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Abstract

Our aim is to give a proof of the fact that two notions related to
regular expressions, the prebases due to Mirkin and the partial deriv-
atives introduced by Antimirov lead to the construction of identical
non-deterministic automata recognizing the language of a given regular
expression.

Keywords: Regular expressions, Finite automata, Prebases, Partial de-
rivatives.

1 Introduction

There are many sequential algorithms to convert a regular expression into an
automaton (see for example [4]). We here consider two basic constructions,
which yield non-deterministic automata: the first one lies on the notion of
prebase of a regular expression due to Mirkin [9]; the second one is based on
the notion of partial derivative of a regular expression introduced by Anti-
mirov [1]. It turns out that the NFA’s deduced from each of these notions
are identical. We give a proof of this fact in this paper.

Mirkin and Antimirov constructions, as well as Brzozowski construc-
tion [3] are derived from the computation of a system of equations associated
to the regular expression. The concept of word derivative developed by Brzo-
zowski addresses deterministic systems while the notions of prebase and of
partial derivative account for the non-deterministic case. The NFA yielded
by Mirkin and Antimirov constructions will be called the equation automaton
of the expression.



Our interest for the constructions which compute the equation automaton
comes from its ”small“ size: its number of states is less than or equal to n+1,
where n is the number of symbol occurrences in the expression, while the num-
ber of states of the classical position automaton (constructed by Glushkov [6]
or McNaughton-Yamada [8] algorithms) is equal to n + 1. In practice the
gap between the two sizes can be arbitrarily large, as shown by the following
example coming from the domain of programming languages compilation and
cited in [1]. Let L ={A,..., Z,a,..., z} be the set of letters, D = {0,...,9}
be the set of digits and ¥ = LU D be the alphabet. The set of identifiers of a
programming language is typically represented by a regular expression over X
such as E = L-(L+ D)*. The associated lexical analyzer is either a 115-states
position automaton or a 2-states equation automaton. Let us mention that
the most efficient implementations to compute the equation automaton and
the position automaton have the same worst case space and time complexity,
which, as reported in [5], is quadratic on the size of the expression.

Section 1 recalls some useful notations, definitions and classical results of
automata theory. Section 2 presents the general framework of regular expres-
sion equations. Mirkin’s prebases are introduced in Section 3 and Antimirov’s
partial derivatives in Section 4. Section 5 provides a proof of the equivalence
of the two approaches.

2 Preliminaries

Let us review basic notions and terminology concerning regular expressions,
finite automata and derivatives. For further details, classical books [2, 7] or
handbooks [11] are excellent references.

Let > be a non-empty finite set of symbols, called the alphabet. Sym-
bols are denoted by z1,z2,...,Zm. A word u over X is a finite sequence
(y1, Y2, ..., yn) of symbols, usually written y1ys...y,. The length of a word u,
denoted |u| is the number of symbols in u. The empty word denoted by ¢ has
a null length. If v = y1y2...4y, and v = 21 22...2, are two words over X, their
concatenation u - v, usually written uv, is the word y;y5...y, 21 22...25. The set
of all the words over X is denoted X*. A language over X is a subset of X*.

A regular expression over the alphabet X is 0, or 1, or a symbol z; € X,
or is obtained by recursively applying the following rules: if F and G are
two regular expressions, the union (I’ + G), the product (F - G) (also written
(F'G)), and the star (F*) are regular expressions. For example (21 4z - 24)*
is a regular expression over {z1,z2}. The regular language L(F) denoted



by a regular expression F is such that: L(0) = 0, L(1) = {e}, L(z;) = {z;}
Vo, € 8, L(F+G) = L(F)UL(G), L(F-G) = L(F)L(G) and L(F*) = L(F)*.

A regular expression over the alphabet X is a term of the algebra Tge,
defined over the set ¥ U {0, 1}, with the symbols of function *,+,-, where
x is unary and 4 and - are binary. Properties of the constants 0 and 1,
and of the operators *, + and - lead to identities on 7Tpe,. Given a set S
of identities, expression computations are performed on equivalence classes
modulo S (see [1] for a detailed exposition). In the following, given a regular
expression, we compare the computation of its Mirkin’s prebase, and of its
set of partial derivatives; we assume that an identical set of identities holds
in the computation of both sets of expressions.

