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1 List prefixes and postfixes

theory List-Prefix
imports List Main
begin

1.1 Prefix order on lists

instantiation list :: (type) {order , bot}
begin

definition
prefix-def : xs ≤ ys ←→ (∃ zs. ys = xs @ zs)

definition
strict-prefix-def : xs < ys ←→ xs ≤ ys ∧ xs 6= (ys:: ′a list)

definition
bot = []

instance proof
qed (auto simp add : prefix-def strict-prefix-def bot-list-def )

end

lemma prefixI [intro? ]: ys = xs @ zs ==> xs ≤ ys
unfolding prefix-def by blast

lemma prefixE [elim? ]:
assumes xs ≤ ys
obtains zs where ys = xs @ zs
using assms unfolding prefix-def by blast

lemma strict-prefixI ′ [intro? ]: ys = xs @ z # zs ==> xs < ys
unfolding strict-prefix-def prefix-def by blast

lemma strict-prefixE ′ [elim? ]:
assumes xs < ys
obtains z zs where ys = xs @ z # zs

proof −
from 〈xs < ys〉 obtain us where ys = xs @ us and xs 6= ys

unfolding strict-prefix-def prefix-def by blast
with that show ?thesis by (auto simp add : neq-Nil-conv)

qed

lemma strict-prefixI [intro? ]: xs ≤ ys ==> xs 6= ys ==> xs < (ys:: ′a list)
unfolding strict-prefix-def by blast

lemma strict-prefixE [elim? ]:
fixes xs ys :: ′a list
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assumes xs < ys
obtains xs ≤ ys and xs 6= ys
using assms unfolding strict-prefix-def by blast

1.2 Basic properties of prefixes

theorem Nil-prefix [iff ]: [] ≤ xs
by (simp add : prefix-def )

theorem prefix-Nil [simp]: (xs ≤ []) = (xs = [])
by (induct xs) (simp-all add : prefix-def )

lemma prefix-snoc [simp]: (xs ≤ ys @ [y ]) = (xs = ys @ [y ] ∨ xs ≤ ys)
proof

assume xs ≤ ys @ [y ]
then obtain zs where zs: ys @ [y ] = xs @ zs ..
show xs = ys @ [y ] ∨ xs ≤ ys

by (metis append-Nil2 butlast-append butlast-snoc prefixI zs)
next

assume xs = ys @ [y ] ∨ xs ≤ ys
then show xs ≤ ys @ [y ]

by (metis order-eq-iff strict-prefixE strict-prefixI ′ xt1 (7 ))
qed

lemma Cons-prefix-Cons [simp]: (x # xs ≤ y # ys) = (x = y ∧ xs ≤ ys)
by (auto simp add : prefix-def )

lemma less-eq-list-code [code]:
([]:: ′a::{equal , ord} list) ≤ xs ←→ True
(x :: ′a::{equal , ord}) # xs ≤ [] ←→ False
(x :: ′a::{equal , ord}) # xs ≤ y # ys ←→ x = y ∧ xs ≤ ys
by simp-all

lemma same-prefix-prefix [simp]: (xs @ ys ≤ xs @ zs) = (ys ≤ zs)
by (induct xs) simp-all

lemma same-prefix-nil [iff ]: (xs @ ys ≤ xs) = (ys = [])
by (metis append-Nil2 append-self-conv order-eq-iff prefixI )

lemma prefix-prefix [simp]: xs ≤ ys ==> xs ≤ ys @ zs
by (metis order-le-less-trans prefixI strict-prefixE strict-prefixI )

lemma append-prefixD : xs @ ys ≤ zs =⇒ xs ≤ zs
by (auto simp add : prefix-def )

theorem prefix-Cons: (xs ≤ y # ys) = (xs = [] ∨ (∃ zs. xs = y # zs ∧ zs ≤ ys))
by (cases xs) (auto simp add : prefix-def )

theorem prefix-append :
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(xs ≤ ys @ zs) = (xs ≤ ys ∨ (∃ us. xs = ys @ us ∧ us ≤ zs))
apply (induct zs rule: rev-induct)
apply force

apply (simp del : append-assoc add : append-assoc [symmetric])
apply (metis append-eq-appendI )
done

lemma append-one-prefix :
xs ≤ ys ==> length xs < length ys ==> xs @ [ys ! length xs] ≤ ys
unfolding prefix-def
by (metis Cons-eq-appendI append-eq-appendI append-eq-conv-conj

eq-Nil-appendI nth-drop ′)

theorem prefix-length-le: xs ≤ ys ==> length xs ≤ length ys
by (auto simp add : prefix-def )

lemma prefix-same-cases:
(xs1:: ′a list) ≤ ys =⇒ xs2 ≤ ys =⇒ xs1 ≤ xs2 ∨ xs2 ≤ xs1
unfolding prefix-def by (metis append-eq-append-conv2 )

lemma set-mono-prefix : xs ≤ ys =⇒ set xs ⊆ set ys
by (auto simp add : prefix-def )

lemma take-is-prefix : take n xs ≤ xs
unfolding prefix-def by (metis append-take-drop-id)

lemma map-prefixI : xs ≤ ys =⇒ map f xs ≤ map f ys
by (auto simp: prefix-def )

lemma prefix-length-less: xs < ys =⇒ length xs < length ys
by (auto simp: strict-prefix-def prefix-def )

lemma strict-prefix-simps [simp, code]:
xs < [] ←→ False
[] < x # xs ←→ True
x # xs < y # ys ←→ x = y ∧ xs < ys
by (simp-all add : strict-prefix-def cong : conj-cong)

lemma take-strict-prefix : xs < ys =⇒ take n xs < ys
apply (induct n arbitrary : xs ys)
apply (case-tac ys, simp-all)[1 ]

apply (metis order-less-trans strict-prefixI take-is-prefix )
done

lemma not-prefix-cases:
assumes pfx : ¬ ps ≤ ls
obtains

(c1 ) ps 6= [] and ls = []
| (c2 ) a as x xs where ps = a#as and ls = x#xs and x = a and ¬ as ≤ xs
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| (c3 ) a as x xs where ps = a#as and ls = x#xs and x 6= a
proof (cases ps)

case Nil then show ?thesis using pfx by simp
next

case (Cons a as)
note c = 〈ps = a#as〉

show ?thesis
proof (cases ls)

case Nil then show ?thesis by (metis append-Nil2 pfx c1 same-prefix-nil)
next

case (Cons x xs)
show ?thesis
proof (cases x = a)

case True
have ¬ as ≤ xs using pfx c Cons True by simp
with c Cons True show ?thesis by (rule c2 )

next
case False
with c Cons show ?thesis by (rule c3 )

qed
qed

qed

lemma not-prefix-induct [consumes 1 , case-names Nil Neq Eq ]:
assumes np: ¬ ps ≤ ls

and base:
∧

x xs. P (x#xs) []
and r1 :

∧
x xs y ys. x 6= y =⇒ P (x#xs) (y#ys)

and r2 :
∧

x xs y ys. [[ x = y ; ¬ xs ≤ ys; P xs ys ]] =⇒ P (x#xs) (y#ys)
shows P ps ls using np

proof (induct ls arbitrary : ps)
case Nil then show ?case

by (auto simp: neq-Nil-conv elim!: not-prefix-cases intro!: base)
next

case (Cons y ys)
then have npfx : ¬ ps ≤ (y # ys) by simp
then obtain x xs where pv : ps = x # xs

by (rule not-prefix-cases) auto
show ?case by (metis Cons.hyps Cons-prefix-Cons npfx pv r1 r2 )

qed

1.3 Parallel lists

definition
parallel :: ′a list => ′a list => bool (infixl ‖ 50 ) where
(xs ‖ ys) = (¬ xs ≤ ys ∧ ¬ ys ≤ xs)

lemma parallelI [intro]: ¬ xs ≤ ys ==> ¬ ys ≤ xs ==> xs ‖ ys
unfolding parallel-def by blast
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lemma parallelE [elim]:
assumes xs ‖ ys
obtains ¬ xs ≤ ys ∧ ¬ ys ≤ xs
using assms unfolding parallel-def by blast

theorem prefix-cases:
obtains xs ≤ ys | ys < xs | xs ‖ ys
unfolding parallel-def strict-prefix-def by blast

theorem parallel-decomp:
xs ‖ ys ==> ∃ as b bs c cs. b 6= c ∧ xs = as @ b # bs ∧ ys = as @ c # cs

proof (induct xs rule: rev-induct)
case Nil
then have False by auto
then show ?case ..

next
case (snoc x xs)
show ?case
proof (rule prefix-cases)

assume le: xs ≤ ys
then obtain ys ′ where ys: ys = xs @ ys ′ ..
show ?thesis
proof (cases ys ′)

assume ys ′ = []
then show ?thesis by (metis append-Nil2 parallelE prefixI snoc.prems ys)

next
fix c cs assume ys ′: ys ′ = c # cs
then show ?thesis

by (metis Cons-eq-appendI eq-Nil-appendI parallelE prefixI
same-prefix-prefix snoc.prems ys)

qed
next

assume ys < xs then have ys ≤ xs @ [x ] by (simp add : strict-prefix-def )
with snoc have False by blast
then show ?thesis ..

next
assume xs ‖ ys
with snoc obtain as b bs c cs where neq : (b:: ′a) 6= c

and xs: xs = as @ b # bs and ys: ys = as @ c # cs
by blast

from xs have xs @ [x ] = as @ b # (bs @ [x ]) by simp
with neq ys show ?thesis by blast

qed
qed

lemma parallel-append : a ‖ b =⇒ a @ c ‖ b @ d
apply (rule parallelI )

apply (erule parallelE , erule conjE ,
induct rule: not-prefix-induct , simp+)+
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done

lemma parallel-appendI : xs ‖ ys =⇒ x = xs @ xs ′ =⇒ y = ys @ ys ′ =⇒ x ‖ y
by (simp add : parallel-append)

lemma parallel-commute: a ‖ b ←→ b ‖ a
unfolding parallel-def by auto

1.4 Postfix order on lists

definition
postfix :: ′a list => ′a list => bool ((-/ >>= -) [51 , 50 ] 50 ) where
(xs >>= ys) = (∃ zs. xs = zs @ ys)

lemma postfixI [intro? ]: xs = zs @ ys ==> xs >>= ys
unfolding postfix-def by blast

lemma postfixE [elim? ]:
assumes xs >>= ys
obtains zs where xs = zs @ ys
using assms unfolding postfix-def by blast

lemma postfix-refl [iff ]: xs >>= xs
by (auto simp add : postfix-def )

lemma postfix-trans: [[xs >>= ys; ys >>= zs]] =⇒ xs >>= zs
by (auto simp add : postfix-def )

lemma postfix-antisym: [[xs >>= ys; ys >>= xs]] =⇒ xs = ys
by (auto simp add : postfix-def )

lemma Nil-postfix [iff ]: xs >>= []
by (simp add : postfix-def )

lemma postfix-Nil [simp]: ([] >>= xs) = (xs = [])
by (auto simp add : postfix-def )

lemma postfix-ConsI : xs >>= ys =⇒ x#xs >>= ys
by (auto simp add : postfix-def )

lemma postfix-ConsD : xs >>= y#ys =⇒ xs >>= ys
by (auto simp add : postfix-def )

lemma postfix-appendI : xs >>= ys =⇒ zs @ xs >>= ys
by (auto simp add : postfix-def )

lemma postfix-appendD : xs >>= zs @ ys =⇒ xs >>= ys
by (auto simp add : postfix-def )

lemma postfix-is-subset : xs >>= ys ==> set ys ⊆ set xs
proof −

assume xs >>= ys
then obtain zs where xs = zs @ ys ..
then show ?thesis by (induct zs) auto
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qed

lemma postfix-ConsD2 : x#xs >>= y#ys ==> xs >>= ys
proof −

assume x#xs >>= y#ys
then obtain zs where x#xs = zs @ y#ys ..
then show ?thesis

by (induct zs) (auto intro!: postfix-appendI postfix-ConsI )
qed

lemma postfix-to-prefix [code]: xs >>= ys ←→ rev ys ≤ rev xs
proof

assume xs >>= ys
then obtain zs where xs = zs @ ys ..
then have rev xs = rev ys @ rev zs by simp
then show rev ys <= rev xs ..

