
tphols-2011

By xingyuan

February 8, 2011

Contents

1 Preliminary definitions 1

2 A slightly modified version of Arden’s lemma 5

3 Regular Expressions 6

4 Folds for Sets 7

5 Direction finite partition ⇒ regular language 8
5.1 The proof of this direction . 13

5.1.1 Basic properties . 13
5.1.2 Intialization . 15
5.1.3 Interation step . 17
5.1.4 Conclusion of the proof 23

6 List prefixes and postfixes 25
6.1 Prefix order on lists . 25
6.2 Basic properties of prefixes 26
6.3 Parallel lists . 29
6.4 Postfix order on lists . 30

7 A small theory of prefix subtraction 33

8 Direction regular language ⇒finite partition 34
8.1 The scheme . 34
8.2 The proof . 39

8.2.1 The base case for NULL 39
8.2.2 The base case for EMPTY 40
8.2.3 The base case for CHAR 40
8.2.4 The inductive case for ALT 41
8.2.5 The inductive case for SEQ 41
8.2.6 The inductive case for STAR 45
8.2.7 The conclusion . 52

1

9 Preliminaries 52
9.1 Finite automata and Myhill-Nerode theorem 52
9.2 The objective and the underlying intuition 54

10 Direction regular language ⇒finite partition 54
theory Myhill-1

imports Main
begin

1 Preliminary definitions

types lang = string set

Sequential composition of two languages

definition
Seq :: lang ⇒ lang ⇒ lang (infixr ;; 100)

where
A ;; B = {s1 @ s2 | s1 s2. s1 ∈ A ∧ s2 ∈ B}

Some properties of operator ;;.

lemma seq-add-left :
assumes a: A = B
shows C ;; A = C ;; B

using a by simp

lemma seq-union-distrib-right :
shows (A ∪ B) ;; C = (A ;; C) ∪ (B ;; C)

unfolding Seq-def by auto

lemma seq-union-distrib-left :
shows C ;; (A ∪ B) = (C ;; A) ∪ (C ;; B)

unfolding Seq-def by auto

lemma seq-intro:
assumes a: x ∈ A y ∈ B
shows x @ y ∈ A ;; B

using a by (auto simp: Seq-def)

lemma seq-assoc:
shows (A ;; B) ;; C = A ;; (B ;; C)

unfolding Seq-def
apply(auto)
apply(blast)
by (metis append-assoc)

lemma seq-empty [simp]:
shows A ;; {[]} = A
and {[]} ;; A = A

2

by (simp-all add : Seq-def)

Power and Star of a language

fun
pow :: lang ⇒ nat ⇒ lang (infixl ↑ 100)

where
A ↑ 0 = {[]}
| A ↑ (Suc n) = A ;; (A ↑ n)

definition
Star :: lang ⇒ lang (-? [101] 102)

where
A? ≡ (

⋃
n. A ↑ n)

lemma star-start [intro]:
shows [] ∈ A?

proof −
have [] ∈ A ↑ 0 by auto
then show [] ∈ A? unfolding Star-def by blast

qed

lemma star-step [intro]:
assumes a: s1 ∈ A
and b: s2 ∈ A?
shows s1 @ s2 ∈ A?

proof −
from b obtain n where s2 ∈ A ↑ n unfolding Star-def by auto
then have s1 @ s2 ∈ A ↑ (Suc n) using a by (auto simp add : Seq-def)
then show s1 @ s2 ∈ A? unfolding Star-def by blast

qed

lemma star-induct [consumes 1 , case-names start step]:
assumes a: x ∈ A?
and b: P []
and c:

∧
s1 s2 . [[s1 ∈ A; s2 ∈ A?; P s2]] =⇒ P (s1 @ s2)

shows P x
proof −

from a obtain n where x ∈ A ↑ n unfolding Star-def by auto
then show P x

by (induct n arbitrary : x)
(auto intro!: b c simp add : Seq-def Star-def)

qed

lemma star-intro1 :
assumes a: x ∈ A?
and b: y ∈ A?
shows x @ y ∈ A?

using a b

3

by (induct rule: star-induct) (auto)

lemma star-intro2 :
assumes a: y ∈ A
shows y ∈ A?

proof −
from a have y @ [] ∈ A? by blast
then show y ∈ A? by simp

qed

lemma star-intro3 :
assumes a: x ∈ A?
and b: y ∈ A
shows x @ y ∈ A?

using a b by (blast intro: star-intro1 star-intro2)

lemma star-cases:
shows A? = {[]} ∪ A ;; A?

proof
{ fix x

have x ∈ A? =⇒ x ∈ {[]} ∪ A ;; A?
unfolding Seq-def

by (induct rule: star-induct) (auto)
}
then show A? ⊆ {[]} ∪ A ;; A? by auto

next
show {[]} ∪ A ;; A? ⊆ A?

unfolding Seq-def by auto
qed

lemma star-decom:
assumes a: x ∈ A? x 6= []
shows ∃ a b. x = a @ b ∧ a 6= [] ∧ a ∈ A ∧ b ∈ A?

using a
apply(induct rule: star-induct)
apply(simp)
apply(blast)
done

lemma
shows seq-Union-left : B ;; (

⋃
n. A ↑ n) = (

⋃
n. B ;; (A ↑ n))

and seq-Union-right : (
⋃

n. A ↑ n) ;; B = (
⋃

n. (A ↑ n) ;; B)
unfolding Seq-def by auto

lemma seq-pow-comm:
shows A ;; (A ↑ n) = (A ↑ n) ;; A

by (induct n) (simp-all add : seq-assoc[symmetric])

lemma seq-star-comm:

4

shows A ;; A? = A? ;; A
unfolding Star-def
unfolding seq-Union-left
unfolding seq-pow-comm
unfolding seq-Union-right
by simp

Two lemmas about the length of strings in A ↑ n

lemma pow-length:
assumes a: [] /∈ A
and b: s ∈ A ↑ Suc n
shows n < length s

using b
proof (induct n arbitrary : s)

case 0
have s ∈ A ↑ Suc 0 by fact
with a have s 6= [] by auto
then show 0 < length s by auto

next
case (Suc n)
have ih:

∧
s. s ∈ A ↑ Suc n =⇒ n < length s by fact

have s ∈ A ↑ Suc (Suc n) by fact
then obtain s1 s2 where eq : s = s1 @ s2 and ∗: s1 ∈ A and ∗∗: s2 ∈ A ↑

Suc n
by (auto simp add : Seq-def)

from ih ∗∗ have n < length s2 by simp
moreover have 0 < length s1 using ∗ a by auto
ultimately show Suc n < length s unfolding eq

by (simp only : length-append)
qed

lemma seq-pow-length:
assumes a: [] /∈ A
and b: s ∈ B ;; (A ↑ Suc n)
shows n < length s

proof −
from b obtain s1 s2 where eq : s = s1 @ s2 and ∗: s2 ∈ A ↑ Suc n

unfolding Seq-def by auto
from ∗ have n < length s2 by (rule pow-length[OF a])
then show n < length s using eq by simp

qed

2 A slightly modified version of Arden’s lemma

A helper lemma for Arden

lemma ardens-helper :
assumes eq : X = X ;; A ∪ B
shows X = X ;; (A ↑ Suc n) ∪ (

⋃
m∈{0 ..n}. B ;; (A ↑ m))

5

proof (induct n)
case 0
show X = X ;; (A ↑ Suc 0) ∪ (

⋃
(m::nat)∈{0 ..0}. B ;; (A ↑ m))

using eq by simp
next

case (Suc n)
have ih: X = X ;; (A ↑ Suc n) ∪ (

⋃
m∈{0 ..n}. B ;; (A ↑ m)) by fact

also have . . . = (X ;; A ∪ B) ;; (A ↑ Suc n) ∪ (
⋃

m∈{0 ..n}. B ;; (A ↑ m))
using eq by simp

also have . . . = X ;; (A ↑ Suc (Suc n)) ∪ (B ;; (A ↑ Suc n)) ∪ (
⋃

m∈{0 ..n}.
B ;; (A ↑ m))

by (simp add : seq-union-distrib-right seq-assoc)
also have . . . = X ;; (A ↑ Suc (Suc n)) ∪ (