A finite automaton over X is a 5-tuple M = (Q, X, I, T, E)) where () is the
set of states, I is the subset of initial states, 1" is the subset of final states, and
F is the set of transitions which is a subset of () X X x Q). M is deterministic
(M is a DFA) if there is a unique initial state and if for all (¢,a) € @ x X2
there exists at most one state ¢’ such that (q,a,q’) € E; otherwise M is a
NFA. The transition set can be represented by a transition function § from
Q x ¥ to Q if M is a DFA, and from Q x X to 2% if M is a NFA. A path of M
is a sequence of consecutive transitions. A word v = uqug ... u, is recognized
by M if it is the label of a path starting in / and ending in 7’. The language
recognized by M, denoted by L a4, is the set of words M recognizes.

Finally, the following notations will be used. For a regular language
L, ML) is defined by: ML) = ecife € L(F)and 0 otherwise. Simil-
arly, for a regular expression K, A(F) is defined by: A(F) = 1life €
L(F) and 0 otherwise. We note £ = F when the expressions ' and F are
syntactically identical. The size of F is denoted | F|. The alphabetic width of
E, i.e. the number of symbol occurrences in F, is denoted ||E]]|.

3 Systems of equations: from languages to expres-
sions

Let L be a regular language and M = (@, X, {0}, 7, ) be a finite automaton
such that Lag = L. Assume that ¥ = {21, 29,...,2,,} and @ = [0, n]. Let L;,
for all 7 in @, be the language recognized by the automaton (Q, %, {i},T, F).
Let us first recall how the L; languages are related. The following system of
language equations holds:

L = LO



Li = (U z;Li;) U X(L;), for all i € [0, n]

7=1
U Lk if M isa NFA
Lz] = kes(i,xz;)
Ly, with k =46(i,z;) if M is a DFA

Conversely, assume that the languages L;, for ¢ € [0, n], satisfy the system of
equations Sy,

L = LO
L, = (U z;L;j) UX(L;), for all i € [0,n]
7=1
Li = |J Ly, with I; C[0,n]
kEL‘]

Let £ be the automaton whose (1) states are languages L;, (2) initial state
is L, (3) final states are such that A(L;) = ¢, (4) transitions are defined by:
Ly € §(L;,z;) & k € I;;. The automaton £ recognizes the language L.

From a computational point of view, assume now that I is denoted by
the regular expression F. The system of expression equations Sg deduces
from Sy, by replacing the language Ly (resp. L;;) by a regular expression Ej,
(resp. E;;) such that Ly = L(Ey) (resp Ly; = L(Fy;)).

F=FEy = ziFa+- 4 zmFom + A(Fo)

Ey = ziFn+ 2B+ A(E)
Ey = ziFu 4+ T B + A(E)
Eij = EkejijEk, with IZ']' - [Ovn]

Let £ be the automaton whose (1) states are expressions E;, (2) initial state
is £, (3) final states are such that A(E;) = 1, (4) transitions are defined by:
Ey € §(F;,z;) & k € I;;. The automaton £ recognizes the language L.
Given a regular expression F, the practical problem is to find a finite (and
as small as possible) set of expressions {Fj, ..., E,} such that Sg holds. In
the deterministic case, the set of dissimilar word derivatives of F (Brzo-
zowski [3]) is a solution. The notion of base in the languages of regular



expressions introduced by Spivak [10] leads to a similar solution. We now
present two solutions for the non-deterministic case: Mirkin’s prebases [9]
and Antimirov’s partial derivatives [1].

Example 1 Let £ = 2*(zz +y)*. A non-deterministic equation system for
F is the following:

ez +y) = z@(zz+y))ta(z(ze+y)")+ylze+y) +1
r(zz+y)" = z(zz+y)
(zz+y)" = z(@@z+y))+y@r+y)"+1

4 Mirkin’s prebases

Mirkin’s construction [9] is based on the notion of prebase of a regular ex-
pression. We first introduce the notion of support.

Definition 1 Let F be a reqular expression. The set m C {Fy, Fn, ..., Fy},
where Ky, ..., K, are non-null regular expressions, is called a support of F if
the following equalities hold:

F = EO
k= T1E21++mmE2m+>‘(E2) fori:ov"'vn
where F;;, fort=0,--+,n and j=1,.--+,m, is a linear combination of ele-

ments of the set w.

