
Priority Inheritance Protocol
Proved Correct

Xingyuan Zhang
PLA University of Science and Technology

Nanjing, China

joint work with
Christian Urban

Kings College, University of London, U.K.
Chunhan Wu

My Ph.D. student now working for Christian

Nanjing, P.R. China, 1 August 2012 � p. 1/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of `Priority Inversion'
A �awed manual correctness proof (1990)

Notations with no precise de�nition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Veri�cation of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

Nanjing, P.R. China, 1 August 2012 � p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of `Priority Inversion'

A �awed manual correctness proof (1990)

Notations with no precise de�nition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Veri�cation of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

Nanjing, P.R. China, 1 August 2012 � p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of `Priority Inversion'
A �awed manual correctness proof (1990)

Notations with no precise de�nition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Veri�cation of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

Nanjing, P.R. China, 1 August 2012 � p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of `Priority Inversion'
A �awed manual correctness proof (1990)

Notations with no precise de�nition

Resorts to intuitions

Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Veri�cation of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

Nanjing, P.R. China, 1 August 2012 � p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of `Priority Inversion'
A �awed manual correctness proof (1990)

Notations with no precise de�nition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Veri�cation of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

Nanjing, P.R. China, 1 August 2012 � p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of `Priority Inversion'
A �awed manual correctness proof (1990)

Notations with no precise de�nition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding

Veri�cation of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

Nanjing, P.R. China, 1 August 2012 � p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of `Priority Inversion'
A �awed manual correctness proof (1990)

Notations with no precise de�nition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Veri�cation of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol

Nanjing, P.R. China, 1 August 2012 � p. 2/24



Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of `Priority Inversion'
A �awed manual correctness proof (1990)

Notations with no precise de�nition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Veri�cation of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol
Nanjing, P.R. China, 1 August 2012 � p. 2/24



Our Motivation
Undergraduate OS course in our
university

Experiments using intrutional OSs
PINTOS (Stanford) is choosen
Core project: Implementing PIP in it

Understanding is crucial to implemention

Little help was found in the literature

Some mentioning the complication

Nanjing, P.R. China, 1 August 2012 � p. 3/24



Our Motivation
Undergraduate OS course in our
university

Experiments using intrutional OSs
PINTOS (Stanford) is choosen
Core project: Implementing PIP in it

Understanding is crucial to implemention

Little help was found in the literature

Some mentioning the complication

Nanjing, P.R. China, 1 August 2012 � p. 3/24



Our Motivation
Undergraduate OS course in our
university

Experiments using intrutional OSs
PINTOS (Stanford) is choosen
Core project: Implementing PIP in it

Understanding is crucial to implemention

Little help was found in the literature

Some mentioning the complication

Nanjing, P.R. China, 1 August 2012 � p. 3/24



Our Motivation
Undergraduate OS course in our
university

Experiments using intrutional OSs
PINTOS (Stanford) is choosen
Core project: Implementing PIP in it

Understanding is crucial to implemention

Little help was found in the literature

Some mentioning the complication

Nanjing, P.R. China, 1 August 2012 � p. 3/24



Our Motivation
Undergraduate OS course in our
university

Experiments using intrutional OSs
PINTOS (Stanford) is choosen
Core project: Implementing PIP in it

Understanding is crucial to implemention

Little help was found in the literature

Some mentioning the complication

Nanjing, P.R. China, 1 August 2012 � p. 3/24



Some excerpts
�Priority inheritance is neither ef�cient nor
reliable. Implementations are either incomplete
(and unreliable) or surprisingly complex and
intrusive.�

�I observed in the kernel code (to my disgust),
the Linux PIP implementation is a nightmare:
extremely heavy weight, involving maintenance
of a full wait-for graph, and requiring updates
for a range of events, including priority changes
and interruptions of wait operations.�

Nanjing, P.R. China, 1 August 2012 � p. 4/24



Some excerpts
�Priority inheritance is neither ef�cient nor
reliable. Implementations are either incomplete
(and unreliable) or surprisingly complex and
intrusive.�

�I observed in the kernel code (to my disgust),
the Linux PIP implementation is a nightmare:
extremely heavy weight, involving maintenance
of a full wait-for graph, and requiring updates
for a range of events, including priority changes
and interruptions of wait operations.�

Nanjing, P.R. China, 1 August 2012 � p. 4/24



Our Aims
Formal speci�cation at appropriate
abstract level, convenient for:

Constructing interactive proofs

Clarifying the underlying ideas

Theorems usable to guide
implementation, critical point:

Understanding the relationship with

real OS code

Not yet formalized

Nanjing, P.R. China, 1 August 2012 � p. 5/24



Our Aims
Formal speci�cation at appropriate
abstract level, convenient for:

Constructing interactive proofs

Clarifying the underlying ideas
Theorems usable to guide
implementation, critical point:

Understanding the relationship with

real OS code

Not yet formalized

Nanjing, P.R. China, 1 August 2012 � p. 5/24



Our Aims
Formal speci�cation at appropriate
abstract level, convenient for:

Constructing interactive proofs

Clarifying the underlying ideas
Theorems usable to guide
implementation, critical point:

Understanding the relationship with

real OS code

Not yet formalized

Nanjing, P.R. China, 1 August 2012 � p. 5/24



Real-Time OSes

Purpose: gurantee the most urgent task

be processed in time

Processes have priorities

Resources can be locked and unlocked

Nanjing, P.R. China, 1 August 2012 � p. 6/24



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid inde�nite priority inversion

Nanjing, P.R. China, 1 August 2012 � p. 7/24



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid inde�nite priority inversion

Nanjing, P.R. China, 1 August 2012 � p. 7/24



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid inde�nite priority inversion

Nanjing, P.R. China, 1 August 2012 � p. 7/24



Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid inde�nite priority inversion

Nanjing, P.R. China, 1 August 2012 � p. 7/24



Priority Inversion

Nanjing, P.R. China, 1 August 2012 � p. 8/24



Mars Pathfinder Mission
1997

Nanjing, P.R. China, 1 August 2012 � p. 9/24



Solution
Priority Inheritance Protocol (PIP):

High-priority process

Medium-priority process

Low-priority process

(temporarily raise its priority)

Nanjing, P.R. China, 1 August 2012 � p. 10/24



A Correctness “Proof” in
1990

a paper? in 1990 �proved� the
correctness of an algorithm for
PIP

. . . after the thread (whose priority has been
raised) completes its critical section and
releases the lock, it �returns to its original
priority level�.

? in IEEE Transactions on Computers
Nanjing, P.R. China, 1 August 2012 � p. 11/24



High-priority process 1

High-priority process 2

Low-priority process

Solution:
Return to highest remaining
priority

Nanjing, P.R. China, 1 August 2012 � p. 12/24



High-priority process 1

High-priority process 2

Low-priority process

Solution:
Return to highest remaining
priority

Nanjing, P.R. China, 1 August 2012 � p. 12/24



Event Abstraction
Use Inductive Approch of L. Paulson

System is event-driven

A state is a list of events

Nanjing, P.R. China, 1 August 2012 � p. 13/24



Event Abstraction
Use Inductive Approch of L. Paulson

System is event-driven

A state is a list of events

Nanjing, P.R. China, 1 August 2012 � p. 13/24



Event Abstraction
Use Inductive Approch of L. Paulson

System is event-driven

A state is a list of events

Nanjing, P.R. China, 1 August 2012 � p. 13/24



Event Abstraction
Use Inductive Approch of L. Paulson

System is event-driven

A state is a list of events

Nanjing, P.R. China, 1 August 2012 � p. 13/24



Events

Create thread priority
Exit thread
Set thread priority
Lock thread cs
Unlock thread cs

Nanjing, P.R. China, 1 August 2012 � p. 14/24



Precedences

prec th s
def

= (priority th s, last_set th s)

Nanjing, P.R. China, 1 August 2012 � p. 15/24



RAGs

th0 cs1

th1

th2 cs2

cs3

th3

holding
wait

ing

waiting
holding

hol
din

g

waiting

RAG wq
def

= {(T th, C cs) | waits wq th cs}
∪ {(C cs, T th) | holds wq th cs}

Nanjing, P.R. China, 1 August 2012 � p. 16/24



RAGs

th0 cs1

th1

th2 cs2

cs3

th3

holding
wait

ing

waiting
holding

hol
din

g

waiting

RAG wq
def

= {(T th, C cs) | waits wq th cs}
∪ {(C cs, T th) | holds wq th cs}

Nanjing, P.R. China, 1 August 2012 � p. 16/24



Good Next Events

th /∈ threads s

step s (Create th prio)

th ∈ running s resources s th = ∅
step s (Exit th)

th ∈ running s

step s (Set th prio)