⋃
m∈{0 ..Suc n}. B ;; (A ↑ m))

by (auto simp add : le-Suc-eq)
finally show X = X ;; (A ↑ Suc (Suc n)) ∪ (

⋃
m∈{0 ..Suc n}. B ;; (A ↑ m)) .

qed

theorem ardens-revised :
assumes nemp: [] /∈ A
shows X = X ;; A ∪ B ←→ X = B ;; A?

proof
assume eq : X = B ;; A?
have A? = {[]} ∪ A? ;; A

unfolding seq-star-comm[symmetric]
by (rule star-cases)

then have B ;; A? = B ;; ({[]} ∪ A? ;; A)
by (rule seq-add-left)

also have . . . = B ∪ B ;; (A? ;; A)
unfolding seq-union-distrib-left by simp

also have . . . = B ∪ (B ;; A?) ;; A
by (simp only : seq-assoc)

finally show X = X ;; A ∪ B
using eq by blast

next
assume eq : X = X ;; A ∪ B
{ fix n::nat

have B ;; (A ↑ n) ⊆ X using ardens-helper [OF eq , of n] by auto }
then have B ;; A? ⊆ X

unfolding Seq-def Star-def UNION-def
by auto

moreover
{ fix s::string

obtain k where k = length s by auto
then have not-in: s /∈ X ;; (A ↑ Suc k)

using seq-pow-length[OF nemp] by blast
assume s ∈ X
then have s ∈ X ;; (A ↑ Suc k) ∪ (

⋃
m∈{0 ..k}. B ;; (A ↑ m))

using ardens-helper [OF eq , of k] by auto
then have s ∈ (

⋃
m∈{0 ..k}. B ;; (A ↑ m)) using not-in by auto

6

moreover
have (

⋃
m∈{0 ..k}. B ;; (A ↑ m)) ⊆ (

⋃
n. B ;; (A ↑ n)) by auto

ultimately
have s ∈ B ;; A?

unfolding seq-Union-left Star-def
by auto }

then have X ⊆ B ;; A? by auto
ultimately
show X = B ;; A? by simp

qed

3 Regular Expressions

datatype rexp =
NULL
| EMPTY
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp

The following L is an overloaded operator, where L(x) evaluates to the
language represented by the syntactic object x.

consts L:: ′a ⇒ lang

The L (rexp) for regular expressions.

overloading L-rexp ≡ L:: rexp ⇒ lang
begin
fun

L-rexp :: rexp ⇒ string set
where

L-rexp (NULL) = {}
| L-rexp (EMPTY) = {[]}
| L-rexp (CHAR c) = {[c]}
| L-rexp (SEQ r1 r2) = (L-rexp r1) ;; (L-rexp r2)
| L-rexp (ALT r1 r2) = (L-rexp r1) ∪ (L-rexp r2)
| L-rexp (STAR r) = (L-rexp r)?

end

4 Folds for Sets

To obtain equational system out of finite set of equivalence classes, a fold
operation on finite sets folds is defined. The use of SOME makes folds more
robust than the fold in the Isabelle library. The expression folds f makes
sense when f is not associative and commutitive, while fold f does not.

definition

7

folds :: (′a ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ ′a set ⇒ ′b
where

folds f z S ≡ SOME x . fold-graph f z S x

abbreviation
Setalt (

⊎
- [1000] 999)

where⊎
A == folds ALT NULL A

The following lemma ensures that the arbitrary choice made by the SOME
in folds does not affect the L-value of the resultant regular expression.

lemma folds-alt-simp [simp]:
assumes a: finite rs
shows L (

⊎
rs) =

⋃
(L ‘ rs)

apply(rule set-eqI)
apply(simp add : folds-def)
apply(rule someI2-ex)
apply(rule-tac finite-imp-fold-graph[OF a])
apply(erule fold-graph.induct)
apply(auto)
done

Just a technical lemma for collections and pairs

lemma Pair-Collect [simp]:
shows (x , y) ∈ {(x , y). P x y} ←→ P x y

by simp

≈A is an equivalence class defined by language A.

definition
str-eq-rel :: lang ⇒ (string × string) set (≈- [100] 100)

where
≈A ≡ {(x , y). (∀ z . x @ z ∈ A ←→ y @ z ∈ A)}

Among the equivalence clases of ≈A, the set finals A singles out those which
contains the strings from A.

definition
finals :: lang ⇒ lang set

where
finals A ≡ {≈A ‘‘ {x} | x . x ∈ A}

The following lemma establishes the relationshipt between finals A and A.

lemma lang-is-union-of-finals:
shows A =

⋃
finals A

unfolding finals-def
unfolding Image-def
unfolding str-eq-rel-def
apply(auto)
apply(drule-tac x = [] in spec)

8

apply(auto)
done

lemma finals-in-partitions:
shows finals A ⊆ (UNIV // ≈A)

unfolding finals-def
unfolding quotient-def
by auto

5 Direction finite partition ⇒ regular language

The relationship between equivalent classes can be described by an equa-
tional system. For example, in equational system (1), X0, X1 are equivalent
classes. The first equation says every string in X0 is obtained either by ap-
pending one b to a string in X0 or by appending one a to a string in X1 or
just be an empty string (represented by the regular expression λ). Similary,
the second equation tells how the strings inside X1 are composed.

X0 = X0b+X1a+ λ

X1 = X0a+X1b
(1)

The summands on the right hand side is represented by the following data
type rhs-item, mnemonic for ’right hand side item’. Generally, there are
two kinds of right hand side items, one kind corresponds to pure regular
expressions, like the λ in (1), the other kind corresponds to transitions from
one one equivalent class to another, like the X0b,X1a etc.

datatype rhs-item =
Lam rexp
| Trn lang rexp

In this formalization, pure regular expressions like λ is repsented by Lam(EMPTY),
while transitions like X0a is represented by Trn X 0 (CHAR a).

The functions the-r and the-Trn are used to extract subcomponents from
right hand side items.

fun
the-r :: rhs-item ⇒ rexp

where
the-r (Lam r) = r

fun
the-trn-rexp:: rhs-item ⇒ rexp

where
the-trn-rexp (Trn Y r) = r

Every right-hand side item itm defines a language given by L(itm), defined
as:

9

overloading L-rhs-e ≡ L:: rhs-item ⇒ lang
begin

fun L-rhs-e:: rhs-item ⇒ lang
where

L-rhs-e (Lam r) = L r
| L-rhs-e (Trn X r) = X ;; L r

end

The right hand side of every equation is represented by a set of items. The
string set defined by such a set itms is given by L(itms), defined as:

overloading L-rhs ≡ L:: rhs-item set ⇒ lang
begin

fun L-rhs:: rhs-item set ⇒ lang
where

L-rhs rhs =
⋃

(L ‘ rhs)
end

Given a set of equivalence classes CS and one equivalence class X among
CS, the term init-rhs CS X is used to extract the right hand side of the
equation describing the formation of X. The definition of init-rhs is:

definition
transition :: lang ⇒ rexp ⇒ lang ⇒ bool (- |=-⇒- [100 ,100 ,100] 100)

where
Y |=r⇒ X ≡ Y ;; (L r) ⊆ X

definition
init-rhs CS X ≡

if ([] ∈ X) then
{Lam EMPTY } ∪ {Trn Y (CHAR c) | Y c. Y ∈ CS ∧ Y |=(CHAR c)⇒

X }
else
{Trn Y (CHAR c)| Y c. Y ∈ CS ∧ Y |=(CHAR c)⇒ X }

In the definition of init-rhs, the term {Trn Y (CHAR c)| Y c. Y ∈ CS ∧ Y
;; {[c]} ⊆ X } appearing on both branches describes the formation of strings
in X out of transitions, while the term {Lam(EMPTY)} describes the empty
string which is intrinsically contained in X rather than by transition. This
{Lam(EMPTY)} corresponds to the λ in (1).