Definition 2 If the set © is a support of F, then the set 11 = n U {FE} is a
prebase of K.

Notice that for a non null regular expression F/, any prebase of F contains
F (for the null expression, there exists a unique and empty support). On
the other hand, a support of £ contains £ only if £ appears in the linear
combination associated to some expression F;;. Therefore the property: |IT|—
|7| < 1 holds for any expression E.

Let F;j = Yker,; Fk, with 7;; C [0,n]. We’ll use the following notation:
X is the mapping defined by X (F;;) = {Fx | k € I;}.



Example 2 Consider the system of equations given in Example 1 for the
expression E = x*(zx + y)*. The set {z*(zz +y)*, z(zz +y)*, (zz+y)*}
is both a support and a prebase of E.

Let R be a set of non-null regular expressions and F be a regular expres-
sion. We define the operation ® as follows: if F'# 0 then FO R ={F -G |
GeR}and ROF={G-F | GER}else FOR=R® F =0. We'll use
this operation to formulate the next three propositions which are a rewriting
of Mirkin’s paper.

Proposition 1 (Mirkin [9]) Let E be a regular expression. Then the set
g, recursively computed as follows, is a support of E:

[F=0o0ork=1] 7w=10

[E:mi] ﬂ'E:{l} Vo, € X
[F=F+d] T =1 Umg
[EZF-G] FEIWFQGU)\(F)QFG
[E:F*] T =7 ® F*

Proof. For =0 and £ =1 we have the following equation:
F=z1-04- -+, -0+A(F)
Thus the empty set is a support of K =0 and of K = 1.
For K = zp, with 2 € X, we have the following system:

T = $1-0+...+mk_.1+...+$m.0
1 = 2-04+---4a,-0+1

Thus the set {1} is a support of F = zy, for all z in X.

Let 7 = {F},---, F,} be the support associated to the regular expression
F, and g = {G4,-+,G} be the support associated to G. By induction
hypothesis, we have:

F = F

By = b+t an by + M) fori=0,-,n
Fij = Sier, by, with I; C[0,7]

and



G = Gy
Gy = 211G+ +2uGem + MGg) fork=0,---,¢
Gij = ZkEJ,'ijy with Jij - [076]

Casel: K = F+(. Since F = Fyand G = GGg, we have F = Fy = Fo+Gg
and the following equation holds:

Eo = 21(Fo1 + Go1) + -+ + 2 (Fom + Gom) + A(Fo + Go)

Since for j = 1,---,m, Fy; (resp. Go;) is a linear combination of expres-
sions of mp (resp. of mg), Fu; + Go; is a linear combination of expressions of
7 Umg. Thus the set 7 U wg is a support of £ = F 4+ G.

Case 2: E=F.G. We have E = Fy = Iy - Gg. The following equation
holds:

Ey = 21FnGo+ -+ 20 ForGo + A F0)Go
Since Foq, . . ., Fom are linear combinations of expressions of 7, Fo1Go, - - ., FomGo

are linear combinations of expressions of 7y & Gy. Thus the set 7p & Gy U
A(Fy) ® m is a support of £ = F - (.

Case 3: ¥ = F*. We have:
EO = Fg
= (Fo\ 1) k5 + A(Fg)
= (e1Fon + -+ zmFom) - F§ + A(F])
= 1 Fnky 4+ 2 Fon F§ + A(FY)

Thus the set 7y @ F* is a support of K = I'*. g

Example 3 Let E/ = z*(zx + y)*. The following supports and prebases are
successively computed:

{1}
e = {2¥}
Tewe = {2}

T



Teet+y — {‘ral}

T(zzty)x = {x(xx + y)*v (mc + y)*}
Mor oty = {2" (@2 +y)" 2(zz+y)" (22 +y)"}

Proposition 2 (Mirkin [9]) Let F be a reqular expression. The following
property holds:
Mgl < [|E][+1

Proof. We prove that: |7z| < ||F||, which is equivalent, since |[1g|—|7g| <
1. The proof is by induction on the length of K. It is easy to see that for
|E| < 1 the proposition is true. Indeed |mo| = 0 = [|0]|, |71] = 0 = ||1]| and
|7z, | = 1 =||2i]], for all z; € X.

