the parser will not backtrack
over the production. Consequently, the repeated optimization pre-
serves repetitions in transient productions and directly implements
them in the generated parser; it improves not only performance but
also avoids stack overflow errors for some Java virtual machines
when recursing over very long repetitions. The left optimization
is based on the observation that direct left-recursions are typically
used for recognizing expressions. Since each type of expression has
a unique operator, the parser does not backtrack for the different al-
ternatives, and the left optimization converts direct left-recursions
into equivalent repetitions instead of right-recursions. The optional
optimization is based on the observation that a packrat parser never
backtracks over the alternatives of a desugared option and thus pre-
serves options for all productions, whether they are transient or not.

The choices1 optimization is based on two observations. First,
the effectiveness of the terminals optimization depends to some de-
gree on how a grammar has been written: If an alternative refer-
ences a nonterminal instead of the corresponding literals, it can-
not include the alternative in a switch statement. Second, tran-
sient productions can be safely inlined into other productions, since
they do not require memoization. Consequently, if a nonterminal
appears as the only expression in an alternative, the nonterminal
references a void or text-only production (which is typically used
for lexical syntax), and the referenced production is transient, the
choices1 optimization inlines the production. The choices2 opti-
mization generalizes the choices1 optimization to inlining all tran-
sient productions, not just void or text-only productions, with the
goals of (1) avoiding the overhead of invoking accessor methods
and (2) creating opportunities for other optimizations. However, ex-
periences with a first implementation showed that it can be too ag-
gressive. Notably, for several productions recognizing expressions
in our C and Java grammars, it inlined the same production multiple
times into another production. The corresponding parser methods
are very large and thus hard to compile by the just-in-time compiler
of the Java virtual machine, resulting in a noticeable decrease in
parser performance. Consequently, to better control this optimiza-
tion, we introduce the inline attribute, which makes a production
available for inlining through the choices2 optimization and is oth-
erwise equivalent to the transient attribute. It is typically used to
mark productions that are referenced through a lone nonterminal in
a larger choice, such as a primary identifier appearing in only the
production recognizing all primary expressions or a return state-
ment appearing only in the production recognizing all statements.



The errors optimization is based on the observation that most al-
ternatives in a production’s main choice fail on the first expression.
For example, the statement production for any C-like language has
a large number of alternatives, but only one of these alternatives
can succeed on a given input. Consequently, the errors optimization
suppresses the generation of a parse error when the first expression
in an alternative fails. At the same time, parse errors are still gener-
ated when all alternatives fail. The select optimization is based on
the observation that tracking the most specific parser error requires
two method invocations, one to access a result’s parse error and
one to compare that error with the most specific one. To reduce the
overhead of this common idiom, the select optimization performs
access and comparison with a single invocation of the select()
method defined in Figure 2 and used in Figure 3.

The values optimization is based on the observation that many
productions simply pass the semantic value through. For exam-
ple, both our C and Java grammars have 17 expression prece-
dence levels, which are implemented by separate productions. All
of these productions must be invoked to recognize a primary ex-
pression, such as a literal or identifier, with productions of lower
precedence levels simply passing the corresponding value through.
Consequently, the values optimization delegates the creation of
new instances of SemanticValue to the last result accessed while
parsing an expression, i.e., to the createValue() method de-
fined in Figure 2 and used in Figure 3. This dynamic delegation
of object creation works independently of how a semantic value
has been created, be it through an explicit action, an assignment
to yyValue, or through Rats!’ value deduction facilities. As a
result, this optimization applies to a much larger class of pars-
ing expressions than would be possible with a static analysis in
the parser generator. The matches optimization, comparable to the
select optimization, replaces two method invocations for imple-
menting string matches with a single method invocation of the
hasValue(Object) method defined in Figure 2.

The prefixes optimization generalizes the terminals optimization
by extending the folding of alternatives with common prefixes to
nonterminals, and not just literals; it is comparable to left factoring
for context-free grammars. The goals are (1) to avoid repeated calls
to accessor methods when trying the alternatives with a common
prefix and (2) to avoid memoization altogether by reducing the
number of nonterminal references.