Nanjing, P.R. China, 1 August 2012 � p. 17/24



Good Next Events

th ∈ running s (C cs, T th) /∈ (RAG s)+

step s (P th cs)

th ∈ running s holds s th cs

step s (V th cs)

Nanjing, P.R. China, 1 August 2012 � p. 18/24



Theorem: “No indefinite priority inversion”

Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ` threads s))

and th is blocked by a thread th' in a future state
s' (with s' = t@s):

th' ∈ running (t@s) and th' 6= th

th' did not hold or wait for a resource in s:

¬detached s th'

th' is running with the precedence of th:

cp (t@s) th' = preced th s
? modulo some further assumptionsIt does not matter which

process gets a released lock.

Nanjing, P.R. China, 1 August 2012 � p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ` threads s))

and th is blocked by a thread th' in a future state
s' (with s' = t@s):

th' ∈ running (t@s) and th' 6= th

th' did not hold or wait for a resource in s:

¬detached s th'

th' is running with the precedence of th:

cp (t@s) th' = preced th s
? modulo some further assumptionsIt does not matter which

process gets a released lock.

Nanjing, P.R. China, 1 August 2012 � p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ` threads s))

and th is blocked by a thread th' in a future state
s' (with s' = t@s):

th' ∈ running (t@s) and th' 6= th

th' did not hold or wait for a resource in s:

¬detached s th'

th' is running with the precedence of th:

cp (t@s) th' = preced th s
? modulo some further assumptionsIt does not matter which

process gets a released lock.

Nanjing, P.R. China, 1 August 2012 � p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ` threads s))

and th is blocked by a thread th' in a future state
s' (with s' = t@s):

th' ∈ running (t@s) and th' 6= th

th' did not hold or wait for a resource in s:

¬detached s th'

th' is running with the precedence of th:

cp (t@s) th' = preced th s
? modulo some further assumptionsIt does not matter which

process gets a released lock.

Nanjing, P.R. China, 1 August 2012 � p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ` threads s))

and th is blocked by a thread th' in a future state
s' (with s' = t@s):

th' ∈ running (t@s) and th' 6= th

th' did not hold or wait for a resource in s:

¬detached s th'

th' is running with the precedence of th:

cp (t@s) th' = preced th s
? modulo some further assumptionsIt does not matter which

process gets a released lock.

Nanjing, P.R. China, 1 August 2012 � p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ` threads s))

and th is blocked by a thread th' in a future state
s' (with s' = t@s):

th' ∈ running (t@s) and th' 6= th

th' did not hold or wait for a resource in s:

¬detached s th'

th' is running with the precedence of th:

cp (t@s) th' = preced th s
? modulo some further assumptionsIt does not matter which

process gets a released lock.

Nanjing, P.R. China, 1 August 2012 � p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ` threads s))

and th is blocked by a thread th' in a future state
s' (with s' = t@s):

th' ∈ running (t@s) and th' 6= th

th' did not hold or wait for a resource in s:

¬detached s th'

th' is running with the precedence of th:

cp (t@s) th' = preced th s
? modulo some further assumptionsIt does not matter which

process gets a released lock.

Nanjing, P.R. China, 1 August 2012 � p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ` threads s))

and th is blocked by a thread th' in a future state
s' (with s' = t@s):

th' ∈ running (t@s) and th' 6= th

th' did not hold or wait for a resource in s:

¬detached s th'

th' is running with the precedence of th:

cp (t@s) th' = preced th s

? modulo some further assumptionsIt does not matter which

process gets a released lock.

Nanjing, P.R. China, 1 August 2012 � p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ` threads s))

and th is blocked by a thread th' in a future state
s' (with s' = t@s):

th' ∈ running (t@s) and th' 6= th

th' did not hold or wait for a resource in s:

¬detached s th'

th' is running with the precedence of th:

cp (t@s) th' = preced th s
? modulo some further assumptions

It does not matter which

process gets a released lock.