Assume that the proposition is true for any expression of length less or
equal to n, n > 2. Let F' and G two regular expressions such that: |F| <n
and |G| < n. By induction hypothesis, we have |rr| < ||F|| and |7g| < ||G]].
We consider the following three cases:

Casel: F = F+@G. In thiscase 7y = mpUng. Hence |7g| < |7p|+|7a] <
N+ G = [1£]]-

Case 2: K =F-G. We have 1 = np © GU A(F) @ mg. Hence |1g| <
(Im5 © Gl + [A(F) & 7al) < el + 76l < 1]+ IGI] = | E]l

Case3: ¥ =I". We havery = rpOF. Thus 15| = |mp| < [|F|| = ||F

Proposition 3 (Mirkin [9]) Let E be a regular expression and llg be a
base of E. The language L(F) is recognized by the automaton Mg =
(@Q,%, q0,T,0) such that:
Q = lg={EFE,... B}
o = E
T = {EeQ[AF)=1}
S(Ei xj) = X(E;j) foral0<i<n,1<j<m

5 Antimirov’s partial derivatives

Let us consider the equations:

E=Fy = z1Fn+- -+ tpFom + A Fo)
on = EkEIOJEky with ](Jj - [O,n]



In the deterministic solution due to Brzozowski, Ejy; is set to m]-_lE and
T;Ykel,, ok is seen as a unique term. In Antimirov’s solution, T ke, By 18
seen as the sum of the expressions z; g, with k € Ip;. The expressions EY,
for k € Iy;, are called the partial derivatives of E w.r.t. the symbol x;; their
sum Ygej,, Fr behaves in the same manner as does the T; LE derivative in
the deterministic version.

The set {E}, | k € Io;} of the partial derivatives of E w.r.t. z; is denoted
0z, (F). Antimirov provides both a formal definition of the notion of partial
derivative and a set of rules to compute the set of partial derivatives of a
regular expression.

Definition 3 (set of partial derivatives w.r.t. a symbol) Given a reg-
ular expression £ and a symbol x;, the set 0., (E) of the partial derivatives
of K w.r.t. z; is recursively defined on the structure of K/ as follows:

0:,;(0) = 0
Or;(1) = 0
8”°J (@) = { é)l} ifti:fériz':e
0z, (F+G) = 3xJ(F)U5x,( )
_ Jo,(moe if AF) =
O, (F-G) = { 0o, (F) ® G U0y, (G)  otherwise
Or, (1) = 05, ()OI

Let us point out that we have slightly modified the original definition:
the @ operator is introduced in 0, (¥ - G) and 0., (F*) formulas instead of
the - operator, since sets of partial derivatives should not contain the null
expression.

The symbol z; in 0, (#) can be replaced by any word u of ¥* or by any
set of words U, according to the formulas:

0.(F) = {K}
Oue; (E) = 0z,(0u(F))
(k) = U Ou(E)

uelU



Let PD(E) = 0s«(F) be the set of all partial derivatives of the regular
expression F.

Example 4 let K = 2*(zx+y)*. The computation of the partial derivatives
is as follows:

0.(E) = E = a"(aatyy
0e(E) = 0p(x")(wz+y)*Udu((zz + y)*)
= Op(z)z*(zz +y)" U (Ox(zz) U s (y)) (zz +y)* =
= {a*(zz+y)* }U{z(zz +y)*}
= {z*(zz +y)*, z(zz+y)*}
Oy(E) = 0Oy(a™)(zz +y) Uﬁy((ery)*)
= Oy(z)z™(zz +y)" U (9y(zz) U Oy (y))(zz + y)*
= QuU@U{1})(zz+ y)*
= {(@z+y)"}
Oz (z(ze +y)*) = Oulz)(zz+y) = {(zz+y)*}
Oy(z(zz+y)*) = 5y( Jzz+y) = 0
Oo((zz+y)) = Oe(zz+y)lzz+y)” = (0:(22)VU0:(y))(zz +y)”
= {w(m+y) }
O((zz+y)") = Ohlzz+y)(zz+y)” = (Oy(zz)Udy(y))(zz +y)”

— {(wr+v))
Hence PD(E) = {a*(zz + y)*, z(zz+y)*, (zz+y)*}.