next
assume rev ys <= rev xs
then obtain zs where rev xs = rev ys @ zs ..
then have rev (rev xs) = rev zs @ rev (rev ys) by simp
then have xs = rev zs @ ys by simp
then show xs >>= ys ..

qed

lemma distinct-postfix : distinct xs =⇒ xs >>= ys =⇒ distinct ys
by (clarsimp elim!: postfixE )

lemma postfix-map: xs >>= ys =⇒ map f xs >>= map f ys
by (auto elim!: postfixE intro: postfixI )

lemma postfix-drop: as >>= drop n as
unfolding postfix-def
apply (rule exI [where x = take n as])
apply simp
done

lemma postfix-take: xs >>= ys =⇒ xs = take (length xs − length ys) xs @ ys
by (clarsimp elim!: postfixE )

lemma parallelD1 : x ‖ y =⇒ ¬ x ≤ y
by blast

lemma parallelD2 : x ‖ y =⇒ ¬ y ≤ x
by blast

lemma parallel-Nil1 [simp]: ¬ x ‖ []
unfolding parallel-def by simp

lemma parallel-Nil2 [simp]: ¬ [] ‖ x
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unfolding parallel-def by simp

lemma Cons-parallelI1 : a 6= b =⇒ a # as ‖ b # bs
by auto

lemma Cons-parallelI2 : [[ a = b; as ‖ bs ]] =⇒ a # as ‖ b # bs
by (metis Cons-prefix-Cons parallelE parallelI )

lemma not-equal-is-parallel :
assumes neq : xs 6= ys

and len: length xs = length ys
shows xs ‖ ys
using len neq

proof (induct rule: list-induct2 )
case Nil
then show ?case by simp

next
case (Cons a as b bs)
have ih: as 6= bs =⇒ as ‖ bs by fact
show ?case
proof (cases a = b)

case True
then have as 6= bs using Cons by simp
then show ?thesis by (rule Cons-parallelI2 [OF True ih])

next
case False
then show ?thesis by (rule Cons-parallelI1 )

qed
qed

end

theory Prefix-subtract
imports Main List-Prefix

begin

2 A small theory of prefix subtraction

The notion of prefix-subtract is need to make proofs more readable.

fun prefix-subtract :: ′a list ⇒ ′a list ⇒ ′a list (infix − 51 )
where

prefix-subtract [] xs = []
| prefix-subtract (x#xs) [] = x#xs
| prefix-subtract (x#xs) (y#ys) = (if x = y then prefix-subtract xs ys else (x#xs))

lemma [simp]: (x @ y) − x = y
apply (induct x )
by (case-tac y , simp+)
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lemma [simp]: x − x = []
by (induct x , auto)

lemma [simp]: x = xa @ y =⇒ x − xa = y
by (induct x , auto)

lemma [simp]: x − [] = x
by (induct x , auto)

lemma [simp]: (x − y = []) =⇒ (x ≤ y)
proof−

have ∃ xa. x = xa @ (x − y) ∧ xa ≤ y
apply (rule prefix-subtract .induct [of - x y ], simp+)
by (clarsimp, rule-tac x = y # xa in exI , simp+)

thus (x − y = []) =⇒ (x ≤ y) by simp
qed

lemma diff-prefix :
[[c ≤ a − b; b ≤ a]] =⇒ b @ c ≤ a

by (auto elim:prefixE )

lemma diff-diff-appd :
[[c < a − b; b < a]] =⇒ (a − b) − c = a − (b @ c)

apply (clarsimp simp:strict-prefix-def )
by (drule diff-prefix , auto elim:prefixE )

lemma app-eq-cases[rule-format ]:
∀ x . x @ y = m @ n −→ (x ≤ m ∨ m ≤ x )

apply (induct y , simp)
apply (clarify , drule-tac x = x @ [a] in spec)
by (clarsimp, auto simp:prefix-def )

lemma app-eq-dest :
x @ y = m @ n =⇒

(x ≤ m ∧ (m − x ) @ n = y) ∨ (m ≤ x ∧ (x − m) @ y = n)
by (frule-tac app-eq-cases, auto elim:prefixE )

end

theory Prelude
imports Main
begin

lemma set-eq-intro:
(
∧

x . (x ∈ A) = (x ∈ B)) =⇒ A = B
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by blast

end
theory Myhill-1

imports Main List-Prefix Prefix-subtract Prelude
begin

3 Preliminary definitions

types lang = string set

Sequential composition of two languages L1 and L2

definition Seq :: lang ⇒ lang ⇒ lang (infixr ;; 100 )
where

A ;; B = {s1 @ s2 | s1 s2. s1 ∈ A ∧ s2 ∈ B}

Transitive closure of language L.

inductive-set
Star :: lang ⇒ lang (-? [101 ] 102 )
for L

where
start [intro]: [] ∈ L?
| step[intro]: [[s1 ∈ L; s2 ∈ L?]] =⇒ s1 @s2 ∈ L?

Some properties of operator ;;.

lemma seq-union-distrib-right :
shows (A ∪ B) ;; C = (A ;; C ) ∪ (B ;; C )

unfolding Seq-def by auto

lemma seq-union-distrib-left :
shows C ;; (A ∪ B) = (C ;; A) ∪ (C ;; B)

unfolding Seq-def by auto

lemma seq-intro:
[[x ∈ A; y ∈ B ]] =⇒ x @ y ∈ A ;; B

by (auto simp:Seq-def )

lemma seq-assoc:
shows (A ;; B) ;; C = A ;; (B ;; C )

unfolding Seq-def
apply(auto)
apply(blast)
by (metis append-assoc)

lemma seq-empty [simp]:
shows A ;; {[]} = A
and {[]} ;; A = A
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by (simp-all add : Seq-def )

lemma star-intro1 [rule-format ]:
x ∈ lang? =⇒ ∀ y . y ∈ lang? −→ x @ y ∈ lang?

by (erule Star .induct , auto)

lemma star-intro2 : y ∈ lang =⇒ y ∈ lang?
by (drule step[of y lang []], auto simp:start)

lemma star-intro3 [rule-format ]:
x ∈ lang? =⇒ ∀ y . y ∈ lang −→ x @ y ∈ lang?

by (erule Star .induct , auto intro:star-intro2 )

lemma star-decom:
[[x ∈ lang?; x 6= []]] =⇒(∃ a b. x = a @ b ∧ a 6= [] ∧ a ∈ lang ∧ b ∈ lang?)

by (induct x rule: Star .induct , simp, blast)

lemma lang-star-cases:
shows L? = {[]} ∪ L ;; L?

proof
{ fix x

have x ∈ L? =⇒ x ∈ {[]} ∪ L ;; L?
unfolding Seq-def

by (induct rule: Star .induct) (auto)
}
then show L? ⊆ {[]} ∪ L ;; L? by auto

next
show {[]} ∪ L ;; L? ⊆ L?

unfolding Seq-def by auto
qed

fun
pow :: lang ⇒ nat ⇒ lang (infixl ↑ 100 )

where
A ↑ 0 = {[]}
| A ↑ (Suc n) = A ;; (A ↑ n)

lemma star-pow-eq :
shows A? = (

⋃
n. A ↑ n)

proof −
{ fix n x

assume x ∈ (A ↑ n)
then have x ∈ A?

by (induct n arbitrary : x ) (auto simp add : Seq-def )
}
moreover
{ fix x

assume x ∈ A?
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then have ∃n. x ∈ A ↑ n
proof (induct rule: Star .induct)

case start
have [] ∈ A ↑ 0 by auto
then show ∃n. [] ∈ A ↑ n by blast

next
case (step s1 s2 )
have s1 ∈ A by fact
moreover
have ∃n. s2 ∈ A ↑ n by fact
then obtain n where s2 ∈ A ↑ n by blast
ultimately
have s1 @ s2 ∈ A ↑ (Suc n) by (auto simp add : Seq-def )
then show ∃n. s1 @ s2 ∈ A ↑ n by blast

qed
}
ultimately show A? = (

⋃
n. A ↑ n) by auto

qed

lemma
shows seq-Union-left : B ;; (

⋃
n. A ↑ n) = (

⋃
n. B ;; (A ↑ n))

and seq-Union-right : (
⋃

n. A ↑ n) ;; B = (
⋃

n. (A ↑ n) ;; B)
unfolding Seq-def by auto

lemma seq-pow-comm:
shows A ;; (A ↑ n) = (A ↑ n) ;; A

by (induct n) (simp-all add : seq-assoc[symmetric])

lemma seq-star-comm:
shows A ;; A? = A? ;; A

unfolding star-pow-eq
unfolding seq-Union-left
unfolding seq-pow-comm
unfolding seq-Union-right
by simp

Two lemmas about the length of strings in A ↑ n

lemma pow-length:
assumes a: [] /∈ A
and b: s ∈ A ↑ Suc n
shows n < length s

using b
proof (induct n arbitrary : s)

case 0
have s ∈ A ↑ Suc 0 by fact
with a have s 6= [] by auto
then show 0 < length s by auto

next
case (Suc n)
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have ih:
∧

s. s ∈ A ↑ Suc n =⇒ n < length s by fact
have s ∈ A ↑ Suc (Suc n) by fact
then obtain s1 s2 where eq : s = s1 @ s2 and ∗: s1 ∈ A and ∗∗: s2 ∈ A ↑

Suc n
by (auto simp add : Seq-def )

from ih ∗∗ have n < length s2 by simp
moreover have 0 < length s1 using ∗ a by auto
ultimately show Suc n < length s unfolding eq

by (simp only : length-append)
qed

lemma seq-pow-length:
assumes a: [] /∈ A
and b: s ∈ B ;; (A ↑ Suc n)
shows n < length s

proof −
from b obtain s1 s2 where eq : s = s1 @ s2 and ∗: s2 ∈ A ↑ Suc n

unfolding Seq-def by auto
from ∗ have n < length s2 by (rule pow-length[OF a])
then show n < length s using eq by simp

qed

4 A slightly modified version of Arden’s lemma

Arden’s lemma expressed at the level of languages, rather than the level of
regular expression.

lemma ardens-helper :
assumes eq : X = X ;; A ∪ B
shows X = X ;; (A ↑ Suc n) ∪ (

⋃
m∈{0 ..n}. B ;; (A ↑ m))

proof (induct n)
case 0
show X = X ;; (A ↑ Suc 0 ) ∪ (

⋃
(m::nat)∈{0 ..0}. B ;; (A ↑ m))

using eq by simp
next

case (Suc n)
have ih: X = X ;; (A ↑ Suc n) ∪ (

⋃
m∈{0 ..n}. B ;; (A ↑ m)) by fact

also have . . . = (X ;; A ∪ B) ;; (A ↑ Suc n) ∪ (
⋃

m∈{0 ..n}. B ;; (A ↑ m))
using eq by simp

also have . . . = X ;; (A ↑ Suc (Suc n)) ∪ (B ;; (A ↑ Suc n)) ∪ (
⋃

m∈{0 ..n}.
B ;; (A ↑ m))

by (simp add : seq-union-distrib-right seq-assoc)
also have . . . = X ;; (A ↑ Suc (Suc n)) ∪ (

⋃
m∈{0 ..Suc n}. B ;; (A ↑ m))

by (auto simp add : le-Suc-eq)
finally show X = X ;; (A ↑ Suc (Suc n)) ∪ (

⋃
m∈{0 ..Suc n}. B ;; (A ↑ m)) .