With the help of init-rhs, the equitional system descrbing the formation of
every equivalent class inside CS is given by the following eqs(CS).

definition eqs CS ≡ {(X , init-rhs CS X) | X . X ∈ CS}

The following trns-of rhs X returns all X -items in rhs.

definition
trns-of rhs X ≡ {Trn X r | r . Trn X r ∈ rhs}

The following rexp-of rhs X combines all regular expressions in X -items

10

using ALT to form a single regular expression. It will be used later to
implement arden-variate and rhs-subst.

definition
rexp-of rhs X ≡

⊎
{r . Trn X r ∈ rhs}

The following lam-of rhs returns all pure regular expression trns in rhs.

definition
lam-of rhs ≡ {Lam r | r . Lam r ∈ rhs}

The following rexp-of-lam rhs combines pure regular expression items in rhs
using ALT to form a single regular expression. When all variables inside
rhs are eliminated, rexp-of-lam rhs is used to compute compute the regular
expression corresponds to rhs.

definition
rexp-of-lam rhs ≡

⊎
{r . Lam r ∈ rhs}

The following attach-rexp rexp ′ itm attach the regular expression rexp ′ to
the right of right hand side item itm.

fun
attach-rexp :: rexp ⇒ rhs-item ⇒ rhs-item

where
attach-rexp rexp ′ (Lam rexp) = Lam (SEQ rexp rexp ′)
| attach-rexp rexp ′ (Trn X rexp) = Trn X (SEQ rexp rexp ′)

The following append-rhs-rexp rhs rexp attaches rexp to every item in rhs.

definition
append-rhs-rexp rhs rexp ≡ (attach-rexp rexp) ‘ rhs

With the help of the two functions immediately above, Ardens’ transfor-
mation on right hand side rhs is implemented by the following function
arden-variate X rhs. After this transformation, the recursive occurence of
X in rhs will be eliminated, while the string set defined by rhs is kept
unchanged.

definition
arden-variate X rhs ≡

append-rhs-rexp (rhs − trns-of rhs X) (STAR (
⊎
{r . Trn X r ∈ rhs}))

Suppose the equation defining X is X = xrhs, the purpose of rhs-subst is
to substitute all occurences of X in rhs by xrhs. A litte thought may reveal
that the final result should be: first append (a1|a2| . . . |an) to every item of
xrhs and then union the result with all non-X -items of rhs.

definition
rhs-subst rhs X xrhs ≡

(rhs − (trns-of rhs X)) ∪ (append-rhs-rexp xrhs (
⊎
{r . Trn X r ∈ rhs}))

Suppose the equation defining X is X = xrhs, the follwing eqs-subst ES X
xrhs substitute xrhs into every equation of the equational system ES.

11

definition
eqs-subst ES X xrhs ≡ {(Y , rhs-subst yrhs X xrhs) | Y yrhs. (Y , yrhs) ∈ ES}

The computation of regular expressions for equivalence classes is accom-
plished using a iteration principle given by the following lemma.

lemma wf-iter [rule-format]:
fixes f
assumes step:

∧
e. [[P e; ¬ Q e]] =⇒ (∃ e ′. P e ′ ∧ (f (e ′), f (e)) ∈ less-than)

shows pe: P e −→ (∃ e ′. P e ′ ∧ Q e ′)
proof(induct e rule: wf-induct

[OF wf-inv-image[OF wf-less-than, where f = f]], clarify)
fix x
assume h [rule-format]:
∀ y . (y , x) ∈ inv-image less-than f −→ P y −→ (∃ e ′. P e ′ ∧ Q e ′)
and px : P x

show ∃ e ′. P e ′ ∧ Q e ′

proof(cases Q x)
assume Q x with px show ?thesis by blast

next
assume nq : ¬ Q x
from step [OF px nq]
obtain e ′ where pe ′: P e ′ and ltf : (f e ′, f x) ∈ less-than by auto
show ?thesis
proof(rule h)

from ltf show (e ′, x) ∈ inv-image less-than f
by (simp add :inv-image-def)

next
from pe ′ show P e ′ .

qed
qed

qed

The P in lemma wf-iter is an invariant kept throughout the iteration proce-
dure. The particular invariant used to solve our problem is defined by func-
tion Inv(ES), an invariant over equal system ES. Every definition starting
next till Inv stipulates a property to be satisfied by ES.

Every variable is defined at most onece in ES.

definition
distinct-equas ES ≡

∀ X rhs rhs ′. (X , rhs) ∈ ES ∧ (X , rhs ′) ∈ ES −→ rhs = rhs ′

Every equation in ES (represented by (X , rhs)) is valid, i.e. (X = L rhs).

definition
valid-eqns ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ (X = L rhs)

The following rhs-nonempty rhs requires regular expressions occuring in
transitional items of rhs does not contain empty string. This is necessary
for the application of Arden’s transformation to rhs.

12

definition
rhs-nonempty rhs ≡ (∀ Y r . Trn Y r ∈ rhs −→ [] /∈ L r)

The following ardenable ES requires that Arden’s transformation is appli-
cable to every equation of equational system ES.

definition
ardenable ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ rhs-nonempty rhs

definition
non-empty ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ X 6= {}

The following finite-rhs ES requires every equation in rhs be finite.

definition
finite-rhs ES ≡ ∀ X rhs. (X , rhs) ∈ ES −→ finite rhs

The following classes-of rhs returns all variables (or equivalent classes) oc-
curing in rhs.

definition
classes-of rhs ≡ {X . ∃ r . Trn X r ∈ rhs}

The following lefts-of ES returns all variables defined by equational system
ES.

definition
lefts-of ES ≡ {Y | Y yrhs. (Y , yrhs) ∈ ES}

The following self-contained ES requires that every variable occuring on the
right hand side of equations is already defined by some equation in ES.

definition
self-contained ES ≡ ∀ (X , xrhs) ∈ ES . classes-of xrhs ⊆ lefts-of ES

The invariant Inv(ES) is a conjunction of all the previously defined con-
staints.

definition
Inv ES ≡ valid-eqns ES ∧ finite ES ∧ distinct-equas ES ∧ ardenable ES ∧

non-empty ES ∧ finite-rhs ES ∧ self-contained ES

5.1 The proof of this direction

5.1.1 Basic properties

The following are some basic properties of the above definitions.

lemma L-rhs-union-distrib:
fixes A B ::rhs-item set
shows L A ∪ L B = L (A ∪ B)

by simp

13

lemma finite-Trn:
assumes fin: finite rhs
shows finite {r . Trn Y r ∈ rhs}

proof −
have finite {Trn Y r | Y r . Trn Y r ∈ rhs}

by (rule rev-finite-subset [OF fin]) (auto)
then have finite (the-trn-rexp ‘ {Trn Y r | Y r . Trn Y r ∈ rhs})

by auto
then show finite {r . Trn Y r ∈ rhs}

apply(erule-tac rev-finite-subset)
apply(auto simp add : image-def)
apply(rule-tac x=Trn Y x in exI)
apply(auto)
done

qed

lemma finite-Lam:
assumes fin:finite rhs
shows finite {r . Lam r ∈ rhs}

proof −
have finite {Lam r | r . Lam r ∈ rhs}

by (rule rev-finite-subset [OF fin]) (auto)
then have finite (the-r ‘ {Lam r | r . Lam r ∈ rhs})

by auto
then show finite {r . Lam r ∈ rhs}

apply(erule-tac rev-finite-subset)
apply(auto simp add : image-def)
done

qed

lemma rexp-of-empty :
assumes finite:finite rhs
and nonempty :rhs-nonempty rhs
shows [] /∈ L (