Proposition 4 (Antimirov [1]) The cardinality of the set PD(E) of all
partial derivatives of a regular expression F is less than or equal to |||+ 1.

Proposition 5 (Antimirov [1]) Let E be a regular expression. The lan-
guage L(E) is recognized by the automaton Ag = (Q, %, qo, T, 0) such that:

Q = PD(F)
0 = LK
T = {geQ|Xqg) =1}
S(p,aj) = 0Og(p) , foralpeQand1<j<m

6 Prebases vs partial derivatives

Putting together Proposition 1 and Definition 3 shows that Mirkin’s preb-
ases and Antimirov’s partial derivatives lead to identical systems of expres-
sion equations and thus to identical non-deterministic automata. Example 3,

10



based on a bottom-up computation, and Example 4, based on a top-down
one, illustrate this fact. The following theorem gives a formal proof of the
equivalence of the two constructions.

Theorem 1 lLet K be a reqular expression. Consider the support mp C
{Fo, E1, ..., E,}, which is such that:

E = az1Eog +a2F02+ -+ 2 Eom + AME)
Fo;j = Yiery, By, with In; C[0,n] forall 1 <j<m

Then the following property holds:
0z, (K) = X (Fo;), for all z; in ¥

Proof. The proof is by induction on the length of F. For the base cases
(|E| < 1) the situation is the following:

[E=0 E=z1-04+ - 42;- 0+ +2,-0+0 05 (F)=0=X(Fo;
[F=1 F=z-0+---42;-04+---42,-0+1 0,,(F)=0=X(Fy;
[E=2;] E=x2-0+4 4z, 1+ 43,040 8y (F)={1}=X(Fo,)
E=2;] E=z1-04+ - 42;- 0+ +2,-0+0 0p,(F)=0=X(Eo;

Assume that the proposition is true for any expression of length less or
equal to n, n > 2. Let F be a regular expression of length n+ 1. We consider
three cases.

Case 1: F = F+G. Let 7p = {F, -, F,} be the support of F' and
mp = {Fi, -+, F,} be the support of G. We have:

F=u1Fon+- - +a;Foj+ 4 xmFom + AF)
G=21Gor 4+ 2;Goj + -+ 2 Gom + MG)

By induction hypothesis it comes:
0z, (F) = X(Fp;) and 0z, (G) = X (Goj), forall 1 <j <m

Let us consider the expression ¥ = ' + G.
From E = 21 (Fonn+Go1)+: - +z;(Foj+Goj)++ - A 2m (Fom+Gom) +A(E),
we deduce:

X(Foj +Goj) = X(Foj) U X (Goj)
= 0, (F)Ud,,(G)

= 0,,(F+G) =0y, (F)

J J

11



Case 2: ¥ = F -(G. In this case we have:

E = 2/FaG+ - +a;10,G+ + 20, For G+ ANF)G
= 1lnG+- 2l G 4o 2y Fon G+
AME)(21Gor + -+ 2;Go; + - - + 2mGom + AG))
= 2(FnG + A(I)Gor) + -+ z; (Fo;G + M F)Goj) +
+m (FomG + A(F)Gom) + AF)MG)

Thus we have:

X((Fo; G+ A(F)Goj)) = X(Fo,G) U X (A(F)Goj)
= (FOJ)OGU)\(F)OX(GOJ)
= 0;,(F)OGUAF)® 0,,(G)

Case 3: F = F*. We have:
rE = F*
(F\1)-F* 4+ MF™)

(1 For + -+ xjFo;+ o+ 2 Fom) - F7 4+ AF7)
= 2 Fp "+ By F 4 2y By B+ A(F)

We deduce that:

X(Fy;F) = X(Fy) 0o F*
= 0, (I) 0 I

7 Conclusion

The computation of the Mirkin’s prebases and the Antimirov’s partial deriv-
atives of a regular expression lead to the same “coefficients” F;; in the formal
system of equations associated to the expression, and therefore to the same
NFA recognizer. Let us point out that the notion of partial derivative provides
a solid theoretical framework for the study of finite automaton constructions.

12
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