Finally, the gnodes optimization is based on the observation that
most AST nodes only have a small number of children. In partic-
ular, all productions in our C and Java grammars that do not con-
tain repetitions and thus have a fixed number of component expres-
sions result in AST nodes with at most seven children. Furthermore,
many productions that do contain repetitions, such as those rec-
ognizing declaration specifiers in C or modifiers in Java, result in
AST nodes with few children in practice. Consequently, the gnodes
optimization introduces several versions of our generic node ab-
straction that are specialized for a particular number of children in-
stead of relying on a variable length list. If the number of children
is known at parser generation time, the parser invokes the corre-
sponding factory method directly (see Figure 3 for an example). If
the number is not fixed, the parser invokes another factory method,
which dynamically selects either a specialized or the general ver-
sion.

9. Experimental Evaluation
In this section, we present the results of our experimental eval-
uation. First, we evaluate Rats!’ support for syntactic extensibil-
ity in Section 9.1 by determining the effort involved in creating
three real-world language extensions. Second, we evaluate parser
performance in Section 9.2 by comparing Rats! with four other
parser generators. In summary, our results show that Rats! does,

in fact, provide concise syntactic specifications, with grammars be-
ing considerably shorter than other grammars, and easy extensibil-
ity, with extensions being realizable by others with little code and
effort. Rats! also produces parsers that perform reasonably well,
out-performing two GLR-based parsers by at least a factor of 1.9,
while being at most 2.7 times slower than more conventional LL
parsers.

9.1 Extensions
To evaluate Rats!’ support for extensible syntax, we present three
language extensions that have been implemented on top of the
C and Java grammars distributed with our parser generator. The
first extension is C4 [17] (for CrossCutting C Compiler), which
enhances C with support for aspect-oriented programming tech-
niques. C4’s goal is to simplify the development of system software
variants, and it has already been used for implementing Linux ker-
nel extensions. C4’s syntax specification comprises four modules—
in addition to the 11 modules of the C grammar—with 150 lines of
code. It also requires a subclass of the C parser’s global state class
to support aspect scopes spanning several disjoint aspect blocks;
the class adds 130 lines of Java code. A novice Rats! user took 4
hours to learn how to use our parser generator, 11 hours to write
and debug the original grammar, and 2 hours to port the grammar
over to the newly added module system.

The second extension is Jeannie, which significantly simplifies
the development of Java programs that also include native C meth-
ods. Basically, Jeannie enables the direct embedding of C code in
Java source files, while also providing sugar for conveniently ac-
cessing Java objects from the embedded C code. For example, us-
ing Java’s native interface, a developer needs to write the following
code to call a Java method from C:

jclass cls = (*env)->GetObjectClass(env, obj);
jmethodId mid = (*env)->GetMethodId(env, cls,

"method", "signature");
jobject result = (*env)->CallObjectMethod(env,

cls, mid, ...);

However, using Jeannie, the developer simply writes:

jobject result = ‘obj.method(...);

The backtick “‘” is a new unary operator that switches between C
and Java for the following expression. Jeannie’s grammar combines
the complete C and Java grammars with the syntax for switching
between the two languages and the sugar for calling back to Java.
The syntax specification comprises four modules with 230 lines
of code. Another novice Rats! user took 20 hours to familiarize
himself with packrat parsers in general and Rats! in particular, 5
hours to understand the existing C and Java grammars, and 20
hours to write and debug the Jeannie grammar. We believe that the
difference in development time when compared to C4 stems mostly
from the fact that combining two entire languages is considerably
more difficult than adding select new constructs to a language.

Our third syntactic extension removes pointers from C and thus
exposes a simplified language that is more suitable for introductory
programming courses. It also illustrates Rats!’ support for disabling
syntax. Barring the single module’s header, the syntactic specifica-
tion consists of only four partial productions:

GNode Declarator -= <Pointer> ;
generic AbstractDeclarator :=

DirectAbstractDeclarator ;
GNode UnaryExpression -= <Address>,

<LabelAddress>, <Indirection> ;
Action ComponentSelectionExpression -=

<Indirect> ;



System Algorithm Modules Lex AST LoC
Rats! PEG 9 — — 790
SDF2 GLR 57 — — 1,680

Elkhound LALR/GLR 1 1 1 2,370
ANTLR LL 1 1 — 1,280
JavaCC LL 1 1 — 1,240

Table 4. Comparison between Java grammars. “Algorithm” indi-
cates the underlying formalism, “Modules” indicates the number of
grammar units, “Lex” indicates a separate lexer, “AST” indicates
a separate AST definition, and “LoC” stands for “lines of code”,
which, for Elkhound, also includes several necessary C++ files.

These productions remove support for pointers from (abstract)
declarators and support for address and indirection operators from
expressions. No other changes are necessary, and the corresponding
source-to-source transformer can simply pretty print the resulting
AST with the existing C pretty printer, handing off the resulting
code to a conventional C compiler.