⊎
{r . Trn X r ∈ rhs})

using finite nonempty rhs-nonempty-def
using finite-Trn[OF finite]
by (auto)

lemma [intro!]:
P (Trn X r) =⇒ (∃ a. (∃ r . a = Trn X r ∧ P a)) by auto

lemma lang-of-rexp-of :
assumes finite:finite rhs
shows L ({Trn X r | r . Trn X r ∈ rhs}) = X ;; (L (

⊎
{r . Trn X r ∈ rhs}))

proof −
have finite {r . Trn X r ∈ rhs}

by (rule finite-Trn[OF finite])
then show ?thesis

apply(auto simp add : Seq-def)

14

apply(rule-tac x = s1 in exI , rule-tac x = s2 in exI , auto)
apply(rule-tac x= Trn X xa in exI)
apply(auto simp: Seq-def)
done

qed

lemma rexp-of-lam-eq-lam-set :
assumes fin: finite rhs
shows L (

⊎
{r . Lam r ∈ rhs}) = L ({Lam r | r . Lam r ∈ rhs})

proof −
have finite ({r . Lam r ∈ rhs}) using fin by (rule finite-Lam)
then show ?thesis by auto

qed

lemma [simp]:
L (attach-rexp r xb) = L xb ;; L r

apply (cases xb, auto simp: Seq-def)
apply(rule-tac x = s1 @ s1

′ in exI , rule-tac x = s2
′ in exI)

apply(auto simp: Seq-def)
done

lemma lang-of-append-rhs:
L (append-rhs-rexp rhs r) = L rhs ;; L r

apply (auto simp:append-rhs-rexp-def image-def)
apply (auto simp:Seq-def)
apply (rule-tac x = L xb ;; L r in exI , auto simp add :Seq-def)
by (rule-tac x = attach-rexp r xb in exI , auto simp:Seq-def)

lemma classes-of-union-distrib:
classes-of A ∪ classes-of B = classes-of (A ∪ B)

by (auto simp add :classes-of-def)

lemma lefts-of-union-distrib:
lefts-of A ∪ lefts-of B = lefts-of (A ∪ B)

by (auto simp:lefts-of-def)

5.1.2 Intialization

The following several lemmas until init-ES-satisfy-Inv shows that the initial
equational system satisfies invariant Inv.

lemma defined-by-str :
[[s ∈ X ; X ∈ UNIV // (≈Lang)]] =⇒ X = (≈Lang) ‘‘ {s}

by (auto simp:quotient-def Image-def str-eq-rel-def)

lemma every-eqclass-has-transition:
assumes has-str : s @ [c] ∈ X
and in-CS : X ∈ UNIV // (≈Lang)
obtains Y where Y ∈ UNIV // (≈Lang) and Y ;; {[c]} ⊆ X and s ∈ Y

proof −

15

def Y ≡ (≈Lang) ‘‘ {s}
have Y ∈ UNIV // (≈Lang)

unfolding Y-def quotient-def by auto
moreover
have X = (≈Lang) ‘‘ {s @ [c]}

using has-str in-CS defined-by-str by blast
then have Y ;; {[c]} ⊆ X

unfolding Y-def Image-def Seq-def
unfolding str-eq-rel-def
by clarsimp

moreover
have s ∈ Y unfolding Y-def

unfolding Image-def str-eq-rel-def by simp
ultimately show thesis by (blast intro: that)

qed

lemma l-eq-r-in-eqs:
assumes X-in-eqs: (X , xrhs) ∈ (eqs (UNIV // (≈Lang)))
shows X = L xrhs

proof
show X ⊆ L xrhs
proof

fix x
assume (1): x ∈ X
show x ∈ L xrhs
proof (cases x = [])

assume empty : x = []
thus ?thesis using X-in-eqs (1)

by (auto simp:eqs-def init-rhs-def)
next

assume not-empty : x 6= []
then obtain clist c where decom: x = clist @ [c]

by (case-tac x rule:rev-cases, auto)
have X ∈ UNIV // (≈Lang) using X-in-eqs by (auto simp:eqs-def)
then obtain Y

where Y ∈ UNIV // (≈Lang)
and Y ;; {[c]} ⊆ X
and clist ∈ Y
using decom (1) every-eqclass-has-transition by blast

hence
x ∈ L {Trn Y (CHAR c)| Y c. Y ∈ UNIV // (≈Lang) ∧ Y |=(CHAR c)⇒

X }
unfolding transition-def
using (1) decom
by (simp, rule-tac x = Trn Y (CHAR c) in exI , simp add :Seq-def)

thus ?thesis using X-in-eqs (1)
by (simp add : eqs-def init-rhs-def)

qed
qed

16

next
show L xrhs ⊆ X using X-in-eqs

by (auto simp:eqs-def init-rhs-def transition-def)
qed

lemma finite-init-rhs:
assumes finite: finite CS
shows finite (init-rhs CS X)

proof−
have finite {Trn Y (CHAR c) |Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X } (is finite ?A)
proof −

def S ≡ {(Y , c)| Y c. Y ∈ CS ∧ Y ;; {[c]} ⊆ X }
def h ≡ λ (Y , c). Trn Y (CHAR c)
have finite (CS × (UNIV ::char set)) using finite by auto
hence finite S using S-def

by (rule-tac B = CS × UNIV in finite-subset , auto)
moreover have ?A = h ‘ S by (auto simp: S-def h-def image-def)
ultimately show ?thesis

by auto
qed
thus ?thesis by (simp add :init-rhs-def transition-def)

qed

lemma init-ES-satisfy-Inv :
assumes finite-CS : finite (UNIV // (≈Lang))
shows Inv (eqs (UNIV // (≈Lang)))

proof −
have finite (eqs (UNIV // (≈Lang))) using finite-CS

by (simp add :eqs-def)
moreover have distinct-equas (eqs (UNIV // (≈Lang)))

by (simp add :distinct-equas-def eqs-def)
moreover have ardenable (eqs (UNIV // (≈Lang)))
by (auto simp add :ardenable-def eqs-def init-rhs-def rhs-nonempty-def del :L-rhs.simps)
moreover have valid-eqns (eqs (UNIV // (≈Lang)))

using l-eq-r-in-eqs by (simp add :valid-eqns-def)
moreover have non-empty (eqs (UNIV // (≈Lang)))

by (auto simp:non-empty-def eqs-def quotient-def Image-def str-eq-rel-def)
moreover have finite-rhs (eqs (UNIV // (≈Lang)))

using finite-init-rhs[OF finite-CS]
by (auto simp:finite-rhs-def eqs-def)

moreover have self-contained (eqs (UNIV // (≈Lang)))
by (auto simp:self-contained-def eqs-def init-rhs-def classes-of-def lefts-of-def)

ultimately show ?thesis by (simp add :Inv-def)
qed

5.1.3 Interation step

From this point until iteration-step, it is proved that there exists iteration
steps which keep Inv(ES) while decreasing the size of ES.