Nanjing, P.R. China, 1 August 2012 � p. 19/24



Theorem: “No indefinite priority inversion”
Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ` threads s))

and th is blocked by a thread th' in a future state
s' (with s' = t@s):

th' ∈ running (t@s) and th' 6= th

th' did not hold or wait for a resource in s:

¬detached s th'

th' is running with the precedence of th:

cp (t@s) th' = preced th s
? modulo some further assumptionsIt does not matter which

process gets a released lock.
Nanjing, P.R. China, 1 August 2012 � p. 19/24



Implementation
s = current state; s' = next state = e#s

When e = Create th prio, Exit th

RAG s' = RAG s

No precedence needs to recalculate

Nanjing, P.R. China, 1 August 2012 � p. 20/24



Implementation
s = current state; s' = next state = e#s

When e = Set th prio

RAG s' = RAG s

No precedence needs to recalculate

Nanjing, P.R. China, 1 August 2012 � p. 21/24



Implementation
s = current state; s' = next state = e#s

When e = Unlock th cs where there is a thread to
take over

RAG s' = RAG s - {(C cs, T th), (T th', C cs)} ∪ {(C
cs, T th')}

we have to recalculate the precedence of the
direct descendants

When e = Unlock th cs where no thread takes over

RAG s' = RAG s - {(C cs, T th)}

no recalculation of precedences

Nanjing, P.R. China, 1 August 2012 � p. 22/24



Implementation
s = current state; s' = next state = e#s

When e = Unlock th cs where there is a thread to
take over

RAG s' = RAG s - {(C cs, T th), (T th', C cs)} ∪ {(C
cs, T th')}

we have to recalculate the precedence of the
direct descendants

When e = Unlock th cs where no thread takes over

RAG s' = RAG s - {(C cs, T th)}

no recalculation of precedences
Nanjing, P.R. China, 1 August 2012 � p. 22/24



Implementation
s = current state; s' = next state = e#s

When e = Lock th cs where cs is not locked

RAG s' = RAG s ∪ {(C cs, T th')}

no recalculation of precedences

When e = Lock th cs where cs is locked

RAG s' = RAG s - {(T th, C cs)}

we have to recalculate the precedence of the
descendants

Nanjing, P.R. China, 1 August 2012 � p. 23/24



Implementation
s = current state; s' = next state = e#s

When e = Lock th cs where cs is not locked

RAG s' = RAG s ∪ {(C cs, T th')}

no recalculation of precedences

When e = Lock th cs where cs is locked

RAG s' = RAG s - {(T th, C cs)}

we have to recalculate the precedence of the
descendants

Nanjing, P.R. China, 1 August 2012 � p. 23/24



Conclusion
Aims ful�lled

Alternative way
using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches
scheduler in RT-Linux

multiprocessor case

other �nails� ? (networks, . . . )

Re�nement to real code and relation between
implemenations

Nanjing, P.R. China, 1 August 2012 � p. 24/24



Conclusion
Aims ful�lled

Alternative way

using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches
scheduler in RT-Linux

multiprocessor case

other �nails� ? (networks, . . . )

Re�nement to real code and relation between
implemenations

Nanjing, P.R. China, 1 August 2012 � p. 24/24



Conclusion
Aims ful�lled

Alternative way
using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches
scheduler in RT-Linux

multiprocessor case

other �nails� ? (networks, . . . )

Re�nement to real code and relation between
implemenations

Nanjing, P.R. China, 1 August 2012 � p. 24/24



Conclusion
Aims ful�lled

Alternative way
using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches

scheduler in RT-Linux

multiprocessor case

other �nails� ? (networks, . . . )

Re�nement to real code and relation between
implemenations

Nanjing, P.R. China, 1 August 2012 � p. 24/24



Conclusion
Aims ful�lled

Alternative way
using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches
scheduler in RT-Linux

multiprocessor case

other �nails� ? (networks, . . . )

Re�nement to real code and relation between
implemenations

Nanjing, P.R. China, 1 August 2012 � p. 24/24



Conclusion
Aims ful�lled

Alternative way
using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches
scheduler in RT-Linux

multiprocessor case

other �nails� ? (networks, . . . )

Re�nement to real code and relation between
implemenations

Nanjing, P.R. China, 1 August 2012 � p. 24/24



Questions?

Thank you for listening!

Nanjing, P.R. China, 1 August 2012 � p. 25/24