qed

theorem ardens-revised :
assumes nemp: [] /∈ A
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shows X = X ;; A ∪ B ←→ X = B ;; A?
proof

assume eq : X = B ;; A?
have A? = {[]} ∪ A? ;; A

unfolding seq-star-comm[symmetric]
by (rule lang-star-cases)

then have B ;; A? = B ;; ({[]} ∪ A? ;; A)
unfolding Seq-def by simp

also have . . . = B ∪ B ;; (A? ;; A)
unfolding seq-union-distrib-left by simp

also have . . . = B ∪ (B ;; A?) ;; A
by (simp only : seq-assoc)

finally show X = X ;; A ∪ B
using eq by blast

next
assume eq : X = X ;; A ∪ B
{ fix n::nat

have B ;; (A ↑ n) ⊆ X using ardens-helper [OF eq , of n] by auto }
then have B ;; A? ⊆ X unfolding star-pow-eq Seq-def

by (auto simp add : UNION-def )
moreover
{ fix s::string

obtain k where k = length s by auto
then have not-in: s /∈ X ;; (A ↑ Suc k)

using seq-pow-length[OF nemp] by blast
assume s ∈ X
then have s ∈ X ;; (A ↑ Suc k) ∪ (

⋃
m∈{0 ..k}. B ;; (A ↑ m))

using ardens-helper [OF eq , of k ] by auto
then have s ∈ (

⋃
m∈{0 ..k}. B ;; (A ↑ m)) using not-in by auto

moreover
have (

⋃
m∈{0 ..k}. B ;; (A ↑ m)) ⊆ (

⋃
n. B ;; (A ↑ n)) by auto

ultimately
have s ∈ B ;; A? unfolding star-pow-eq seq-Union-left

by auto }
then have X ⊆ B ;; A? by auto
ultimately
show X = B ;; A? by simp

qed

The syntax of regular expressions is defined by the datatype rexp.

datatype rexp =
NULL
| EMPTY
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp

The following L is an overloaded operator, where L(x ) evaluates to the
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language represented by the syntactic object x.

consts L:: ′a ⇒ string set

The L(rexp) for regular expression rexp is defined by the following overload-
ing function L-rexp.

overloading L-rexp ≡ L:: rexp ⇒ string set
begin
fun

L-rexp :: rexp ⇒ string set
where

L-rexp (NULL) = {}
| L-rexp (EMPTY ) = {[]}
| L-rexp (CHAR c) = {[c]}
| L-rexp (SEQ r1 r2 ) = (L-rexp r1 ) ;; (L-rexp r2 )
| L-rexp (ALT r1 r2 ) = (L-rexp r1 ) ∪ (L-rexp r2 )
| L-rexp (STAR r) = (L-rexp r)?

end

To obtain equational system out of finite set of equivalent classes, a fold
operation on finite set folds is defined. The use of SOME makes fold more
robust than the fold in Isabelle library. The expression folds f makes sense
when f is not associative and commutitive, while fold f does not.

definition
folds :: ( ′a ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ ′a set ⇒ ′b

where
folds f z S ≡ SOME x . fold-graph f z S x

The following lemma assures that the arbitrary choice made by the SOME
in folds does not affect the L-value of the resultant regular expression.

lemma folds-alt-simp [simp]:
finite rs =⇒ L (folds ALT NULL rs) =

⋃
(L ‘ rs)

apply (rule set-eq-intro, simp add :folds-def )
apply (rule someI2-ex , erule finite-imp-fold-graph)
by (erule fold-graph.induct , auto)

lemma [simp]:
shows (x , y) ∈ {(x , y). P x y} ←→ P x y

by simp

≈L is an equivalent class defined by language Lang.

definition
str-eq-rel (≈- [100 ] 100 )

where
≈Lang ≡ {(x , y). (∀ z . x @ z ∈ Lang ←→ y @ z ∈ Lang)}

Among equivlant clases of ≈Lang, the set finals(Lang) singles out those
which contains strings from Lang.
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definition
finals Lang ≡ {≈Lang ‘‘ {x} | x . x ∈ Lang}

The following lemma show the relationshipt between finals(Lang) and Lang.

lemma lang-is-union-of-finals:
Lang =

⋃
finals(Lang)

proof
show Lang ⊆

⋃
(finals Lang)

proof
fix x
assume x ∈ Lang
thus x ∈

⋃
(finals Lang)

apply (simp add :finals-def , rule-tac x = (≈Lang) ‘‘ {x} in exI )
by (auto simp:Image-def str-eq-rel-def )

qed
next

show
⋃

(finals Lang) ⊆ Lang
apply (clarsimp simp:finals-def str-eq-rel-def )
by (drule-tac x = [] in spec, auto)

qed

5 Direction finite partition ⇒ regular language

The relationship between equivalent classes can be described by an equa-
tional system. For example, in equational system (1), X0, X1 are equivalent
classes. The first equation says every string in X0 is obtained either by ap-
pending one b to a string in X0 or by appending one a to a string in X1 or
just be an empty string (represented by the regular expression λ). Similary,
the second equation tells how the strings inside X1 are composed.

X0 = X0b+X1a+ λ

X1 = X0a+X1b
(1)

The summands on the right hand side is represented by the following data
type rhs-item, mnemonic for ’right hand side item’. Generally, there are
two kinds of right hand side items, one kind corresponds to pure regular
expressions, like the λ in (1), the other kind corresponds to transitions from
one one equivalent class to another, like the X0b,X1a etc.

datatype rhs-item =
Lam rexp
| Trn (string set) rexp

In this formalization, pure regular expressions like λ is repsented by Lam(EMPTY ),
while transitions like X0a is represented by Trn X0 (CHAR a).

The functions the-r and the-Trn are used to extract subcomponents from
right hand side items.
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fun the-r :: rhs-item ⇒ rexp
where the-r (Lam r) = r

fun the-Trn:: rhs-item ⇒ (string set × rexp)
where the-Trn (Trn Y r) = (Y , r)

Every right hand side item itm defines a string set given L(itm), defined as:

overloading L-rhs-e ≡ L:: rhs-item ⇒ string set
begin

fun L-rhs-e:: rhs-item ⇒ string set
where

L-rhs-e (Lam r) = L r |
L-rhs-e (Trn X r) = X ;; L r

end

The right hand side of every equation is represented by a set of items. The
string set defined by such a set itms is given by L(itms), defined as:

overloading L-rhs ≡ L:: rhs-item set ⇒ string set
begin

fun L-rhs:: rhs-item set ⇒ string set
where L-rhs rhs =

⋃
(L ‘ rhs)

end

Given a set of equivalent classses CS and one equivalent class X among CS,
the term init-rhs CS X is used to extract the right hand side of the equation
describing the formation of X. The definition of init-rhs is:

definition
init-rhs CS X ≡

if ([] ∈ X ) then
{Lam(EMPTY )} ∪ {Trn Y (CHAR c) | Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X }

else
{Trn Y (CHAR c)| Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X }

In the definition of init-rhs, the term {Trn Y (CHAR c)| Y c. Y ∈ CS ∧ Y
;; {[c]} ⊆ X } appearing on both branches describes the formation of strings
in X out of transitions, while the term {Lam(EMPTY )} describes the empty
string which is intrinsically contained in X rather than by transition. This
{Lam(EMPTY )} corresponds to the λ in (1).

With the help of init-rhs, the equitional system descrbing the formation of
every equivalent class inside CS is given by the following eqs(CS ).

definition eqs CS ≡ {(X , init-rhs CS X ) | X . X ∈ CS}

The following items-of rhs X returns all X -items in rhs.

definition
items-of rhs X ≡ {Trn X r | r . (Trn X r) ∈ rhs}
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The following rexp-of rhs X combines all regular expressions in X -items
using ALT to form a single regular expression. It will be used later to
implement arden-variate and rhs-subst.

definition
rexp-of rhs X ≡ folds ALT NULL ((snd o the-Trn) ‘ items-of rhs X )

The following lam-of rhs returns all pure regular expression items in rhs.

definition
lam-of rhs ≡ {Lam r | r . Lam r ∈ rhs}

The following rexp-of-lam rhs combines pure regular expression items in rhs
using ALT to form a single regular expression. When all variables inside
rhs are eliminated, rexp-of-lam rhs is used to compute compute the regular
expression corresponds to rhs.

definition
rexp-of-lam rhs ≡ folds ALT NULL (the-r ‘ lam-of rhs)

The following attach-rexp rexp ′ itm attach the regular expression rexp ′ to
the right of right hand side item itm.

fun attach-rexp :: rexp ⇒ rhs-item ⇒ rhs-item
where

attach-rexp rexp ′ (Lam rexp) = Lam (SEQ rexp rexp ′)
| attach-rexp rexp ′ (Trn X rexp) = Trn X (SEQ rexp rexp ′)

The following append-rhs-rexp rhs rexp attaches rexp to every item in rhs.

definition
append-rhs-rexp rhs rexp ≡ (attach-rexp rexp) ‘ rhs

With the help of the two functions immediately above, Ardens’ transfor-
mation on right hand side rhs is implemented by the following function
arden-variate X rhs. After this transformation, the recursive occurent of
X in rhs will be eliminated, while the string set defined by rhs is kept
unchanged.

definition
arden-variate X rhs ≡

append-rhs-rexp (rhs − items-of rhs X ) (STAR (rexp-of rhs X ))

Suppose the equation defining X is X = xrhs, the purpose of rhs-subst is
to substitute all occurences of X in rhs by xrhs. A litte thought may reveal
that the final result should be: first append (a1|a2| . . . |an) to every item of
xrhs and then union the result with all non-X -items of rhs.

definition
rhs-subst rhs X xrhs ≡

(rhs − (items-of rhs X )) ∪ (append-rhs-rexp xrhs (rexp-of rhs X ))

Suppose the equation defining X is X = xrhs, the follwing eqs-subst ES X
xrhs substitute xrhs into every equation of the equational system ES.
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definition
eqs-subst ES X xrhs ≡ {(Y , rhs-subst yrhs X xrhs) | Y yrhs. (Y , yrhs) ∈ ES}

The computation of regular expressions for equivalent classes is accom-
plished using a iteration principle given by the following lemma.

lemma wf-iter [rule-format ]:
fixes f
assumes step:

∧
e. [[P e; ¬ Q e]] =⇒ (∃ e ′. P e ′ ∧ (f (e ′), f (e)) ∈ less-than)

shows pe: P e −→ (∃ e ′. P e ′ ∧ Q e ′)
proof(induct e rule: wf-induct

[OF wf-inv-image[OF wf-less-than, where f = f ]], clarify)
fix x
assume h [rule-format ]:
∀ y . (y , x ) ∈ inv-image less-than f −→ P y −→ (∃ e ′. P e ′ ∧ Q e ′)
and px : P x

show ∃ e ′. P e ′ ∧ Q e ′

proof(cases Q x )
assume Q x with px show ?thesis by blast

next
assume nq : ¬ Q x
from step [OF px nq ]
obtain e ′ where pe ′: P e ′ and ltf : (f e ′, f x ) ∈ less-than by auto
show ?thesis
proof(rule h)

from ltf show (e ′, x ) ∈ inv-image less-than f
by (simp add :inv-image-def )

next
from pe ′ show P e ′ .

qed
qed

qed

The P in lemma wf-iter is an invaiant kept throughout the iteration proce-
dure. The particular invariant used to solve our problem is defined by func-
tion Inv(ES ), an invariant over equal system ES. Every definition starting
next till Inv stipulates a property to be satisfied by ES.