17

lemma arden-variate-keeps-eq :
assumes l-eq-r : X = L rhs
and not-empty : [] /∈ L (

⊎
{r . Trn X r ∈ rhs})

and finite: finite rhs
shows X = L (arden-variate X rhs)

proof −
thm rexp-of-def
def A ≡ L (

⊎
{r . Trn X r ∈ rhs})

def b ≡ rhs − trns-of rhs X
def B ≡ L b
have X = B ;; A?
proof−

have L rhs = L(trns-of rhs X ∪ b) by (auto simp: b-def trns-of-def)
also have . . . = X ;; A ∪ B

unfolding trns-of-def
unfolding L-rhs-union-distrib[symmetric]
by (simp only : lang-of-rexp-of finite B-def A-def)

finally show ?thesis
using l-eq-r not-empty
apply(rule-tac ardens-revised [THEN iffD1])
apply(simp add : A-def)
apply(simp)
done

qed
moreover have L (arden-variate X rhs) = (B ;; A?)

by (simp only :arden-variate-def L-rhs-union-distrib lang-of-append-rhs
B-def A-def b-def L-rexp.simps seq-union-distrib-left)

ultimately show ?thesis by simp
qed

lemma append-keeps-finite:
finite rhs =⇒ finite (append-rhs-rexp rhs r)

by (auto simp:append-rhs-rexp-def)

lemma arden-variate-keeps-finite:
finite rhs =⇒ finite (arden-variate X rhs)

by (auto simp:arden-variate-def append-keeps-finite)

lemma append-keeps-nonempty :
rhs-nonempty rhs =⇒ rhs-nonempty (append-rhs-rexp rhs r)

apply (auto simp:rhs-nonempty-def append-rhs-rexp-def)
by (case-tac x , auto simp:Seq-def)

lemma nonempty-set-sub:
rhs-nonempty rhs =⇒ rhs-nonempty (rhs − A)

by (auto simp:rhs-nonempty-def)

lemma nonempty-set-union:
[[rhs-nonempty rhs; rhs-nonempty rhs ′]] =⇒ rhs-nonempty (rhs ∪ rhs ′)

18

by (auto simp:rhs-nonempty-def)

lemma arden-variate-keeps-nonempty :
rhs-nonempty rhs =⇒ rhs-nonempty (arden-variate X rhs)

by (simp only :arden-variate-def append-keeps-nonempty nonempty-set-sub)

lemma rhs-subst-keeps-nonempty :
[[rhs-nonempty rhs; rhs-nonempty xrhs]] =⇒ rhs-nonempty (rhs-subst rhs X xrhs)

by (simp only :rhs-subst-def append-keeps-nonempty nonempty-set-union nonempty-set-sub)

lemma rhs-subst-keeps-eq :
assumes substor : X = L xrhs
and finite: finite rhs
shows L (rhs-subst rhs X xrhs) = L rhs (is ?Left = ?Right)

proof−
def A ≡ L (rhs − trns-of rhs X)
have ?Left = A ∪ L (append-rhs-rexp xrhs (

⊎
{r . Trn X r ∈ rhs}))

unfolding rhs-subst-def
unfolding L-rhs-union-distrib[symmetric]
by (simp add : A-def)

moreover have ?Right = A ∪ L ({Trn X r | r . Trn X r ∈ rhs})
proof−

have rhs = (rhs − trns-of rhs X) ∪ (trns-of rhs X) by (auto simp add :
trns-of-def)

thus ?thesis
unfolding A-def
unfolding L-rhs-union-distrib
unfolding trns-of-def
by simp

qed
moreover have L (append-rhs-rexp xrhs (

⊎
{r . Trn X r ∈ rhs})) = L ({Trn X

r | r . Trn X r ∈ rhs})
using finite substor by (simp only :lang-of-append-rhs lang-of-rexp-of)

ultimately show ?thesis by simp
qed

lemma rhs-subst-keeps-finite-rhs:
[[finite rhs; finite yrhs]] =⇒ finite (rhs-subst rhs Y yrhs)

by (auto simp:rhs-subst-def append-keeps-finite)

lemma eqs-subst-keeps-finite:
assumes finite:finite (ES :: (string set × rhs-item set) set)
shows finite (eqs-subst ES Y yrhs)

proof −
have finite {(Ya, rhs-subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) ∈ ES}

(is finite ?A)
proof−

def eqns ′ ≡ {((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) ∈ ES}

19

def h ≡ λ ((Ya::string set), yrhsa). (Ya, rhs-subst yrhsa Y yrhs)
have finite (h ‘ eqns ′) using finite h-def eqns ′-def by auto
moreover have ?A = h ‘ eqns ′ by (auto simp:h-def eqns ′-def)
ultimately show ?thesis by auto

qed
thus ?thesis by (simp add :eqs-subst-def)

qed

lemma eqs-subst-keeps-finite-rhs:
[[finite-rhs ES ; finite yrhs]] =⇒ finite-rhs (eqs-subst ES Y yrhs)

by (auto intro:rhs-subst-keeps-finite-rhs simp add :eqs-subst-def finite-rhs-def)

lemma append-rhs-keeps-cls:
classes-of (append-rhs-rexp rhs r) = classes-of rhs

apply (auto simp:classes-of-def append-rhs-rexp-def)
apply (case-tac xa, auto simp:image-def)
by (rule-tac x = SEQ ra r in exI , rule-tac x = Trn x ra in bexI , simp+)

lemma arden-variate-removes-cl :
classes-of (arden-variate Y yrhs) = classes-of yrhs − {Y }

apply (simp add :arden-variate-def append-rhs-keeps-cls trns-of-def)
by (auto simp:classes-of-def)

lemma lefts-of-keeps-cls:
lefts-of (eqs-subst ES Y yrhs) = lefts-of ES

by (auto simp:lefts-of-def eqs-subst-def)

lemma rhs-subst-updates-cls:
X /∈ classes-of xrhs =⇒

classes-of (rhs-subst rhs X xrhs) = classes-of rhs ∪ classes-of xrhs − {X }
apply (simp only :rhs-subst-def append-rhs-keeps-cls

classes-of-union-distrib[THEN sym])
by (auto simp:classes-of-def trns-of-def)

lemma eqs-subst-keeps-self-contained :
fixes Y
assumes sc: self-contained (ES ∪ {(Y , yrhs)}) (is self-contained ?A)
shows self-contained (eqs-subst ES Y (arden-variate Y yrhs))

(is self-contained ?B)
proof−
{ fix X xrhs ′

assume (X , xrhs ′) ∈ ?B
then obtain xrhs

where xrhs-xrhs ′: xrhs ′ = rhs-subst xrhs Y (arden-variate Y yrhs)
and X-in: (X , xrhs) ∈ ES by (simp add :eqs-subst-def , blast)

have classes-of xrhs ′ ⊆ lefts-of ?B
proof−

have lefts-of ?B = lefts-of ES by (auto simp add :lefts-of-def eqs-subst-def)
moreover have classes-of xrhs ′ ⊆ lefts-of ES

20

proof−
have classes-of xrhs ′ ⊆

classes-of xrhs ∪ classes-of (arden-variate Y yrhs) − {Y }
proof−

have Y /∈ classes-of (arden-variate Y yrhs)
using arden-variate-removes-cl by simp

thus ?thesis using xrhs-xrhs ′ by (auto simp:rhs-subst-updates-cls)
qed
moreover have classes-of xrhs ⊆ lefts-of ES ∪ {Y } using X-in sc

apply (simp only :self-contained-def lefts-of-union-distrib[THEN sym])
by (drule-tac x = (X , xrhs) in bspec, auto simp:lefts-of-def)

moreover have classes-of (arden-variate Y yrhs) ⊆ lefts-of ES ∪ {Y }
using sc
by (auto simp add :arden-variate-removes-cl self-contained-def lefts-of-def)

ultimately show ?thesis by auto
qed
ultimately show ?thesis by simp

qed
} thus ?thesis by (auto simp only :eqs-subst-def self-contained-def)

qed

lemma eqs-subst-satisfy-Inv :
assumes Inv-ES : Inv (ES ∪ {(Y , yrhs)})
shows Inv (eqs-subst ES Y (arden-variate Y yrhs))

proof −
have finite-yrhs: finite yrhs

using Inv-ES by (auto simp:Inv-def finite-rhs-def)
have nonempty-yrhs: rhs-nonempty yrhs

using Inv-ES by (auto simp:Inv-def ardenable-def)
have Y-eq-yrhs: Y = L yrhs

using Inv-ES by (simp only :Inv-def valid-eqns-def , blast)
have distinct-equas (eqs-subst ES Y (arden-variate Y yrhs))

using Inv-ES
by (auto simp:distinct-equas-def eqs-subst-def Inv-def)