9.2 Performance
Our performance evaluation compares Java 1.4 recognizers and
parsers generated by Rats! 1.8.0, SDF2 2.3.3 [9, 40], Elkhound
2005.08.22b [28], ANTLR 2.7.5 [34], and JavaCC 4.0 [16]. We
also use the sglri tool from pre-release 14567 of Stratego/XT [8],
as SDF2’s sglr tool has known inefficiencies—though both rely
on the same parser engine. SDF2 is a modular GLR parser gen-
erator written in and targeted at C, Elkhound is a hybrid GLR
and LALR(1) parser generator written in and targeted at C++, and
ANTLR and JavaCC are LL(k) parser generators written in and tar-
geted at Java. We utilize our own grammar for Rats!, the java-front
0.8 grammar for SDF2, but with all Java 1.5 features removed, our
own grammar for Elkhound, which largely mirrors our Rats! gram-
mar for syntax and Elkhound’s C++ grammar for AST structure
and supporting code, the version 1.21 grammar for ANTLR, and
the grammar dated 5/5/2002 for JavaCC. Table 4 summarizes the
five grammars.

We present results for both the performance of Java recognizers,
i.e., parsers that do not generate ASTs, and full Java parsers, thus
enabling us to identify the overheads associated with each parser
generator’s AST framework. The Rats!-, SDF2-, and ANTLR-
generated parsers rely on generic AST nodes, while the Elkhound-
and JavaCC-generated parsers rely on specialized classes generated
for each type of node. The recognizer for Rats! is generated from
our Java grammar based on a parser generation time flag. The rec-
ognizers for SDF2 and Elkhound simply do not execute semantic
actions, as specified by a runtime flag. The recognizer for ANTLR
is generated from a separate grammar that omits the AST annota-
tions. Finally, the grammar and AST classes for the JavaCC-based
parser are automatically generated from the recognizer grammar
with Java Tree Builder 1.2.2 [33].

As inputs, we use a sampling of 38 Java source files taken from
the Cryptix libraries [12], ANTLR’s sources, and Rats!’ sources.
The files are between 766 bytes and 67 KB large, represent a variety
of programming and commenting styles, and contain a total of 730
methods with 8,058 non-commenting source statements. All mea-
surements were performed on a consumer-level Apple iMac from
the fall of 2002, with an 800 MHz PowerPC G4 processor and 1 GB
of RAM, running Mac OS X 10.4.5 and Apple’s port of Java 1.4.2
update 2. For each input file, we measured 10 iterations over that
file after 2 warm-up runs. We then derived overall throughput and
heap utilization statistics by performing a least-squares-fit over the
averages for each file. Note that heap utilization reflects total mem-
ory pressure, as we allocate a heap large enough to avoid garbage
collection while parsing. Further note that all input files and bench-

Recognizer Parser
System T-put Heap Util. T-put Heap Util.
Rats! 518.0 51.5 317.0 58.0
SDF2 136.1 — 21.4 —

Elkhound 141.5 — 139.4 —
ANTLR 538.6 11.5 393.6 28.0
JavaCC 1,114.3 10.6 382.9 63.2

Table 5. Comparison between Java recognizers and parsers, i.e.
parsers that do not and that do generate an AST. Throughput (“T-
put”) is measured in KB/s and heap utilization is measured in
bytes of heap per byte in the input. The recognizers and parsers
generated by SDF2 and Elkhound do not report heap utilization.
The corresponding grammars are summarized in Table 4.

mark code are part of Rats!’ distribution, so that experiments are
readily repeatable.

Table 5 shows the results for our experiments. The performance
numbers illustrate the cost of memoization and therefore the cost
of relying on PEGs to enable modularity, as the Rats!-generated
recognizer and parser are up to 2.2 times slower and consume up to
4.8 times more heap than the corresponding LL-based recognizers
and parsers. But they also illustrate that our optimizations are
effective, as the Rats!-generated recognizer and parser consistently
out-perform the GLR-based recognizers and parsers by at least a
factor of 2.3.

The relatively poor performance of the SDF2- and JavaCC-
generated parsers relative to the corresponding recognizers reflects
the costs of effectively creating a parse tree instead of just creating
an abstract syntax tree. In the case of SDF2, the parser engine
always creates a parse tree, from which the AST is extracted based
on embedded annotations. In the case of JavaCC, Java Tree Builder
is too aggressive in automatically including all of a production’s
component expressions. In contrast, Elkhound’s AST generation is
seemingly for free. However, our Elkhound-generated parser, just
like Elkhound’s C++ parser, does not free memory allocated for
AST nodes and thus leaks memory when rejecting unsuccessful
alternatives. A more careful implementation would incur additional
overhead for properly managing memory.