Every variable is defined at most onece in ES.

definition
distinct-equas ES ≡

∀ X rhs rhs ′. (X , rhs) ∈ ES ∧ (X , rhs ′) ∈ ES −→ rhs = rhs ′

Every equation in ES (represented by (X , rhs)) is valid, i.e. (X = L rhs).

definition
valid-eqns ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ (X = L rhs)

The following rhs-nonempty rhs requires regular expressions occuring in
transitional items of rhs does not contain empty string. This is necessary
for the application of Arden’s transformation to rhs.
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definition
rhs-nonempty rhs ≡ (∀ Y r . Trn Y r ∈ rhs −→ [] /∈ L r)

The following ardenable ES requires that Arden’s transformation is appli-
cable to every equation of equational system ES.

definition
ardenable ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ rhs-nonempty rhs

definition
non-empty ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ X 6= {}

The following finite-rhs ES requires every equation in rhs be finite.

definition
finite-rhs ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ finite rhs

The following classes-of rhs returns all variables (or equivalent classes) oc-
curing in rhs.

definition
classes-of rhs ≡ {X . ∃ r . Trn X r ∈ rhs}

The following lefts-of ES returns all variables defined by equational system
ES.

definition
lefts-of ES ≡ {Y | Y yrhs. (Y , yrhs) ∈ ES}

The following self-contained ES requires that every variable occuring on the
right hand side of equations is already defined by some equation in ES.

definition
self-contained ES ≡ ∀ (X , xrhs) ∈ ES . classes-of xrhs ⊆ lefts-of ES

The invariant Inv(ES ) is a conjunction of all the previously defined con-
staints.

definition
Inv ES ≡ valid-eqns ES ∧ finite ES ∧ distinct-equas ES ∧ ardenable ES ∧

non-empty ES ∧ finite-rhs ES ∧ self-contained ES

5.1 The proof of this direction

5.1.1 Basic properties

The following are some basic properties of the above definitions.

lemma L-rhs-union-distrib:
L (A::rhs-item set) ∪ L B = L (A ∪ B)

by simp

lemma finite-snd-Trn:
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assumes finite:finite rhs
shows finite {r2. Trn Y r2 ∈ rhs} (is finite ?B)

proof−
def rhs ′ ≡ {e ∈ rhs. ∃ r . e = Trn Y r}
have ?B = (snd o the-Trn) ‘ rhs ′ using rhs ′-def by (auto simp:image-def )
moreover have finite rhs ′ using finite rhs ′-def by auto
ultimately show ?thesis by simp

qed

lemma rexp-of-empty :
assumes finite:finite rhs
and nonempty :rhs-nonempty rhs
shows [] /∈ L (rexp-of rhs X )

using finite nonempty rhs-nonempty-def
by (drule-tac finite-snd-Trn[where Y = X ], auto simp:rexp-of-def items-of-def )

lemma [intro!]:
P (Trn X r) =⇒ (∃ a. (∃ r . a = Trn X r ∧ P a)) by auto

lemma finite-items-of :
finite rhs =⇒ finite (items-of rhs X )

by (auto simp:items-of-def intro:finite-subset)

lemma lang-of-rexp-of :
assumes finite:finite rhs
shows L (items-of rhs X ) = X ;; (L (rexp-of rhs X ))

proof −
have finite ((snd ◦ the-Trn) ‘ items-of rhs X ) using finite-items-of [OF finite]

by auto
thus ?thesis

apply (auto simp:rexp-of-def Seq-def items-of-def )
apply (rule-tac x = s1 in exI , rule-tac x = s2 in exI , auto)
by (rule-tac x= Trn X r in exI , auto simp:Seq-def )

qed

lemma rexp-of-lam-eq-lam-set :
assumes finite: finite rhs
shows L (rexp-of-lam rhs) = L (lam-of rhs)

proof −
have finite (the-r ‘ {Lam r |r . Lam r ∈ rhs}) using finite

by (rule-tac finite-imageI , auto intro:finite-subset)
thus ?thesis by (auto simp:rexp-of-lam-def lam-of-def )

qed

lemma [simp]:
L (attach-rexp r xb) = L xb ;; L r

apply (cases xb, auto simp:Seq-def )
apply(rule-tac x = s1 @ s1

′ in exI , rule-tac x = s2
′ in exI )

apply(auto simp: Seq-def )
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done

lemma lang-of-append-rhs:
L (append-rhs-rexp rhs r) = L rhs ;; L r

apply (auto simp:append-rhs-rexp-def image-def )
apply (auto simp:Seq-def )
apply (rule-tac x = L xb ;; L r in exI , auto simp add :Seq-def )
by (rule-tac x = attach-rexp r xb in exI , auto simp:Seq-def )

lemma classes-of-union-distrib:
classes-of A ∪ classes-of B = classes-of (A ∪ B)

by (auto simp add :classes-of-def )

lemma lefts-of-union-distrib:
lefts-of A ∪ lefts-of B = lefts-of (A ∪ B)

by (auto simp:lefts-of-def )

5.1.2 Intialization

The following several lemmas until init-ES-satisfy-Inv shows that the initial
equational system satisfies invariant Inv.

lemma defined-by-str :
[[s ∈ X ; X ∈ UNIV // (≈Lang)]] =⇒ X = (≈Lang) ‘‘ {s}

by (auto simp:quotient-def Image-def str-eq-rel-def )

lemma every-eqclass-has-transition:
assumes has-str : s @ [c] ∈ X
and in-CS : X ∈ UNIV // (≈Lang)
obtains Y where Y ∈ UNIV // (≈Lang) and Y ;; {[c]} ⊆ X and s ∈ Y

proof −
def Y ≡ (≈Lang) ‘‘ {s}
have Y ∈ UNIV // (≈Lang)

unfolding Y-def quotient-def by auto
moreover
have X = (≈Lang) ‘‘ {s @ [c]}

using has-str in-CS defined-by-str by blast
then have Y ;; {[c]} ⊆ X

unfolding Y-def Image-def Seq-def
unfolding str-eq-rel-def
by clarsimp

moreover
have s ∈ Y unfolding Y-def

unfolding Image-def str-eq-rel-def by simp
ultimately show thesis by (blast intro: that)

qed

lemma l-eq-r-in-eqs:
assumes X-in-eqs: (X , xrhs) ∈ (eqs (UNIV // (≈Lang)))
shows X = L xrhs
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proof
show X ⊆ L xrhs
proof

fix x
assume (1 ): x ∈ X
show x ∈ L xrhs
proof (cases x = [])

assume empty : x = []
thus ?thesis using X-in-eqs (1 )

by (auto simp:eqs-def init-rhs-def )
next

assume not-empty : x 6= []
then obtain clist c where decom: x = clist @ [c]

by (case-tac x rule:rev-cases, auto)
have X ∈ UNIV // (≈Lang) using X-in-eqs by (auto simp:eqs-def )
then obtain Y

where Y ∈ UNIV // (≈Lang)
and Y ;; {[c]} ⊆ X
and clist ∈ Y
using decom (1 ) every-eqclass-has-transition by blast

hence
x ∈ L {Trn Y (CHAR c)| Y c. Y ∈ UNIV // (≈Lang) ∧ Y ;; {[c]} ⊆ X }
using (1 ) decom
by (simp, rule-tac x = Trn Y (CHAR c) in exI , simp add :Seq-def )

thus ?thesis using X-in-eqs (1 )
by (simp add :eqs-def init-rhs-def )

qed
qed

next
show L xrhs ⊆ X using X-in-eqs

by (auto simp:eqs-def init-rhs-def )
qed

lemma finite-init-rhs:
assumes finite: finite CS
shows finite (init-rhs CS X )

proof−
have finite {Trn Y (CHAR c) |Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X } (is finite ?A)
proof −

def S ≡ {(Y , c)| Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X }
def h ≡ λ (Y , c). Trn Y (CHAR c)
have finite (CS × (UNIV ::char set)) using finite by auto
hence finite S using S-def

by (rule-tac B = CS × UNIV in finite-subset , auto)
moreover have ?A = h ‘ S by (auto simp: S-def h-def image-def )
ultimately show ?thesis

by auto
qed
thus ?thesis by (simp add :init-rhs-def )
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qed

lemma init-ES-satisfy-Inv :
assumes finite-CS : finite (UNIV // (≈Lang))
shows Inv (eqs (UNIV // (≈Lang)))

proof −
have finite (eqs (UNIV // (≈Lang))) using finite-CS

by (simp add :eqs-def )
moreover have distinct-equas (eqs (UNIV // (≈Lang)))

by (simp add :distinct-equas-def eqs-def )
moreover have ardenable (eqs (UNIV // (≈Lang)))
by (auto simp add :ardenable-def eqs-def init-rhs-def rhs-nonempty-def del :L-rhs.simps)
moreover have valid-eqns (eqs (UNIV // (≈Lang)))

using l-eq-r-in-eqs by (simp add :valid-eqns-def )
moreover have non-empty (eqs (UNIV // (≈Lang)))

by (auto simp:non-empty-def eqs-def quotient-def Image-def str-eq-rel-def )
moreover have finite-rhs (eqs (UNIV // (≈Lang)))

using finite-init-rhs[OF finite-CS ]
by (auto simp:finite-rhs-def eqs-def )

moreover have self-contained (eqs (UNIV // (≈Lang)))
by (auto simp:self-contained-def eqs-def init-rhs-def classes-of-def lefts-of-def )

ultimately show ?thesis by (simp add :Inv-def )
qed

5.1.3 Interation step

From this point until iteration-step, it is proved that there exists iteration
steps which keep Inv(ES ) while decreasing the size of ES.

lemma arden-variate-keeps-eq :
assumes l-eq-r : X = L rhs
and not-empty : [] /∈ L (rexp-of rhs X )
and finite: finite rhs
shows X = L (arden-variate X rhs)

proof −
def A ≡ L (rexp-of rhs X )
def b ≡ rhs − items-of rhs X
def B ≡ L b
have X = B ;; A?
proof−

have rhs = items-of rhs X ∪ b by (auto simp:b-def items-of-def )
hence L rhs = L(items-of rhs X ∪ b) by simp
hence L rhs = L(items-of rhs X ) ∪ B by (simp only :L-rhs-union-distrib B-def )
with lang-of-rexp-of
have L rhs = X ;; A ∪ B using finite by (simp only :B-def b-def A-def )
thus ?thesis

using l-eq-r not-empty
apply (drule-tac B = B and X = X in ardens-revised)
by (auto simp:A-def simp del :L-rhs.simps)

qed
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moreover have L (arden-variate X rhs) = (B ;; A?) (is ?L = ?R)
by (simp only :arden-variate-def L-rhs-union-distrib lang-of-append-rhs

B-def A-def b-def L-rexp.simps seq-union-distrib-left)
ultimately show ?thesis by simp

qed

lemma append-keeps-finite:
finite rhs =⇒ finite (append-rhs-rexp rhs r)

by (auto simp:append-rhs-rexp-def )

lemma arden-variate-keeps-finite:
finite rhs =⇒ finite (arden-variate X rhs)

by (auto simp:arden-variate-def append-keeps-finite)

lemma append-keeps-nonempty :
rhs-nonempty rhs =⇒ rhs-nonempty (append-rhs-rexp rhs r)

apply (auto simp:rhs-nonempty-def append-rhs-rexp-def )
by (case-tac x , auto simp:Seq-def )

lemma nonempty-set-sub:
rhs-nonempty rhs =⇒ rhs-nonempty (rhs − A)

by (auto simp:rhs-nonempty-def )

lemma nonempty-set-union:
[[rhs-nonempty rhs; rhs-nonempty rhs ′]] =⇒ rhs-nonempty (rhs ∪ rhs ′)

by (auto simp:rhs-nonempty-def )

lemma arden-variate-keeps-nonempty :
rhs-nonempty rhs =⇒ rhs-nonempty (arden-variate X rhs)

by (simp only :arden-variate-def append-keeps-nonempty nonempty-set-sub)

lemma rhs-subst-keeps-nonempty :
[[rhs-nonempty rhs; rhs-nonempty xrhs]] =⇒ rhs-nonempty (rhs-subst rhs X xrhs)

by (simp only :rhs-subst-def append-keeps-nonempty nonempty-set-union nonempty-set-sub)

lemma rhs-subst-keeps-eq :
assumes substor : X = L xrhs
and finite: finite rhs
shows L (rhs-subst rhs X xrhs) = L rhs (is ?Left = ?Right)

proof−
def A ≡ L (rhs − items-of rhs X )
have ?Left = A ∪ L (append-rhs-rexp xrhs (rexp-of rhs X ))

by (simp only :rhs-subst-def L-rhs-union-distrib A-def )
moreover have ?Right = A ∪ L (items-of rhs X )
proof−
have rhs = (rhs − items-of rhs X ) ∪ (items-of rhs X ) by (auto simp:items-of-def )
thus ?thesis by (simp only :L-rhs-union-distrib A-def )

qed
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moreover have L (append-rhs-rexp xrhs (rexp-of rhs X )) = L (items-of rhs X )
using finite substor by (simp only :lang-of-append-rhs lang-of-rexp-of )

ultimately show ?thesis by simp
qed

lemma rhs-subst-keeps-finite-rhs:
[[finite rhs; finite yrhs]] =⇒ finite (rhs-subst rhs Y yrhs)

by (auto simp:rhs-subst-def append-keeps-finite)

lemma eqs-subst-keeps-finite:
assumes finite:finite (ES :: (string set × rhs-item set) set)
shows finite (eqs-subst ES Y yrhs)

proof −
have finite {(Ya, rhs-subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) ∈ ES}