moreover have finite (eqs-subst ES Y (arden-variate Y yrhs))
using Inv-ES by (simp add :Inv-def eqs-subst-keeps-finite)

moreover have finite-rhs (eqs-subst ES Y (arden-variate Y yrhs))
proof−

have finite-rhs ES using Inv-ES
by (simp add :Inv-def finite-rhs-def)

moreover have finite (arden-variate Y yrhs)
proof −

have finite yrhs using Inv-ES
by (auto simp:Inv-def finite-rhs-def)

thus ?thesis using arden-variate-keeps-finite by simp
qed
ultimately show ?thesis

by (simp add :eqs-subst-keeps-finite-rhs)
qed

21

moreover have ardenable (eqs-subst ES Y (arden-variate Y yrhs))
proof −
{ fix X rhs

assume (X , rhs) ∈ ES
hence rhs-nonempty rhs using prems Inv-ES

by (simp add :Inv-def ardenable-def)
with nonempty-yrhs
have rhs-nonempty (rhs-subst rhs Y (arden-variate Y yrhs))

by (simp add :nonempty-yrhs
rhs-subst-keeps-nonempty arden-variate-keeps-nonempty)

} thus ?thesis by (auto simp add :ardenable-def eqs-subst-def)
qed
moreover have valid-eqns (eqs-subst ES Y (arden-variate Y yrhs))
proof−

have Y = L (arden-variate Y yrhs)
using Y-eq-yrhs Inv-ES finite-yrhs nonempty-yrhs
by (rule-tac arden-variate-keeps-eq , (simp add :rexp-of-empty)+)

thus ?thesis using Inv-ES
by (clarsimp simp add :valid-eqns-def

eqs-subst-def rhs-subst-keeps-eq Inv-def finite-rhs-def
simp del :L-rhs.simps)

qed
moreover have

non-empty-subst : non-empty (eqs-subst ES Y (arden-variate Y yrhs))
using Inv-ES by (auto simp:Inv-def non-empty-def eqs-subst-def)

moreover
have self-subst : self-contained (eqs-subst ES Y (arden-variate Y yrhs))

using Inv-ES eqs-subst-keeps-self-contained by (simp add :Inv-def)
ultimately show ?thesis using Inv-ES by (simp add :Inv-def)

qed

lemma eqs-subst-card-le:
assumes finite: finite (ES ::(string set × rhs-item set) set)
shows card (eqs-subst ES Y yrhs) <= card ES

proof−
def f ≡ λ x . ((fst x)::string set , rhs-subst (snd x) Y yrhs)
have eqs-subst ES Y yrhs = f ‘ ES

apply (auto simp:eqs-subst-def f-def image-def)
by (rule-tac x = (Ya, yrhsa) in bexI , simp+)

thus ?thesis using finite by (auto intro:card-image-le)
qed

lemma eqs-subst-cls-remains:
(X , xrhs) ∈ ES =⇒ ∃ xrhs ′. (X , xrhs ′) ∈ (eqs-subst ES Y yrhs)

by (auto simp:eqs-subst-def)

lemma card-noteq-1-has-more:
assumes card :card S 6= 1
and e-in: e ∈ S

22

and finite: finite S
obtains e ′ where e ′ ∈ S ∧ e 6= e ′

proof−
have card (S − {e}) > 0
proof −

have card S > 1 using card e-in finite
by (case-tac card S , auto)

thus ?thesis using finite e-in by auto
qed
hence S − {e} 6= {} using finite by (rule-tac notI , simp)
thus (

∧
e ′. e ′ ∈ S ∧ e 6= e ′ =⇒ thesis) =⇒ thesis by auto

qed

lemma iteration-step:
assumes Inv-ES : Inv ES
and X-in-ES : (X , xrhs) ∈ ES
and not-T : card ES 6= 1
shows ∃ ES ′. (Inv ES ′ ∧ (∃ xrhs ′.(X , xrhs ′) ∈ ES ′)) ∧

(card ES ′, card ES) ∈ less-than (is ∃ ES ′. ?P ES ′)
proof −

have finite-ES : finite ES using Inv-ES by (simp add :Inv-def)
then obtain Y yrhs

where Y-in-ES : (Y , yrhs) ∈ ES and not-eq : (X , xrhs) 6= (Y , yrhs)
using not-T X-in-ES by (drule-tac card-noteq-1-has-more, auto)

def ES ′ == ES − {(Y , yrhs)}
let ?ES ′′ = eqs-subst ES ′ Y (arden-variate Y yrhs)
have ?P ?ES ′′

proof −
have Inv ?ES ′′ using Y-in-ES Inv-ES

by (rule-tac eqs-subst-satisfy-Inv , simp add :ES ′-def insert-absorb)
moreover have ∃ xrhs ′. (X , xrhs ′) ∈ ?ES ′′ using not-eq X-in-ES

by (rule-tac ES = ES ′ in eqs-subst-cls-remains, auto simp add :ES ′-def)
moreover have (card ?ES ′′, card ES) ∈ less-than
proof −

have finite ES ′ using finite-ES ES ′-def by auto
moreover have card ES ′ < card ES using finite-ES Y-in-ES

by (auto simp:ES ′-def card-gt-0-iff intro:diff-Suc-less)
ultimately show ?thesis

by (auto dest :eqs-subst-card-le elim:le-less-trans)
qed
ultimately show ?thesis by simp

qed
thus ?thesis by blast

qed

5.1.4 Conclusion of the proof

From this point until hard-direction, the hard direction is proved through a
simple application of the iteration principle.

23

lemma iteration-conc:
assumes history : Inv ES
and X-in-ES : ∃ xrhs. (X , xrhs) ∈ ES
shows
∃ ES ′. (Inv ES ′ ∧ (∃ xrhs ′. (X , xrhs ′) ∈ ES ′)) ∧ card ES ′ = 1

(is ∃ ES ′. ?P ES ′)
proof (cases card ES = 1)

case True
thus ?thesis using history X-in-ES

by blast
next

case False
thus ?thesis using history iteration-step X-in-ES

by (rule-tac f = card in wf-iter , auto)
qed

lemma last-cl-exists-rexp:
assumes ES-single: ES = {(X , xrhs)}
and Inv-ES : Inv ES
shows ∃ (r ::rexp). L r = X (is ∃ r . ?P r)

proof−
def A ≡ arden-variate X xrhs
have ?P (rexp-of-lam A)
proof −

thm lam-of-def
thm rexp-of-lam-def
have L (

⊎
{r . Lam r ∈ A}) = L ({Lam r | r . Lam r ∈ A})

proof(rule rexp-of-lam-eq-lam-set)
show finite A

unfolding A-def
using Inv-ES ES-single
by (rule-tac arden-variate-keeps-finite)