Additional experiments show that performance is somewhat de-
pendent on inputs. Notably, when adding three very large source
files, ranging from 123.7 KB to 134.5 KB, to our input set, the
Rats!-generated parser’s throughput drops to 269.2 KB/s while the
ANTLR-generated parser’s throughput increases to 419.6 KB/s.
Overall, the Rats!-generated recognizer and parser are up to 2.7
times slower than the LL-based recognizers and parsers and out-
perform the GLR-based recognizers and parsers by at least a fac-
tor of 1.9. The additional results suggest that ANTLR-generated
parsers have a relatively high startup cost, while Rats!-generated
parsers become increasingly memory-bound due to ever larger
memoization tables. In fact, our Rats!-generated C parser avoids
this limitation by incrementally parsing each external declaration
and then discarding the memoization table. However, this technique
does not apply to Java sources, which typically contain exactly one
top-level class or interface declaration.

At 790 lines, our Java grammar is concise and largely follows
the language specification, while the ANTLR and JavaCC gram-
mars are more than 50% larger, the SDF2 grammar is more than
2 times larger, and the complete Elkhound specification is almost
3 times larger. Furthermore, our grammar requires neither explicit
lookahead specifications—as required for the ANTLR and JavaCC
grammars—nor disambiguation filters [39]—as required for the
SDF2 grammar—nor explicit merge functions—as required for the
Elkhound grammar. In fact, Elkhound’s hybrid algorithm results in
the reporting of 18 shift/reduce and 3 reduce/reduce conflicts, even
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Figure 4. Effects of individual optimizations on throughput and
heap utilization of Rats!-generated Java parser.

though only two conflicts can yield multiple results and require ex-
plicit disambiguation.

Figure 4 illustrates the effects of Rats! optimizations on parser
throughput and heap utilization. The individual optimizations listed
on the x-axis are summarized in Table 3 and are cumulative from
left to right. For example, the data points labelled “Terminals” in-
clude the chunks, grammar, and terminals optimizations. The figure
shows that, of the factor 8.9 improvement in throughput between no
and all optimizations, the optimizations also performed by Ford’s
Pappy contribute a factor 2.44 improvement and the newly added
optimizations a factor 3.64 improvement. Of the factor 17.1 im-
provement in heap utilization, the optimizations also performed by
Ford’s Pappy contribute a factor 4.9 improvement and the newly
added optimizations a factor 3.5 improvement. These results illus-
trate that the newly added optimizations have a significant impact
on resource utilization, especially for parser throughput, and repre-
sent a clear improvement over Ford’s work. At the same time, the
chunks optimization remains the most important optimization for
reducing heap utilization.

10. Related Work
Motivated by the observation that traditional LR and LL grammars
are too hard to extend, several previous efforts have explored how
to make syntactic specifications more easily modifiable. Notably,
Cardelli et al. [11] introduce the idea of incremental grammar defi-
nitions, which can add, override, or remove individual alternatives.
They also define a formal type system for their grammars and pro-
vide an LL-based implementation. PPG [10], which is the parser
generator for the Polyglot extensible compiler [32], provides sim-
ilar functionality but is implemented as a frontend to an LALR(1)
parser generator. Next, ANTLR [34] is an LL(k) parser genera-
tor, models grammar modifications as inheritance, and provides the
ability to add or override alternatives. Furthermore, to improve ex-
pressivity, it is the first system to utilize syntactic predicates. How-
ever, all three systems are fundamentally limited by their choice of
parsing algorithm and cannot support the composition of arbitrary
syntactic units.

To avoid this limitation, Bison [21], a direct Yacc replace-
ment, now supports GLR parsing as an alternative to LALR(1).
Elkhound [28] also supports GLR parsing, but, to improve recog-
nition speed, generates hybrid parsers that fall back on LALR(1)
for unambiguous productions. However, parsers generated by ei-
ther system also preserve ambiguities and can produce several parse
or abstract syntax trees, which then need to be explicitly disam-
biguated through code. In fact, Elkhound’s parsers need to treat se-

mantic values as functional, as they may be shared between trees,
and could thus benefit from Rats!’ technique for safely updating
contextual state. In contrast, metafront [6] employs a new pars-
ing algorithm called specificity parsing. The algorithm recognizes
all CFGs (modulo left-recursions) and always returns a single tree
by (1) giving precedence to the more “specific” nonterminal, with
specificity being derived from a grammar, and (2) relying on ex-
plicit syntactic predicates for any remaining ambiguities. While ef-
fective, we prefer to build on PEGs, as they avoid ambiguities in
the first place and also have a stronger formal foundation [20].

