
FROM FINITE AUTOMATA TO REGULAR EXPRESSIONS (USING ARDEN’S LEMMA)

Our goal is to prove the following.

Theorem 1. Given any DFA (or NFA) M there is a regular expression E such that L(E) = L(M).
Furthermore there is an algorithm to construct E from M.

The basic idea is simple, we illustrate with an example. By the way, the syntax of regular expressions
varies slightly with different authors: here we use + to denote union, and we use λ to denote the
empty string.

Example 2. Here’s a DFA M. Note that L(M) is the language of words with an odd number of as.

q0start q1

a
b b

a

For each state we can write an equation which defines the set of strings taking that state to an
accepting state. For example let X0 denote the set of strings w that lead from state q0 to an accepting
state; let X1 denote the set of strings w that lead from state q1 to an accepting state. Then we have
the following equations

X0 = aX1 +bX0 (1)

X1 = aX0 +bX1 +λ (2)

We include λ in the equation for A1 precisely because X1 is an accepting state. We do this in general:
if qi is accepting, the equation for Xi includes λ.

Note that each equation that we get from our DFA looks like X = AX + B for some A which does
not contain λ. A moment’s thought will persuade you that this will be the case whenever we write
down the equations corresponding to an automaton, even if it is non-deterministic, as long as the
automaton does not have λ-transitions.

We want to solve for X0. This is done by routine substitution just as in elementary algebra, but
we need a strategy to handle equations in which the same variable occurs on both the left- and
right-hand sides. This is where Arden’s Lemma comes in handy.

Lemma 3 (Arden’s Lemma1). Let A and B be languages, and suppose that the empty string λ is
not in A. Then the equation X = AX +B has the unique solution X = A∗B.

1 D.N. Arden. Delayed logic and finite state machines. In Theory of Computing Machine Design, pp.1-35, U. of
Michigan Press, Ann Arbor. 1960.

1

Before proving Arden’s Lemma let us see how we can use it to compute our regular expressions.

Returning now to our example: we can rearrange (2) as

X1 = bX1 +(aX0 +λ) (3)

Now we can apply Arden’s Lemma for the variable X1 with the “A” being the language denoted by
b and the “B” being the language denoted by (aX0 +λ). We then get

X1 = b∗(aX0 +λ) (4)

= b∗aX0 +b∗ (5)

Now substitute this last expression for X1 back into (1) and combine terms:

X0 = a(b∗aX0 +b∗)+bX0 (6)

= (ab∗a)X0 +ab∗+bX0 (7)

= (ab∗a+b)X0 +ab∗ (8)

One more application of Arden’s Lemma and we’re done:

X0 = (ab∗a+b)∗ab∗ (9)

Convice yourself that this regular expression really does define the set of strings with an odd number
of as.

Example 4. This example is from Robin Milner’s beautiful little book on concurrency: Communi-
cating and Mobile Systems: the π-calculus.

q0start q1

q2q3

a

b,c

a b

c

a,b

c

a,b,c

The equations are:

X0 = aX1 +(b+ c)X3 (10)

X1 = aX3 +bX2 + cX0 +λ (11)

X2 = (a+b)X3 + cX0 (12)

X3 = (a+b+ c)X3 (13)

Now, we can always proceed in a robotic manner but let’s look around and be sensitive to some
simplifications. Note that X3 is the empty language! (You can see this by looking at the DFA, or by
computing using Arden’s Lemma: X3 = (a+b+ c)∗ /0, which is /0.

2

Having noted that X3 = /0 we can simplify the equations above.

X0 = aX1 (14)

X1 = bX2 + cX0 +λ (15)

X2 = cX0 (16)

Now we can proceed as in the previous example. First substitute the 2nd equation into the first:

X0 = a(bX2 + cX0 +λ) (17)

= abX2 +acX0 +a (18)

Now substitute the 3nd equation into the first:

X0 = ab(cX0)+acX0 +a (19)

= (abc+ac)X0 +a (20)

Now Arden gives us our answer:

X0 = (abc+ac)∗a (21)

Example 5. Another example, this time starting with an NFA. We’ll just start with the equations,
and not even bother to draw a picture of the NFA: if you care to you can draw it effortlessly from
the equations. We do need to say that state 0 is the start state (which is to say that we want to solve
for X0).

X0 = aX2 +aX3 +λ

X1 = bX0

X2 = aX1 +bX2

X3 = bX0 +bX1 +λ

Note by the way that both states 0 and 3 are accepting states (you can tell because they have λ on
the right-hand sides of their defining equations). First we eliminate X1. It is not defined recursively
so there is no need for Arden’s lemma at this step.

X0 = aX2 +aX3 +λ

X2 = abX0 +bX2

X3 = bX0 +bbX0 +λ

Then eliminate X3

X0 = aX2 +a(bX0 +bbX0 +λ)+λ

X2 = abX0 +bX2

Now we want to eliminate X2. We use Arden first

X2 = b∗abX0

3

Then
X0 = ab∗abX0 +a(bX0 +bbX0 +λ)+λ

Collect terms, then use Arden

X0 = (ab∗ab+ab+abb)X0 +a+λ

= (ab∗ab+ab+abb)∗(a+λ)

So the language recognized by our machine is defined by the regular expression

(ab∗ab+ab+abb)∗(a+λ)

Proof of Arden’s Lemma

Here is a proof of Arden’s Lemma. We want to show that

if A is a language such that the empty string λ is not in A, then the equation X = AX +B has
the unique solution X = A∗B.

Proof. First, it is easy to check directly that the set A∗B does satisfy the relationship A∗B =
A(A∗B)+B. So A∗B is a solution. The interesting part is showing that this is the only solution.

So let C be any language satisfying C = AC + B. We want to show that in fact C must be equal to
A∗B.

First note that since AC +B⊆C we have that

AC ⊆C. (22)

and

B⊆C (23)

But B⊆C implies AB⊆ AC, and then using AC ⊆C we get AB⊆C. Now starting with AB⊆C we
proceed in the same way: AB ⊆ C so AAB ⊆ AC ⊆ C and we get AAB ⊆ C and so forth. In other
words, for each k ≥ 0 we can show AkB⊆C. We conclude that A∗B⊆C.

It remains to show that C ⊆ A∗B. Specifically, we prove that for all w, w ∈C implies w ∈ A∗B, by
induction on the length |w| of w. Let w ∈C. Since C ⊆ AC +B we have two cases: either w ∈ AC or
w ∈ B.

In the first case, when w ∈ B, we’re done, certainly w ∈ A∗B.

In the second case, w ∈ AC, we have that w = xy for some x ∈ A and y ∈C. But now — since λ /∈ A
— we know that x is not λ, and so |y|< |w|. So the induction hypothesis applies to y, and so y is in
A∗B. So w = xy is in A(A∗B), and we conclude w ∈ A∗B.

4

Final notes

The examples here had only one accepting state but there is no complication at all if multiple state
are accepting. We would simply have more than one state whose corresponding equation included
λ.

Of course there can be more than one regular expression capturing L(M) since different regular
expressions can define the same language. This is reflected in the fact that we have strategic choices
we can make as we solve the equations.

Dan Dougherty
October 14, 2009 – 16 : 42

5