(is finite ?A)
proof−

def eqns ′ ≡ {((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) ∈ ES}
def h ≡ λ ((Ya::string set), yrhsa). (Ya, rhs-subst yrhsa Y yrhs)
have finite (h ‘ eqns ′) using finite h-def eqns ′-def by auto
moreover have ?A = h ‘ eqns ′ by (auto simp:h-def eqns ′-def )
ultimately show ?thesis by auto

qed
thus ?thesis by (simp add :eqs-subst-def )

qed

lemma eqs-subst-keeps-finite-rhs:
[[finite-rhs ES ; finite yrhs]] =⇒ finite-rhs (eqs-subst ES Y yrhs)

by (auto intro:rhs-subst-keeps-finite-rhs simp add :eqs-subst-def finite-rhs-def )

lemma append-rhs-keeps-cls:
classes-of (append-rhs-rexp rhs r) = classes-of rhs

apply (auto simp:classes-of-def append-rhs-rexp-def )
apply (case-tac xa, auto simp:image-def )
by (rule-tac x = SEQ ra r in exI , rule-tac x = Trn x ra in bexI , simp+)

lemma arden-variate-removes-cl :
classes-of (arden-variate Y yrhs) = classes-of yrhs − {Y }

apply (simp add :arden-variate-def append-rhs-keeps-cls items-of-def )
by (auto simp:classes-of-def )

lemma lefts-of-keeps-cls:
lefts-of (eqs-subst ES Y yrhs) = lefts-of ES

by (auto simp:lefts-of-def eqs-subst-def )

lemma rhs-subst-updates-cls:
X /∈ classes-of xrhs =⇒

classes-of (rhs-subst rhs X xrhs) = classes-of rhs ∪ classes-of xrhs − {X }
apply (simp only :rhs-subst-def append-rhs-keeps-cls

classes-of-union-distrib[THEN sym])
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by (auto simp:classes-of-def items-of-def )

lemma eqs-subst-keeps-self-contained :
fixes Y
assumes sc: self-contained (ES ∪ {(Y , yrhs)}) (is self-contained ?A)
shows self-contained (eqs-subst ES Y (arden-variate Y yrhs))

(is self-contained ?B)
proof−
{ fix X xrhs ′

assume (X , xrhs ′) ∈ ?B
then obtain xrhs

where xrhs-xrhs ′: xrhs ′ = rhs-subst xrhs Y (arden-variate Y yrhs)
and X-in: (X , xrhs) ∈ ES by (simp add :eqs-subst-def , blast)

have classes-of xrhs ′ ⊆ lefts-of ?B
proof−

have lefts-of ?B = lefts-of ES by (auto simp add :lefts-of-def eqs-subst-def )
moreover have classes-of xrhs ′ ⊆ lefts-of ES
proof−

have classes-of xrhs ′ ⊆
classes-of xrhs ∪ classes-of (arden-variate Y yrhs) − {Y }

proof−
have Y /∈ classes-of (arden-variate Y yrhs)

using arden-variate-removes-cl by simp
thus ?thesis using xrhs-xrhs ′ by (auto simp:rhs-subst-updates-cls)

qed
moreover have classes-of xrhs ⊆ lefts-of ES ∪ {Y } using X-in sc

apply (simp only :self-contained-def lefts-of-union-distrib[THEN sym])
by (drule-tac x = (X , xrhs) in bspec, auto simp:lefts-of-def )

moreover have classes-of (arden-variate Y yrhs) ⊆ lefts-of ES ∪ {Y }
using sc
by (auto simp add :arden-variate-removes-cl self-contained-def lefts-of-def )

ultimately show ?thesis by auto
qed
ultimately show ?thesis by simp

qed
} thus ?thesis by (auto simp only :eqs-subst-def self-contained-def )

qed

lemma eqs-subst-satisfy-Inv :
assumes Inv-ES : Inv (ES ∪ {(Y , yrhs)})
shows Inv (eqs-subst ES Y (arden-variate Y yrhs))

proof −
have finite-yrhs: finite yrhs

using Inv-ES by (auto simp:Inv-def finite-rhs-def )
have nonempty-yrhs: rhs-nonempty yrhs

using Inv-ES by (auto simp:Inv-def ardenable-def )
have Y-eq-yrhs: Y = L yrhs

using Inv-ES by (simp only :Inv-def valid-eqns-def , blast)
have distinct-equas (eqs-subst ES Y (arden-variate Y yrhs))
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using Inv-ES
by (auto simp:distinct-equas-def eqs-subst-def Inv-def )

moreover have finite (eqs-subst ES Y (arden-variate Y yrhs))
using Inv-ES by (simp add :Inv-def eqs-subst-keeps-finite)

moreover have finite-rhs (eqs-subst ES Y (arden-variate Y yrhs))
proof−

have finite-rhs ES using Inv-ES
by (simp add :Inv-def finite-rhs-def )

moreover have finite (arden-variate Y yrhs)
proof −

have finite yrhs using Inv-ES
by (auto simp:Inv-def finite-rhs-def )

thus ?thesis using arden-variate-keeps-finite by simp
qed
ultimately show ?thesis

by (simp add :eqs-subst-keeps-finite-rhs)
qed
moreover have ardenable (eqs-subst ES Y (arden-variate Y yrhs))
proof −
{ fix X rhs

assume (X , rhs) ∈ ES
hence rhs-nonempty rhs using prems Inv-ES

by (simp add :Inv-def ardenable-def )
with nonempty-yrhs
have rhs-nonempty (rhs-subst rhs Y (arden-variate Y yrhs))

by (simp add :nonempty-yrhs
rhs-subst-keeps-nonempty arden-variate-keeps-nonempty)

} thus ?thesis by (auto simp add :ardenable-def eqs-subst-def )
qed
moreover have valid-eqns (eqs-subst ES Y (arden-variate Y yrhs))
proof−

have Y = L (arden-variate Y yrhs)
using Y-eq-yrhs Inv-ES finite-yrhs nonempty-yrhs
by (rule-tac arden-variate-keeps-eq , (simp add :rexp-of-empty)+)

thus ?thesis using Inv-ES
by (clarsimp simp add :valid-eqns-def

eqs-subst-def rhs-subst-keeps-eq Inv-def finite-rhs-def
simp del :L-rhs.simps)

qed
moreover have

non-empty-subst : non-empty (eqs-subst ES Y (arden-variate Y yrhs))
using Inv-ES by (auto simp:Inv-def non-empty-def eqs-subst-def )

moreover
have self-subst : self-contained (eqs-subst ES Y (arden-variate Y yrhs))

using Inv-ES eqs-subst-keeps-self-contained by (simp add :Inv-def )
ultimately show ?thesis using Inv-ES by (simp add :Inv-def )

qed

lemma eqs-subst-card-le:
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assumes finite: finite (ES ::(string set × rhs-item set) set)
shows card (eqs-subst ES Y yrhs) <= card ES

proof−
def f ≡ λ x . ((fst x )::string set , rhs-subst (snd x ) Y yrhs)
have eqs-subst ES Y yrhs = f ‘ ES

apply (auto simp:eqs-subst-def f-def image-def )
by (rule-tac x = (Ya, yrhsa) in bexI , simp+)

thus ?thesis using finite by (auto intro:card-image-le)
qed

lemma eqs-subst-cls-remains:
(X , xrhs) ∈ ES =⇒ ∃ xrhs ′. (X , xrhs ′) ∈ (eqs-subst ES Y yrhs)

by (auto simp:eqs-subst-def )

lemma card-noteq-1-has-more:
assumes card :card S 6= 1
and e-in: e ∈ S
and finite: finite S
obtains e ′ where e ′ ∈ S ∧ e 6= e ′

proof−
have card (S − {e}) > 0
proof −

have card S > 1 using card e-in finite
by (case-tac card S , auto)

thus ?thesis using finite e-in by auto
qed
hence S − {e} 6= {} using finite by (rule-tac notI , simp)
thus (

∧
e ′. e ′ ∈ S ∧ e 6= e ′ =⇒ thesis) =⇒ thesis by auto

qed

lemma iteration-step:
assumes Inv-ES : Inv ES
and X-in-ES : (X , xrhs) ∈ ES
and not-T : card ES 6= 1
shows ∃ ES ′. (Inv ES ′ ∧ (∃ xrhs ′.(X , xrhs ′) ∈ ES ′)) ∧

(card ES ′, card ES ) ∈ less-than (is ∃ ES ′. ?P ES ′)
proof −

have finite-ES : finite ES using Inv-ES by (simp add :Inv-def )
then obtain Y yrhs

where Y-in-ES : (Y , yrhs) ∈ ES and not-eq : (X , xrhs) 6= (Y , yrhs)
using not-T X-in-ES by (drule-tac card-noteq-1-has-more, auto)

def ES ′ == ES − {(Y , yrhs)}
let ?ES ′′ = eqs-subst ES ′ Y (arden-variate Y yrhs)
have ?P ?ES ′′

proof −
have Inv ?ES ′′ using Y-in-ES Inv-ES

by (rule-tac eqs-subst-satisfy-Inv , simp add :ES ′-def insert-absorb)
moreover have ∃ xrhs ′. (X , xrhs ′) ∈ ?ES ′′ using not-eq X-in-ES

by (rule-tac ES = ES ′ in eqs-subst-cls-remains, auto simp add :ES ′-def )
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moreover have (card ?ES ′′, card ES ) ∈ less-than
proof −

have finite ES ′ using finite-ES ES ′-def by auto
moreover have card ES ′ < card ES using finite-ES Y-in-ES

by (auto simp:ES ′-def card-gt-0-iff intro:diff-Suc-less)
ultimately show ?thesis

by (auto dest :eqs-subst-card-le elim:le-less-trans)
qed
ultimately show ?thesis by simp

qed
thus ?thesis by blast

qed

5.1.4 Conclusion of the proof

From this point until hard-direction, the hard direction is proved through a
simple application of the iteration principle.

lemma iteration-conc:
assumes history : Inv ES
and X-in-ES : ∃ xrhs. (X , xrhs) ∈ ES
shows
∃ ES ′. (Inv ES ′ ∧ (∃ xrhs ′. (X , xrhs ′) ∈ ES ′)) ∧ card ES ′ = 1