(auto simp add : Inv-def finite-rhs-def)
qed
also have . . . = L A
proof−

have lam-of A = A
proof−

have classes-of A = {} using Inv-ES ES-single
unfolding A-def
by (simp add :arden-variate-removes-cl

self-contained-def Inv-def lefts-of-def)
thus ?thesis

unfolding A-def
by (auto simp only :lam-of-def classes-of-def , case-tac x , auto)

qed
thus ?thesis unfolding lam-of-def by simp

qed
also have . . . = X

24

unfolding A-def
proof(rule arden-variate-keeps-eq [THEN sym])

show X = L xrhs using Inv-ES ES-single
by (auto simp only :Inv-def valid-eqns-def)

next
from Inv-ES ES-single show [] /∈ L (

⊎
{r . Trn X r ∈ xrhs})

by(simp add :Inv-def ardenable-def rexp-of-empty finite-rhs-def)
next

from Inv-ES ES-single show finite xrhs
by (simp add :Inv-def finite-rhs-def)

qed
finally show ?thesis unfolding rexp-of-lam-def by simp

qed
thus ?thesis by auto

qed

lemma every-eqcl-has-reg :
assumes finite-CS : finite (UNIV // (≈Lang))
and X-in-CS : X ∈ (UNIV // (≈Lang))
shows ∃ (reg ::rexp). L reg = X (is ∃ r . ?E r)

proof −
from X-in-CS have ∃ xrhs. (X , xrhs) ∈ (eqs (UNIV // (≈Lang)))

by (auto simp:eqs-def init-rhs-def)
then obtain ES xrhs where Inv-ES : Inv ES

and X-in-ES : (X , xrhs) ∈ ES
and card-ES : card ES = 1
using finite-CS X-in-CS init-ES-satisfy-Inv iteration-conc
by blast

hence ES-single-equa: ES = {(X , xrhs)}
by (auto simp:Inv-def dest !:card-Suc-Diff1 simp:card-eq-0-iff)

thus ?thesis using Inv-ES
by (rule last-cl-exists-rexp)

qed

theorem hard-direction:
assumes finite-CS : finite (UNIV // ≈A)
shows ∃ r ::rexp. A = L r

proof −
have ∀ X ∈ (UNIV // ≈A). ∃ reg ::rexp. X = L reg

using finite-CS every-eqcl-has-reg by blast
then obtain f

where f-prop: ∀ X ∈ (UNIV // ≈A). X = L ((f X)::rexp)
by (auto dest : bchoice)

def rs ≡ f ‘ (finals A)
have A =

⋃
(finals A) using lang-is-union-of-finals by auto

also have . . . = L (
⊎

rs)
proof −

have finite rs
proof −

25

have finite (finals A)
using finite-CS finals-in-partitions[of A]
by (erule-tac finite-subset , simp)

thus ?thesis using rs-def by auto
qed
thus ?thesis

using f-prop rs-def finals-in-partitions[of A] by auto
qed
finally show ?thesis by blast

qed

end

6 List prefixes and postfixes

theory List-Prefix
imports List Main
begin

6.1 Prefix order on lists

instantiation list :: (type) {order , bot}
begin

definition
prefix-def : xs ≤ ys ←→ (∃ zs. ys = xs @ zs)

definition
strict-prefix-def : xs < ys ←→ xs ≤ ys ∧ xs 6= (ys:: ′a list)

definition
bot = []

instance proof
qed (auto simp add : prefix-def strict-prefix-def bot-list-def)

end

lemma prefixI [intro?]: ys = xs @ zs ==> xs ≤ ys
unfolding prefix-def by blast

lemma prefixE [elim?]:
assumes xs ≤ ys
obtains zs where ys = xs @ zs
using assms unfolding prefix-def by blast

lemma strict-prefixI ′ [intro?]: ys = xs @ z # zs ==> xs < ys
unfolding strict-prefix-def prefix-def by blast

26

lemma strict-prefixE ′ [elim?]:
assumes xs < ys
obtains z zs where ys = xs @ z # zs

proof −
from 〈xs < ys〉 obtain us where ys = xs @ us and xs 6= ys

unfolding strict-prefix-def prefix-def by blast
with that show ?thesis by (auto simp add : neq-Nil-conv)

qed

lemma strict-prefixI [intro?]: xs ≤ ys ==> xs 6= ys ==> xs < (ys:: ′a list)
unfolding strict-prefix-def by blast

lemma strict-prefixE [elim?]:
fixes xs ys :: ′a list
assumes xs < ys
obtains xs ≤ ys and xs 6= ys
using assms unfolding strict-prefix-def by blast

6.2 Basic properties of prefixes

theorem Nil-prefix [iff]: [] ≤ xs
by (simp add : prefix-def)

theorem prefix-Nil [simp]: (xs ≤ []) = (xs = [])
by (induct xs) (simp-all add : prefix-def)

lemma prefix-snoc [simp]: (xs ≤ ys @ [y]) = (xs = ys @ [y] ∨ xs ≤ ys)
proof

assume xs ≤ ys @ [y]
then obtain zs where zs: ys @ [y] = xs @ zs ..
show xs = ys @ [y] ∨ xs ≤ ys

by (metis append-Nil2 butlast-append butlast-snoc prefixI zs)
next

assume xs = ys @ [y] ∨ xs ≤ ys
then show xs ≤ ys @ [y]

by (metis order-eq-iff strict-prefixE strict-prefixI ′ xt1 (7))
qed

lemma Cons-prefix-Cons [simp]: (x # xs ≤ y # ys) = (x = y ∧ xs ≤ ys)
by (auto simp add : prefix-def)

lemma less-eq-list-code [code]:
([]:: ′a::{equal , ord} list) ≤ xs ←→ True
(x :: ′a::{equal , ord}) # xs ≤ [] ←→ False
(x :: ′a::{equal , ord}) # xs ≤ y # ys ←→ x = y ∧ xs ≤ ys
by simp-all

lemma same-prefix-prefix [simp]: (xs @ ys ≤ xs @ zs) = (ys ≤ zs)
by (induct xs) simp-all

27

lemma same-prefix-nil [iff]: (xs @ ys ≤ xs) = (ys = [])
by (metis append-Nil2 append-self-conv order-eq-iff prefixI)

lemma prefix-prefix [simp]: xs ≤ ys ==> xs ≤ ys @ zs
by (metis order-le-less-trans prefixI strict-prefixE strict-prefixI)

lemma append-prefixD : xs @ ys ≤ zs =⇒ xs ≤ zs
by (auto simp add : prefix-def)

theorem prefix-Cons: (xs ≤ y # ys) = (xs = [] ∨ (∃ zs. xs = y # zs ∧ zs ≤ ys))
by (cases xs) (auto simp add : prefix-def)

theorem prefix-append :
(xs ≤ ys @ zs) = (xs ≤ ys ∨ (∃ us. xs = ys @ us ∧ us ≤ zs))
apply (induct zs rule: rev-induct)
apply force

apply (simp del : append-assoc add : append-assoc [symmetric])
apply (metis append-eq-appendI)
done

lemma append-one-prefix :
xs ≤ ys ==> length xs < length ys ==> xs @ [ys ! length xs] ≤ ys
unfolding prefix-def
by (metis Cons-eq-appendI append-eq-appendI append-eq-conv-conj

eq-Nil-appendI nth-drop ′)

theorem prefix-length-le: xs ≤ ys ==> length xs ≤ length ys
by (auto simp add : prefix-def)

lemma prefix-same-cases:
(xs1:: ′a list) ≤ ys =⇒ xs2 ≤ ys =⇒ xs1 ≤ xs2 ∨ xs2 ≤ xs1
unfolding prefix-def by (metis append-eq-append-conv2)

lemma set-mono-prefix : xs ≤ ys =⇒ set xs ⊆ set ys
by (auto simp add : prefix-def)

lemma take-is-prefix : take n xs ≤ xs
unfolding prefix-def by (metis append-take-drop-id)

lemma map-prefixI : xs ≤ ys =⇒ map f xs ≤ map f ys
by (auto simp: prefix-def)

lemma prefix-length-less: xs < ys =⇒ length xs < length ys
by (auto simp: strict-prefix-def prefix-def)

lemma strict-prefix-simps [simp, code]:
xs < [] ←→ False
[] < x # xs ←→ True

28

x # xs < y # ys ←→ x = y ∧ xs < ys
by (simp-all add : strict-prefix-def cong : conj-cong)

lemma take-strict-prefix : xs < ys =⇒ take n xs < ys
apply (induct n arbitrary : xs ys)
apply (case-tac ys, simp-all)[1]

apply (metis order-less-trans strict-prefixI take-is-prefix)
done

lemma not-prefix-cases:
assumes pfx : ¬ ps ≤ ls
obtains

(c1) ps 6= [] and ls = []
| (c2) a as x xs where ps = a#as and ls = x#xs and x = a and ¬ as ≤ xs
| (c3) a as x xs where ps = a#as and ls = x#xs and x 6= a

proof (cases ps)
case Nil then show ?thesis using pfx by simp

next
case (Cons a as)
note c = 〈ps = a#as〉

show ?thesis
proof (cases ls)

case Nil then show ?thesis by (metis append-Nil2 pfx c1 same-prefix-nil)
next

case (Cons x xs)
show ?thesis
proof (cases x = a)

case True
have ¬ as ≤ xs using pfx c Cons True by simp
with c Cons True show ?thesis by (rule c2)

next
case False
with c Cons show ?thesis by (rule c3)

qed
qed

qed

lemma not-prefix-induct [consumes 1 , case-names Nil Neq Eq]:
assumes np: ¬ ps ≤ ls

and base:
∧

x xs. P (x#xs) []
and r1 :

