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Prioirty Inheritance Protocol (PIP)

Widely used in Real-Time OSs

One solution of `Priority Inversion'
A �awed manual correctness proof (1990)

Notations with no precise de�nition

Resorts to intuitions
Formal treatments using model-checking

Applicable to small size system models

Unhelpful for human understanding
Veri�cation of PCP in PVS (2000)

A related protocol

Priority Ceiling Protocol
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Our Motivation
Undergraduate OS course in our
university

Experiments using intrutional OSs
PINTOS (Stanford) is choosen
Core project: Implementing PIP in it

Understanding is crucial to implemention

Little help was found in the literature

Some mentioning the complication
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Some excerpts
�Priority inheritance is neither ef�cient nor
reliable. Implementations are either incomplete
(and unreliable) or surprisingly complex and
intrusive.�

�I observed in the kernel code (to my disgust),
the Linux PIP implementation is a nightmare:
extremely heavy weight, involving maintenance
of a full wait-for graph, and requiring updates
for a range of events, including priority changes
and interruptions of wait operations.�
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Our Aims
Formal speci�cation at appropriate
abstract level, convenient for:

Constructing interactive proofs

Clarifying the underlying ideas

Theorems usable to guide
implementation, critical point:

Understanding the relationship with

real OS code

Not yet formalized
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Real-Time OSes

Purpose: gurantee the most urgent task

be processed in time

Processes have priorities

Resources can be locked and unlocked
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Problem
High-priority process

Medium-priority process

Low-priority process

Priority Inversion
def

= H < L

avoid inde�nite priority inversion
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Priority Inversion
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Mars Pathfinder Mission
1997
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Solution
Priority Inheritance Protocol (PIP):

High-priority process

Medium-priority process

Low-priority process

(temporarily raise its priority)
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A Correctness “Proof” in
1990

a paper? in 1990 �proved� the
correctness of an algorithm for
PIP

. . . after the thread (whose priority has been
raised) completes its critical section and
releases the lock, it �returns to its original
priority level�.

? in IEEE Transactions on Computers
Nanjing, P.R. China, 1 August 2012 � p. 11/24



High-priority process 1

High-priority process 2

Low-priority process

Solution:
Return to highest remaining
priority
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Event Abstraction
Use Inductive Approch of L. Paulson

System is event-driven

A state is a list of events
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Events

Create thread priority
Exit thread
Set thread priority
Lock thread cs
Unlock thread cs
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Precedences

prec th s
def

= (priority th s, last_set th s)
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RAGs

th0 cs1

th1

th2 cs2

cs3

th3

holding
wait

ing

waiting
holding

hol
din

g

waiting

RAG wq
def

= {(T th, C cs) | waits wq th cs}
∪ {(C cs, T th) | holds wq th cs}

Nanjing, P.R. China, 1 August 2012 � p. 16/24



RAGs

th0 cs1

th1

th2 cs2

cs3

th3

holding
wait

ing

waiting
holding

hol
din

g

waiting

RAG wq
def

= {(T th, C cs) | waits wq th cs}
∪ {(C cs, T th) | holds wq th cs}

Nanjing, P.R. China, 1 August 2012 � p. 16/24



Good Next Events

th /∈ threads s

step s (Create th prio)

th ∈ running s resources s th = ∅
step s (Exit th)

th ∈ running s

step s (Set th prio)
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Good Next Events

th ∈ running s (C cs, T th) /∈ (RAG s)+

step s (P th cs)

th ∈ running s holds s th cs

step s (V th cs)
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Theorem: “No indefinite priority inversion”

Theorem ?: If th is the thread with the highest
precedence in state s:

prec th s = Max (cprec s ` threads s))

and th is blocked by a thread th' in a future state
s' (with s' = t@s):

th' ∈ running (t@s) and th' 6= th

th' did not hold or wait for a resource in s:

¬detached s th'

th' is running with the precedence of th:

cp (t@s) th' = preced th s
? modulo some further assumptionsIt does not matter which

process gets a released lock.
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Implementation
s = current state; s' = next state = e#s

When e = Create th prio, Exit th

RAG s' = RAG s

No precedence needs to recalculate
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Implementation
s = current state; s' = next state = e#s

When e = Set th prio

RAG s' = RAG s
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Implementation
s = current state; s' = next state = e#s

When e = Unlock th cs where there is a thread to
take over

RAG s' = RAG s - {(C cs, T th), (T th', C cs)} ∪ {(C
cs, T th')}

we have to recalculate the precedence of the
direct descendants

When e = Unlock th cs where no thread takes over

RAG s' = RAG s - {(C cs, T th)}

no recalculation of precedences
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Implementation
s = current state; s' = next state = e#s

When e = Lock th cs where cs is not locked

RAG s' = RAG s ∪ {(C cs, T th')}

no recalculation of precedences

When e = Lock th cs where cs is locked

RAG s' = RAG s - {(T th, C cs)}
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descendants
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Conclusion
Aims ful�lled

Alternative way
using Isabelle/HOL in OS code development

through the Inductive Approach

Future researches
scheduler in RT-Linux

multiprocessor case

other �nails� ? (networks, . . . )

Re�nement to real code and relation between
implemenations
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Questions?

Thank you for listening!
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