(is ∃ ES ′. ?P ES ′)
proof (cases card ES = 1 )

case True
thus ?thesis using history X-in-ES

by blast
next

case False
thus ?thesis using history iteration-step X-in-ES

by (rule-tac f = card in wf-iter , auto)
qed

lemma last-cl-exists-rexp:
assumes ES-single: ES = {(X , xrhs)}
and Inv-ES : Inv ES
shows ∃ (r ::rexp). L r = X (is ∃ r . ?P r)

proof−
let ?A = arden-variate X xrhs
have ?P (rexp-of-lam ?A)
proof −

have L (rexp-of-lam ?A) = L (lam-of ?A)
proof(rule rexp-of-lam-eq-lam-set)

show finite (arden-variate X xrhs) using Inv-ES ES-single
by (rule-tac arden-variate-keeps-finite,

auto simp add :Inv-def finite-rhs-def )
qed
also have . . . = L ?A
proof−
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have lam-of ?A = ?A
proof−

have classes-of ?A = {} using Inv-ES ES-single
by (simp add :arden-variate-removes-cl

self-contained-def Inv-def lefts-of-def )
thus ?thesis

by (auto simp only :lam-of-def classes-of-def , case-tac x , auto)
qed
thus ?thesis by simp

qed
also have . . . = X
proof(rule arden-variate-keeps-eq [THEN sym])

show X = L xrhs using Inv-ES ES-single
by (auto simp only :Inv-def valid-eqns-def )

next
from Inv-ES ES-single show [] /∈ L (rexp-of xrhs X )

by(simp add :Inv-def ardenable-def rexp-of-empty finite-rhs-def )
next

from Inv-ES ES-single show finite xrhs
by (simp add :Inv-def finite-rhs-def )

qed
finally show ?thesis by simp

qed
thus ?thesis by auto

qed

lemma every-eqcl-has-reg :
assumes finite-CS : finite (UNIV // (≈Lang))
and X-in-CS : X ∈ (UNIV // (≈Lang))
shows ∃ (reg ::rexp). L reg = X (is ∃ r . ?E r)

proof −
from X-in-CS have ∃ xrhs. (X , xrhs) ∈ (eqs (UNIV // (≈Lang)))

by (auto simp:eqs-def init-rhs-def )
then obtain ES xrhs where Inv-ES : Inv ES

and X-in-ES : (X , xrhs) ∈ ES
and card-ES : card ES = 1
using finite-CS X-in-CS init-ES-satisfy-Inv iteration-conc
by blast

hence ES-single-equa: ES = {(X , xrhs)}
by (auto simp:Inv-def dest !:card-Suc-Diff1 simp:card-eq-0-iff )

thus ?thesis using Inv-ES
by (rule last-cl-exists-rexp)

qed

lemma finals-in-partitions:
finals Lang ⊆ (UNIV // (≈Lang))
by (auto simp:finals-def quotient-def )

theorem hard-direction:
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assumes finite-CS : finite (UNIV // ≈Lang)
shows ∃ (r ::rexp). Lang = L r

proof −
have ∀ X ∈ (UNIV // (≈Lang)). ∃ (reg ::rexp). X = L reg

using finite-CS every-eqcl-has-reg by blast
then obtain f

where f-prop: ∀ X ∈ (UNIV // (≈Lang)). X = L ((f X )::rexp)
by (auto dest :bchoice)

def rs ≡ f ‘ (finals Lang)
have Lang =

⋃
(finals Lang) using lang-is-union-of-finals by auto

also have . . . = L (folds ALT NULL rs)
proof −

have finite rs
proof −

have finite (finals Lang)
using finite-CS finals-in-partitions[of Lang ]
by (erule-tac finite-subset , simp)

thus ?thesis using rs-def by auto
qed
thus ?thesis

using f-prop rs-def finals-in-partitions[of Lang ] by auto
qed
finally show ?thesis by blast

qed

end
theory Myhill

imports Myhill-1
begin

6 Direction regular language ⇒finite partition

6.1 The scheme

The following convenient notation x ≈Lang y means: string x and y are
equivalent with respect to language Lang.

definition
str-eq :: string ⇒ lang ⇒ string ⇒ bool (- ≈- -)

where
x ≈Lang y ≡ (x , y) ∈ (≈Lang)

The basic idea to show the finiteness of the partition induced by relation
≈Lang is to attach a tag tag(x ) to every string x, the set of tags are carfully
choosen, so that the range of tagging function tag (denoted range(tag)) is
finite. If strings with the same tag are equivlent with respect ≈Lang, i.e.
tag(x ) = tag(y) =⇒ x ≈Lang y (this property is named ‘injectivity’ in the
following), then it can be proved that: the partition given rise by (≈Lang)
is finite.
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There are two arguments for this. The first goes as the following:

1. First, the tagging function tag induces an equivalent relation (=tag=)
(defiintion of f-eq-rel and lemma equiv-f-eq-rel).

2. It is shown that: if the range of tag is finite, the partition given rise
by (=tag=) is finite (lemma finite-eq-f-rel).

3. It is proved that if equivalent relation R1 is more refined than R2 (ex-
pressed as R1 ⊆ R2 ), and the partition induced by R1 is finite, then
the partition induced by R2 is finite as well (lemma refined-partition-finite).

4. The injectivity assumption tag(x ) = tag(y) =⇒ x ≈Lang y implies
that (=tag=) is more refined than (≈Lang).

5. Combining the points above, we have: the partition induced by lan-
guage Lang is finite (lemma tag-finite-imageD).

definition
f-eq-rel (=-=)

where
(=f =) = {(x , y) | x y . f x = f y}

lemma equiv-f-eq-rel :equiv UNIV (=f =)
by (auto simp:equiv-def f-eq-rel-def refl-on-def sym-def trans-def )

lemma finite-range-image: finite (range f ) =⇒ finite (f ‘ A)
by (rule-tac B = {y . ∃ x . y = f x} in finite-subset , auto simp:image-def )

lemma finite-eq-f-rel :
assumes rng-fnt : finite (range tag)
shows finite (UNIV // (=tag=))

proof −
let ?f = op ‘ tag and ?A = (UNIV // (=tag=))
show ?thesis
proof (rule-tac f = ?f and A = ?A in finite-imageD)

— The finiteness of f -image is a simple consequence of assumption rng-fnt :
show finite (?f ‘ ?A)
proof −

have ∀ X . ?f X ∈ (Pow (range tag)) by (auto simp:image-def Pow-def )
moreover from rng-fnt have finite (Pow (range tag)) by simp
ultimately have finite (range ?f )

by (auto simp only :image-def intro:finite-subset)
from finite-range-image [OF this] show ?thesis .

qed
next

— The injectivity of f -image is a consequence of the definition of (=tag=):
show inj-on ?f ?A
proof−
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{ fix X Y
assume X-in: X ∈ ?A

and Y-in: Y ∈ ?A
and tag-eq : ?f X = ?f Y

have X = Y
proof −

from X-in Y-in tag-eq
obtain x y

where x-in: x ∈ X and y-in: y ∈ Y and eq-tg : tag x = tag y
unfolding quotient-def Image-def str-eq-rel-def

str-eq-def image-def f-eq-rel-def
apply simp by blast

with X-in Y-in show ?thesis
by (auto simp:quotient-def str-eq-rel-def str-eq-def f-eq-rel-def )

qed
} thus ?thesis unfolding inj-on-def by auto

qed
qed

qed

lemma finite-image-finite: [[∀ x ∈ A. f x ∈ B ; finite B ]] =⇒ finite (f ‘ A)
by (rule finite-subset [of - B ], auto)

lemma refined-partition-finite:
fixes R1 R2 A
assumes fnt : finite (A // R1 )
and refined : R1 ⊆ R2
and eq1 : equiv A R1 and eq2 : equiv A R2
shows finite (A // R2 )

proof −
let ?f = λ X . {R1 ‘‘ {x} | x . x ∈ X }

and ?A = (A // R2 ) and ?B = (A // R1 )
show ?thesis
proof(rule-tac f = ?f and A = ?A in finite-imageD)

show finite (?f ‘ ?A)
proof(rule finite-subset [of - Pow ?B ])

from fnt show finite (Pow (A // R1 )) by simp
next

from eq2
show ?f ‘ A // R2 ⊆ Pow ?B

apply (unfold image-def Pow-def quotient-def , auto)
by (rule-tac x = xb in bexI , simp,

unfold equiv-def sym-def refl-on-def , blast)
qed

next
show inj-on ?f ?A
proof −
{ fix X Y

assume X-in: X ∈ ?A and Y-in: Y ∈ ?A
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and eq-f : ?f X = ?f Y (is ?L = ?R)
have X = Y using X-in
proof(rule quotientE )

fix x
assume X = R2 ‘‘ {x} and x ∈ A with eq2
have x-in: x ∈ X

by (unfold equiv-def quotient-def refl-on-def , auto)
with eq-f have R1 ‘‘ {x} ∈ ?R by auto
then obtain y where

y-in: y ∈ Y and eq-r : R1 ‘‘ {x} = R1 ‘‘{y} by auto
have (x , y) ∈ R1
proof −

from x-in X-in y-in Y-in eq2
have x ∈ A and y ∈ A

by (unfold equiv-def quotient-def refl-on-def , auto)
from eq-equiv-class-iff [OF eq1 this] and eq-r
show ?thesis by simp

qed
with refined have xy-r2 : (x , y) ∈ R2 by auto
from quotient-eqI [OF eq2 X-in Y-in x-in y-in this]
show ?thesis .

qed
} thus ?thesis by (auto simp:inj-on-def )

qed
qed

qed

lemma equiv-lang-eq : equiv UNIV (≈Lang)
apply (unfold equiv-def str-eq-rel-def sym-def refl-on-def trans-def )
by blast

lemma tag-finite-imageD :
fixes tag
assumes rng-fnt : finite (range tag)
— Suppose the rang of tagging fucntion tag is finite.
and same-tag-eqvt :

∧
m n. tag m = tag (n::string) =⇒ m ≈Lang n

— And strings with same tag are equivalent
shows finite (UNIV // (≈Lang))

proof −
let ?R1 = (=tag=)
show ?thesis
proof(rule-tac refined-partition-finite [of - ?R1 ])

from finite-eq-f-rel [OF rng-fnt ]
show finite (UNIV // =tag=) .

next
from same-tag-eqvt
show (=tag=) ⊆ (≈Lang)

by (auto simp:f-eq-rel-def str-eq-def )
next
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from equiv-f-eq-rel
show equiv UNIV (=tag=) by blast

next
from equiv-lang-eq
show equiv UNIV (≈Lang) by blast

qed
qed

A more concise, but less intelligible argument for tag-finite-imageD is given
as the following. The basic idea is still using standard library lemma finite-imageD :

[[finite (f ‘ A); inj-on f A]] =⇒ finite A

which says: if the image of injective function f over set A is finite, then A
must be finte, as we did in the lemmas above.

lemma
fixes tag
assumes rng-fnt : finite (range tag)
— Suppose the rang of tagging fucntion tag is finite.
and same-tag-eqvt :

∧
m n. tag m = tag (n::string) =⇒ m ≈Lang n

— And strings with same tag are equivalent
shows finite (UNIV // (≈Lang))
— Then the partition generated by (≈Lang) is finite.

proof −
— The particular f and A used in finite-imageD are:
let ?f = op ‘ tag and ?A = (UNIV // ≈Lang)
show ?thesis
proof (rule-tac f = ?f and A = ?A in finite-imageD)

— The finiteness of f -image is a simple consequence of assumption rng-fnt :
show finite (?f ‘ ?A)
proof −

have ∀ X . ?f X ∈ (Pow (range tag)) by (auto simp:image-def Pow-def )
moreover from rng-fnt have finite (Pow (range tag)) by simp
ultimately have finite (range ?f )

by (auto simp only :image-def intro:finite-subset)
from finite-range-image [OF this] show ?thesis .