SDF2 [9, 40] shares many of the same goals as our work and
also provides a module system for syntactic specifications. How-
ever, its module system is less expressive, supporting only the ad-
dition of new alternatives but not their overriding or removal. It
also lacks module parameters, which fixes module dependencies at
module definition time and not module instantiation time, thus lim-
iting module reuse. Furthermore, because SDF2 builds on a GLR
parser generator, grammars require disambiguation, which is pro-
vided by separately specified disambiguation filters [39]. In con-
trast, Rats!’ syntactic predicates are an integral part of the underly-
ing syntactic formalism and also more expressive than the follow
restrictions and reject productions utilized by SDF2. Additionally,
priority and associativity can be directly encoded in a grammar;
though Rats! does not support left-recursions in general and instead
requires explicit semantic actions to construct the corresponding
left-recursive data structures through promises.

Many programming languages with macro support include at
least some facilities for extending a language’s syntax—[5] sur-
veys several representative systems. However, these facilities usu-
ally are tightly integrated with the language itself, interleaving pars-
ing, macro expansion, and possibly type checking, and are thus
unsuitable for extensible syntax in general. Furthermore, modules
have been studied extensively in the context of programming lan-
guages [2]. We build on this body of work, notably the basic idea
behind ML’s functors, and adapt modules to a new domain, syntac-
tic specifications. Finally, Dijkstra and Swierstra [13] explore how
to implement lazy, functional parser combinators in Java. However,
their direct (and manual) mapping of Haskell’s parser combinators
onto Java objects is relatively verbose and slow, while also lacking
Rats!’ support for global state.

11. Conclusions
In this paper, we have presented Rats!, a parser generator for Java
that supports easily extensible grammars by making the benefits of
modularity available for syntactic specifications. To this end, Rats!
eschews context-free grammars and instead builds on parsing ex-
pression grammars. PEGs are attractive because they are closed un-
der composition—thus enabling the composition of syntactic units,
rely on ordered rather than unordered choices—thus avoiding am-
biguities, provide syntactic predicates—thus increasing expressiv-
ity, and are scannerless by default—thus integrating lexical anal-
ysis. Rats! implements the corresponding packrat parsers, which
are lazy and functional, in a strict, imperative language through
a careful layout of data structures and a common interface to se-
mantic values and parse errors. It also improves on Ford’s previous
work by exposing more concise grammars—through the automatic
deduction of semantic values, supporting global state—which is
safely modified through lightweight transactions, and producing
better performing parsers—through extensive optimizations.

On top of this syntactic foundation, Rats! builds a module sys-
tem for grammar specifications. The module system organizes
grammars into modules, which encapsulate related productions
and explicitly track dependencies on other modules. It also sup-
ports so-called module modifications, which can add, override, or
remove individual alternatives in productions and thus concisely



express syntactic extensions. Finally, it relies on module param-
eters to compose different modules with each other, notably by
delaying the specification of actual module dependencies until
module instantiation time. Our experimental evaluation validates
Rats! as a substrate for extensible syntax. It enables others to re-
alize real-world programming language extensions in little time
and code, and its parsers perform reasonably well, out-performing
GLR-based parsers by at least a factor of 1.9, while being at most
2.7 times slower than more conventional LL parsers.

Besides further developing the C4 and Jeannie systems dis-
cussed in Section 9.1, our future work will focus on two issues.
First, we will investigate how to improve the scope of the nontran-
sient optimization, so that it can automatically recognize more pro-
ductions as transient and, where possible, also as inline, thus
reducing the need for manual annotation and increasing opportuni-
ties for Rats!’ other optimizations. Second, we will explore how to
leverage essentially the same syntactic specification for generating
parsers that create different ASTs, thus further improving grammar
reuse. For example, while a parser used in a compiler can safely
discard all layout including comments and thus create a relatively
compact AST, a parser used in a software refactoring tool must pre-
serve layout, so that the tool can emit properly formatted sources
again. At the same time, both parsers should be based on the same
language specification. The open source release of our parser gen-
erator is available at http://cs.nyu.edu/rgrimm/xtc/.
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