qed
next

— The injectivity of f is the consequence of assumption same-tag-eqvt :
show inj-on ?f ?A
proof−
{ fix X Y

assume X-in: X ∈ ?A
and Y-in: Y ∈ ?A
and tag-eq : ?f X = ?f Y

have X = Y
proof −

from X-in Y-in tag-eq
obtain x y where x-in: x ∈ X and y-in: y ∈ Y and eq-tg : tag x = tag y
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unfolding quotient-def Image-def str-eq-rel-def str-eq-def image-def
apply simp by blast

from same-tag-eqvt [OF eq-tg ] have x ≈Lang y .
with X-in Y-in x-in y-in
show ?thesis by (auto simp:quotient-def str-eq-rel-def str-eq-def )

qed
} thus ?thesis unfolding inj-on-def by auto

qed
qed

qed

6.2 The proof

6.2.1 The case for NULL

lemma quot-null-eq :
shows (UNIV // ≈{}) = ({UNIV }::lang set)
unfolding quotient-def Image-def str-eq-rel-def by auto

lemma quot-null-finiteI [intro]:
shows finite ((UNIV // ≈{})::lang set)

unfolding quot-null-eq by simp

6.2.2 The case for EMPTY

lemma quot-empty-subset :
UNIV // (≈{[]}) ⊆ {{[]}, UNIV − {[]}}

proof
fix x
assume x ∈ UNIV // ≈{[]}
then obtain y where h: x = {z . (y , z ) ∈ ≈{[]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]}, UNIV − {[]}}
proof (cases y = [])

case True with h
have x = {[]} by (auto simp: str-eq-rel-def )
thus ?thesis by simp

next
case False with h
have x = UNIV − {[]} by (auto simp: str-eq-rel-def )
thus ?thesis by simp

qed
qed

lemma quot-empty-finiteI [intro]:
shows finite (UNIV // (≈{[]}))

by (rule finite-subset [OF quot-empty-subset ]) (simp)
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6.2.3 The case for CHAR

lemma quot-char-subset :
UNIV // (≈{[c]}) ⊆ {{[]},{[c]}, UNIV − {[], [c]}}

proof
fix x
assume x ∈ UNIV // ≈{[c]}
then obtain y where h: x = {z . (y , z ) ∈ ≈{[c]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]},{[c]}, UNIV − {[], [c]}}
proof −
{ assume y = [] hence x = {[]} using h

by (auto simp:str-eq-rel-def )
} moreover {

assume y = [c] hence x = {[c]} using h
by (auto dest !:spec[where x = []] simp:str-eq-rel-def )

} moreover {
assume y 6= [] and y 6= [c]
hence ∀ z . (y @ z ) 6= [c] by (case-tac y , auto)
moreover have

∧
p. (p 6= [] ∧ p 6= [c]) = (∀ q . p @ q 6= [c])

by (case-tac p, auto)
ultimately have x = UNIV − {[],[c]} using h

by (auto simp add :str-eq-rel-def )
} ultimately show ?thesis by blast

qed
qed

lemma quot-char-finiteI [intro]:
shows finite (UNIV // (≈{[c]}))

by (rule finite-subset [OF quot-char-subset ]) (simp)

6.2.4 The case for SEQ

definition
tag-str-SEQ :: lang ⇒ lang ⇒ string ⇒ (lang × lang set)

where
tag-str-SEQ L1 L2 =

(λx . (≈L1 ‘‘ {x}, {(≈L2 ‘‘ {x − xa}) | xa. xa ≤ x ∧ xa ∈ L1}))

lemma append-seq-elim:
assumes x @ y ∈ L1 ;; L2

shows (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2) ∨
(∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2)

proof−
from assms obtain s1 s2

where x @ y = s1 @ s2
and in-seq : s1 ∈ L1 ∧ s2 ∈ L2

by (auto simp:Seq-def )
hence (x ≤ s1 ∧ (s1 − x ) @ s2 = y) ∨ (s1 ≤ x ∧ (x − s1) @ y = s2)
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using app-eq-dest by auto
moreover have [[x ≤ s1; (s1 − x ) @ s2 = y ]] =⇒

∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2

using in-seq by (rule-tac x = s1 − x in exI , auto elim:prefixE )
moreover have [[s1 ≤ x ; (x − s1) @ y = s2]] =⇒

∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2

using in-seq by (rule-tac x = s1 in exI , auto)
ultimately show ?thesis by blast

qed

lemma tag-str-SEQ-injI :
tag-str-SEQ L1 L2 m = tag-str-SEQ L1 L2 n =⇒ m ≈(L1 ;; L2) n

proof−
{ fix x y z

assume xz-in-seq : x @ z ∈ L1 ;; L2

and tag-xy : tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y
havey @ z ∈ L1 ;; L2

proof−
have (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ z ∈ L2) ∨

(∃ za ≤ z . (x @ za) ∈ L1 ∧ (z − za) ∈ L2)
using xz-in-seq append-seq-elim by simp

moreover {
fix xa
assume h1 : xa ≤ x and h2 : xa ∈ L1 and h3 : (x − xa) @ z ∈ L2

obtain ya where ya ≤ y and ya ∈ L1 and (y − ya) @ z ∈ L2

proof −
have ∃ ya. ya ≤ y ∧ ya ∈ L1 ∧ (x − xa) ≈L2 (y − ya)
proof −

have {≈L2 ‘‘ {x − xa} |xa. xa ≤ x ∧ xa ∈ L1} =
{≈L2 ‘‘ {y − xa} |xa. xa ≤ y ∧ xa ∈ L1}

(is ?Left = ?Right)
using h1 tag-xy by (auto simp:tag-str-SEQ-def )

moreover have ≈L2 ‘‘ {x − xa} ∈ ?Left using h1 h2 by auto
ultimately have ≈L2 ‘‘ {x − xa} ∈ ?Right by simp
thus ?thesis by (auto simp:Image-def str-eq-rel-def str-eq-def )

qed
with prems show ?thesis by (auto simp:str-eq-rel-def str-eq-def )

qed
hence y @ z ∈ L1 ;; L2 by (erule-tac prefixE , auto simp:Seq-def )

} moreover {
fix za
assume h1 : za ≤ z and h2 : (x @ za) ∈ L1 and h3 : z − za ∈ L2

hence y @ za ∈ L1

proof−
have ≈L1 ‘‘ {x} = ≈L1 ‘‘ {y}

using h1 tag-xy by (auto simp:tag-str-SEQ-def )
with h2 show ?thesis

by (auto simp:Image-def str-eq-rel-def str-eq-def )
qed
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with h1 h3 have y @ z ∈ L1 ;; L2

by (drule-tac A = L1 in seq-intro, auto elim:prefixE )
}
ultimately show ?thesis by blast

qed
} thus tag-str-SEQ L1 L2 m = tag-str-SEQ L1 L2 n =⇒ m ≈(L1 ;; L2) n

by (auto simp add : str-eq-def str-eq-rel-def )
qed

lemma quot-seq-finiteI [intro]:
fixes L1 L2 ::lang
assumes fin1 : finite (UNIV // ≈L1 )
and fin2 : finite (UNIV // ≈L2 )
shows finite (UNIV // ≈(L1 ;; L2 ))

proof (rule-tac tag = tag-str-SEQ L1 L2 in tag-finite-imageD)
show

∧
x y . tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y =⇒ x ≈(L1 ;; L2 ) y

by (rule tag-str-SEQ-injI )
next

have ∗: finite ((UNIV // ≈L1 ) × (Pow (UNIV // ≈L2 )))
using fin1 fin2 by auto

show finite (range (tag-str-SEQ L1 L2 ))
unfolding tag-str-SEQ-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

6.2.5 The case for ALT

definition
tag-str-ALT :: lang ⇒ lang ⇒ string ⇒ (lang × lang)

where
tag-str-ALT L1 L2 = (λx . (≈L1 ‘‘ {x}, ≈L2 ‘‘ {x}))

lemma quot-union-finiteI [intro]:
fixes L1 L2 ::lang
assumes finite1 : finite (UNIV // ≈L1 )
and finite2 : finite (UNIV // ≈L2 )
shows finite (UNIV // ≈(L1 ∪ L2 ))

proof (rule-tac tag = tag-str-ALT L1 L2 in tag-finite-imageD)
show

∧
x y . tag-str-ALT L1 L2 x = tag-str-ALT L1 L2 y =⇒ x ≈(L1 ∪ L2 ) y

unfolding tag-str-ALT-def
unfolding str-eq-def
unfolding Image-def
unfolding str-eq-rel-def
by auto

next
have ∗: finite ((UNIV // ≈L1 ) × (UNIV // ≈L2 ))
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using finite1 finite2 by auto
show finite (range (tag-str-ALT L1 L2 ))

unfolding tag-str-ALT-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

6.2.6 The case for STAR

This turned out to be the trickiest case. The essential goal is to proved y @
z ∈ L1∗ under the assumptions that x @ z ∈ L1∗ and that x and y have
the same tag. The reasoning goes as the following:

1. Since x @ z ∈ L1∗ holds, a prefix xa of x can be found such that xa
∈ L1∗ and (x − xa)@z ∈ L1∗, as shown in Fig. 1(a)(a). Such a prefix
always exists, xa = [], for example, is one.

2. There could be many but fintie many of such xa, from which we can
find the longest and name it xa-max, as shown in Fig. 1(b)(b).

3. The next step is to split z into za and zb such that (x − xa-max ) @
za ∈ L1 and zb ∈ L1∗ as shown in Fig. 1(d)(d). Such a split always
exists because:

(a) Because (x − x-max ) @ z ∈ L1∗, it can always be split into prefix
a and suffix b, such that a ∈ L1 and b ∈ L1∗, as shown in Fig.
1(c)(c).

(b) But the prefix a CANNOT be shorter than x − xa-max, otherwise
xa-max is not the max in it’s kind.

(c) Now, za is just a − (x − xa-max ) and zb is just b.

4. By the assumption that x and y have the same tag, the structure on x
@ z can be transferred to y @ z as shown in Fig. 1(e)(e). The detailed
steps are:

(a) A y-prefix ya corresponding to xa can be found, which satisfies
conditions: ya ∈ L1∗ and (y − ya)@za ∈ L1.

(b) Since we already know zb ∈ L1∗, we get (y − ya)@za@zb ∈ L1∗,
and this is just (y − ya)@z ∈ L1∗.

(c) With fact ya ∈ L1∗, we finally get y@z ∈ L1∗.

The formal proof of lemma tag-str-STAR-injI faithfully follows this informal
argument while the tagging function tag-str-STAR is defined to make the
transfer in step ??4 feasible.

definition
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xa x− xa

x z

x@z ∈ L1∗

(x− xa)@z ∈ L1∗xa ∈ L1∗

(a) First split

xa max x− xa max

x z

x@z ∈ L1∗

(x− xa max)@z ∈ L1∗xa ∈ L1∗

(b) Max split

xa max x− xa max

x z

x@z ∈ L1∗

(x− xa max)@z ∈ L1∗xa ∈ L1∗

a ∈ L1 b ∈ L1∗

(c) Max split with a and b

xa max x− xa max za zb

x z

x@z ∈ L1∗

(x− xa max)@za ∈ L1xa max ∈ L1∗ zb ∈ L1∗

(x− xa max)@z ∈ L1∗

(d) Last split

ya y − ya za zb

y z

y@z ∈ L1∗

(y − ya)@za ∈ L1ya ∈ L1∗ zb ∈ L1∗

(y − ya)@z ∈ L1∗

(e) Transferring to y

Figure 1: The case for STAR
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tag-str-STAR :: lang ⇒ string ⇒ lang set
where

tag-str-STAR L1 = (λx . {≈L1 ‘‘ {x − xa} | xa. xa < x ∧ xa ∈ L1?})

A technical lemma.

lemma finite-set-has-max : [[finite A; A 6= {}]] =⇒
(∃ max ∈ A. ∀ a ∈ A. f a <= (f max :: nat))

proof (induct rule:finite.induct)
case emptyI thus ?case by simp

next
case (insertI A a)
show ?case
proof (cases A = {})

case True thus ?thesis by (rule-tac x = a in bexI , auto)
next

case False
with prems obtain max

where h1 : max ∈ A
and h2 : ∀ a∈A. f a ≤ f max by blast

show ?thesis
proof (cases f a ≤ f max )

assume f a ≤ f max
with h1 h2 show ?thesis by (rule-tac x = max in bexI , auto)

next
assume ¬ (f a ≤ f max )
thus ?thesis using h2 by (rule-tac x = a in bexI , auto)

qed
qed

qed

Technical lemma.

lemma finite-strict-prefix-set : finite {xa. xa < (x ::string)}
apply (induct x rule:rev-induct , simp)
apply (subgoal-tac {xa. xa < xs @ [x ]} = {xa. xa < xs} ∪ {xs})
by (auto simp:strict-prefix-def )

lemma tag-str-STAR-injI :
fixes v w
assumes eq-tag : tag-str-STAR L1 v = tag-str-STAR L1 w
shows (v ::string) ≈(L1?) w

proof−

—

According to the definition of ≈Lang, proving v ≈(L1?) w amounts to
showing: for any string u, if v @ u ∈ (L1?) then w @ u ∈ (L1?) and vice
versa. The reasoning pattern for both directions are the same, as derived
in the following:

{ fix x y z
assume xz-in-star : x @ z ∈ L1?

and tag-xy : tag-str-STAR L1 x = tag-str-STAR L1 y
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have y @ z ∈ L1?
proof(cases x = [])

— The degenerated case when x is a null string is easy to prove:
case True
with tag-xy have y = []

by (auto simp:tag-str-STAR-def strict-prefix-def )
thus ?thesis using xz-in-star True by simp

next
— The case when x is not null, and x @ z is in L1?,

case False

—

Since x @ z ∈ L1?, x can always be splited by a prefix xa together with its
suffix x − xa, such that both xa and (x − xa) @ z are in L1?, and there
could be many such splittings.Therefore, the following set ?S is nonempty,
and finite as well:

let ?S = {xa. xa < x ∧ xa ∈ L1? ∧ (x − xa) @ z ∈ L1?}
have finite ?S

by (rule-tac B = {xa. xa < x} in finite-subset ,
auto simp:finite-strict-prefix-set)

moreover have ?S 6= {} using False xz-in-star
by (simp, rule-tac x = [] in exI , auto simp:strict-prefix-def )

— Since ?S is finite, we can always single out the longest and name it xa-max :

ultimately have ∃ xa-max ∈ ?S . ∀ xa ∈ ?S . length xa ≤ length xa-max
using finite-set-has-max by blast

then obtain xa-max
where h1 : xa-max < x
and h2 : xa-max ∈ L1?
and h3 : (x − xa-max ) @ z ∈ L1?
and h4 :∀ xa < x . xa ∈ L1? ∧ (x − xa) @ z ∈ L1?

−→ length xa ≤ length xa-max
by blast

—
By the equality of tags, the counterpart of xa-max among y-prefixes, named
ya, can be found:

obtain ya
where h5 : ya < y and h6 : ya ∈ L1?
and eq-xya: (x − xa-max ) ≈L1 (y − ya)

proof−
from tag-xy have {≈L1 ‘‘ {x − xa} |xa. xa < x ∧ xa ∈ L1?} =
{≈L1 ‘‘ {y − xa} |xa. xa < y ∧ xa ∈ L1?} (is ?left = ?right)
by (auto simp:tag-str-STAR-def )

moreover have ≈L1 ‘‘ {x − xa-max} ∈ ?left using h1 h2 by auto
ultimately have ≈L1 ‘‘ {x − xa-max} ∈ ?right by simp
with prems show ?thesis apply

(simp add :Image-def str-eq-rel-def str-eq-def ) by blast
qed

—
If the following proposition can be proved, then the ?thesis: y @ z ∈ L1?
is just a simple consequence.

have (y − ya) @ z ∈ L1?
proof−

— The idea is to split the suffix z into za and zb, such that:
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obtain za zb where eq-zab: z = za @ zb
and l-za: (y − ya)@za ∈ L1 and ls-zb: zb ∈ L1?

proof −
— Since (x − xa-max ) @ z is in L1?, it can be split into a and b such that:

from h1 have (x − xa-max ) @ z 6= []
by (auto simp:strict-prefix-def elim:prefixE )

from star-decom [OF h3 this]
obtain a b where a-in: a ∈ L1

and a-neq : a 6= [] and b-in: b ∈ L1?
and ab-max : (x − xa-max ) @ z = a @ b by blast

— Now the candiates for za and zb are found:
let ?za = a − (x − xa-max ) and ?zb = b
have pfx : (x − xa-max ) ≤ a (is ?P1 )

and eq-z : z = ?za @ ?zb (is ?P2 )
proof −

—
Since (x − xa-max ) @ z = a @ b, the string (x − xa-max ) @ z could be
splited in two ways:

have ((x − xa-max ) ≤ a ∧ (a − (x − xa-max )) @ b = z ) ∨
(a < (x − xa-max ) ∧ ((x − xa-max ) − a) @ z = b)
using app-eq-dest [OF ab-max ] by (auto simp:strict-prefix-def )

moreover {
— However, the undsired way can be refuted by absurdity:
assume np: a < (x − xa-max )

and b-eqs: ((x − xa-max ) − a) @ z = b
have False
proof −

let ?xa-max ′ = xa-max @ a
have ?xa-max ′ < x

using np h1 by (clarsimp simp:strict-prefix-def diff-prefix )
moreover have ?xa-max ′ ∈ L1?

using a-in h2 by (simp add :star-intro3 )
moreover have (x − ?xa-max ′) @ z ∈ L1?

using b-eqs b-in np h1 by (simp add :diff-diff-appd)
moreover have ¬ (length ?xa-max ′ ≤ length xa-max )

using a-neq by simp
ultimately show ?thesis using h4 by blast

qed }
— Now it can be shown that the splitting goes the way we desired.
ultimately show ?P1 and ?P2 by auto

qed
hence (x − xa-max )@?za ∈ L1 using a-in by (auto elim:prefixE )
— Now candidates ?za and ?zb have all the requred properteis.
with eq-xya have (y − ya) @ ?za ∈ L1

by (auto simp:str-eq-def str-eq-rel-def )
with eq-z and b-in prems

show ?thesis by blast
qed

— From the properties of za and zb such obtained, ?thesis can be shown easily.
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from step [OF l-za ls-zb]
have ((y − ya) @ za) @ zb ∈ L1? .
with eq-zab show ?thesis by simp

qed
with h5 h6 show ?thesis

by (drule-tac star-intro1 , auto simp:strict-prefix-def elim:prefixE )
qed

}
— By instantiating the reasoning pattern just derived for both directions:
from this [OF - eq-tag ] and this [OF - eq-tag [THEN sym]]
— The thesis is proved as a trival consequence:

show ?thesis by (unfold str-eq-def str-eq-rel-def , blast)
qed

lemma — The oringal version with a poor readability
fixes v w
assumes eq-tag : tag-str-STAR L1 v = tag-str-STAR L1 w
shows (v ::string) ≈(L1?) w

proof−

—

According to the definition of ≈Lang, proving v ≈(L1?) w amounts to
showing: for any string u, if v @ u ∈ (L1?) then w @ u ∈ (L1?) and vice
versa. The reasoning pattern for both directions are the same, as derived
in the following:

{ fix x y z
assume xz-in-star : x @ z ∈ L1?

and tag-xy : tag-str-STAR L1 x = tag-str-STAR L1 y
have y @ z ∈ L1?
proof(cases x = [])

— The degenerated case when x is a null string is easy to prove:
case True
with tag-xy have y = []

by (auto simp:tag-str-STAR-def strict-prefix-def )
thus ?thesis using xz-in-star True by simp

next
— The case when x is not null, and x @ z is in L1?,

case False
obtain x-max

where h1 : x-max < x
and h2 : x-max ∈ L1?
and h3 : (x − x-max ) @ z ∈ L1?
and h4 :∀ xa < x . xa ∈ L1? ∧ (x − xa) @ z ∈ L1?

−→ length xa ≤ length x-max
proof−

let ?S = {xa. xa < x ∧ xa ∈ L1? ∧ (x − xa) @ z ∈ L1?}
have finite ?S

by (rule-tac B = {xa. xa < x} in finite-subset ,
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auto simp:finite-strict-prefix-set)
moreover have ?S 6= {} using False xz-in-star

by (simp, rule-tac x = [] in exI , auto simp:strict-prefix-def )
ultimately have ∃ max ∈ ?S . ∀ a ∈ ?S . length a ≤ length max

using finite-set-has-max by blast
with prems show ?thesis by blast

qed
obtain ya

where h5 : ya < y and h6 : ya ∈ L1? and h7 : (x − x-max ) ≈L1 (y − ya)
proof−

from tag-xy have {≈L1 ‘‘ {x − xa} |xa. xa < x ∧ xa ∈ L1?} =
{≈L1 ‘‘ {y − xa} |xa. xa < y ∧ xa ∈ L1?} (is ?left = ?right)
by (auto simp:tag-str-STAR-def )

moreover have ≈L1 ‘‘ {x − x-max} ∈ ?left using h1 h2 by auto
ultimately have ≈L1 ‘‘ {x − x-max} ∈ ?right by simp
with prems show ?thesis apply

(simp add :Image-def str-eq-rel-def str-eq-def ) by blast
qed
have (y − ya) @ z ∈ L1?
proof−

from h3 h1 obtain a b where a-in: a ∈ L1

and a-neq : a 6= [] and b-in: b ∈ L1?
and ab-max : (x − x-max ) @ z = a @ b
by (drule-tac star-decom, auto simp:strict-prefix-def elim:prefixE )

have (x − x-max ) ≤ a ∧ (a − (x − x-max )) @ b = z
proof −

have ((x − x-max ) ≤ a ∧ (a − (x − x-max )) @ b = z ) ∨
(a < (x − x-max ) ∧ ((x − x-max ) − a) @ z = b)

using app-eq-dest [OF ab-max ] by (auto simp:strict-prefix-def )
moreover {

assume np: a < (x − x-max ) and b-eqs: ((x − x-max ) − a) @ z = b
have False
proof −

let ?x-max ′ = x-max @ a
have ?x-max ′ < x

using np h1 by (clarsimp simp:strict-prefix-def diff-prefix )
moreover have ?x-max ′ ∈ L1?

using a-in h2 by (simp add :star-intro3 )
moreover have (x − ?x-max ′) @ z ∈ L1?

using b-eqs b-in np h1 by (simp add :diff-diff-appd)
moreover have ¬ (length ?x-max ′ ≤ length x-max )

using a-neq by simp
ultimately show ?thesis using h4 by blast

qed
} ultimately show ?thesis by blast

qed
then obtain za where z-decom: z = za @ b

and x-za: (x − x-max ) @ za ∈ L1

using a-in by (auto elim:prefixE )
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from x-za h7 have (y − ya) @ za ∈ L1

by (auto simp:str-eq-def str-eq-rel-def )
with z-decom b-in show ?thesis by (auto dest !:step[of (y − ya) @ za])

qed
with h5 h6 show ?thesis

by (drule-tac star-intro1 , auto simp:strict-prefix-def elim:prefixE )
qed

}
— By instantiating the reasoning pattern just derived for both directions:
from this [OF - eq-tag ] and this [OF - eq-tag [THEN sym]]
— The thesis is proved as a trival consequence:

show ?thesis by (unfold str-eq-def str-eq-rel-def , blast)
qed

lemma quot-star-finiteI [intro]:
fixes L1 ::lang
assumes finite1 : finite (UNIV // ≈L1 )
shows finite (UNIV // ≈(L1?))

proof (rule-tac tag = tag-str-STAR L1 in tag-finite-imageD)
show

∧
x y . tag-str-STAR L1 x = tag-str-STAR L1 y =⇒ x ≈(L1?) y

by (rule tag-str-STAR-injI )
next

have ∗: finite (Pow (UNIV // ≈L1 ))
using finite1 by auto

show finite (range (tag-str-STAR L1 ))
unfolding tag-str-STAR-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

6.2.7 The conclusion

lemma rexp-imp-finite:
fixes r ::rexp
shows finite (UNIV // ≈(L r))

by (induct r) (auto)

end
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