∧
x xs y ys. x 6= y =⇒ P (x#xs) (y#ys)

and r2 :
∧

x xs y ys. [[x = y ; ¬ xs ≤ ys; P xs ys]] =⇒ P (x#xs) (y#ys)
shows P ps ls using np

proof (induct ls arbitrary : ps)
case Nil then show ?case

by (auto simp: neq-Nil-conv elim!: not-prefix-cases intro!: base)
next

case (Cons y ys)
then have npfx : ¬ ps ≤ (y # ys) by simp

29

then obtain x xs where pv : ps = x # xs
by (rule not-prefix-cases) auto

show ?case by (metis Cons.hyps Cons-prefix-Cons npfx pv r1 r2)
qed

6.3 Parallel lists

definition
parallel :: ′a list => ′a list => bool (infixl ‖ 50) where
(xs ‖ ys) = (¬ xs ≤ ys ∧ ¬ ys ≤ xs)

lemma parallelI [intro]: ¬ xs ≤ ys ==> ¬ ys ≤ xs ==> xs ‖ ys
unfolding parallel-def by blast

lemma parallelE [elim]:
assumes xs ‖ ys
obtains ¬ xs ≤ ys ∧ ¬ ys ≤ xs
using assms unfolding parallel-def by blast

theorem prefix-cases:
obtains xs ≤ ys | ys < xs | xs ‖ ys
unfolding parallel-def strict-prefix-def by blast

theorem parallel-decomp:
xs ‖ ys ==> ∃ as b bs c cs. b 6= c ∧ xs = as @ b # bs ∧ ys = as @ c # cs

proof (induct xs rule: rev-induct)
case Nil
then have False by auto
then show ?case ..

next
case (snoc x xs)
show ?case
proof (rule prefix-cases)

assume le: xs ≤ ys
then obtain ys ′ where ys: ys = xs @ ys ′ ..
show ?thesis
proof (cases ys ′)

assume ys ′ = []
then show ?thesis by (metis append-Nil2 parallelE prefixI snoc.prems ys)

next
fix c cs assume ys ′: ys ′ = c # cs
then show ?thesis

by (metis Cons-eq-appendI eq-Nil-appendI parallelE prefixI
same-prefix-prefix snoc.prems ys)

qed
next

assume ys < xs then have ys ≤ xs @ [x] by (simp add : strict-prefix-def)
with snoc have False by blast
then show ?thesis ..

30

next
assume xs ‖ ys
with snoc obtain as b bs c cs where neq : (b:: ′a) 6= c

and xs: xs = as @ b # bs and ys: ys = as @ c # cs
by blast

from xs have xs @ [x] = as @ b # (bs @ [x]) by simp
with neq ys show ?thesis by blast

qed
qed

lemma parallel-append : a ‖ b =⇒ a @ c ‖ b @ d
apply (rule parallelI)

apply (erule parallelE , erule conjE ,
induct rule: not-prefix-induct , simp+)+

done

lemma parallel-appendI : xs ‖ ys =⇒ x = xs @ xs ′ =⇒ y = ys @ ys ′ =⇒ x ‖ y
by (simp add : parallel-append)

lemma parallel-commute: a ‖ b ←→ b ‖ a
unfolding parallel-def by auto

6.4 Postfix order on lists

definition
postfix :: ′a list => ′a list => bool ((-/ >>= -) [51 , 50] 50) where
(xs >>= ys) = (∃ zs. xs = zs @ ys)

lemma postfixI [intro?]: xs = zs @ ys ==> xs >>= ys
unfolding postfix-def by blast

lemma postfixE [elim?]:
assumes xs >>= ys
obtains zs where xs = zs @ ys
using assms unfolding postfix-def by blast

lemma postfix-refl [iff]: xs >>= xs
by (auto simp add : postfix-def)

lemma postfix-trans: [[xs >>= ys; ys >>= zs]] =⇒ xs >>= zs
by (auto simp add : postfix-def)

lemma postfix-antisym: [[xs >>= ys; ys >>= xs]] =⇒ xs = ys
by (auto simp add : postfix-def)

lemma Nil-postfix [iff]: xs >>= []
by (simp add : postfix-def)

lemma postfix-Nil [simp]: ([] >>= xs) = (xs = [])
by (auto simp add : postfix-def)

lemma postfix-ConsI : xs >>= ys =⇒ x#xs >>= ys

31

by (auto simp add : postfix-def)
lemma postfix-ConsD : xs >>= y#ys =⇒ xs >>= ys

by (auto simp add : postfix-def)

lemma postfix-appendI : xs >>= ys =⇒ zs @ xs >>= ys
by (auto simp add : postfix-def)

lemma postfix-appendD : xs >>= zs @ ys =⇒ xs >>= ys
by (auto simp add : postfix-def)

lemma postfix-is-subset : xs >>= ys ==> set ys ⊆ set xs
proof −

assume xs >>= ys
then obtain zs where xs = zs @ ys ..
then show ?thesis by (induct zs) auto

qed

lemma postfix-ConsD2 : x#xs >>= y#ys ==> xs >>= ys
proof −

assume x#xs >>= y#ys
then obtain zs where x#xs = zs @ y#ys ..
then show ?thesis

by (induct zs) (auto intro!: postfix-appendI postfix-ConsI)
qed

lemma postfix-to-prefix [code]: xs >>= ys ←→ rev ys ≤ rev xs
proof

assume xs >>= ys
then obtain zs where xs = zs @ ys ..
then have rev xs = rev ys @ rev zs by simp
then show rev ys <= rev xs ..

next
assume rev ys <= rev xs
then obtain zs where rev xs = rev ys @ zs ..
then have rev (rev xs) = rev zs @ rev (rev ys) by simp
then have xs = rev zs @ ys by simp
then show xs >>= ys ..

qed

lemma distinct-postfix : distinct xs =⇒ xs >>= ys =⇒ distinct ys
by (clarsimp elim!: postfixE)

lemma postfix-map: xs >>= ys =⇒ map f xs >>= map f ys
by (auto elim!: postfixE intro: postfixI)

lemma postfix-drop: as >>= drop n as
unfolding postfix-def
apply (rule exI [where x = take n as])
apply simp
done

32

lemma postfix-take: xs >>= ys =⇒ xs = take (length xs − length ys) xs @ ys
by (clarsimp elim!: postfixE)

lemma parallelD1 : x ‖ y =⇒ ¬ x ≤ y
by blast

lemma parallelD2 : x ‖ y =⇒ ¬ y ≤ x
by blast

lemma parallel-Nil1 [simp]: ¬ x ‖ []
unfolding parallel-def by simp

lemma parallel-Nil2 [simp]: ¬ [] ‖ x
unfolding parallel-def by simp

lemma Cons-parallelI1 : a 6= b =⇒ a # as ‖ b # bs
by auto

lemma Cons-parallelI2 : [[a = b; as ‖ bs]] =⇒ a # as ‖ b # bs
by (metis Cons-prefix-Cons parallelE parallelI)

lemma not-equal-is-parallel :
assumes neq : xs 6= ys

and len: length xs = length ys
shows xs ‖ ys
using len neq

proof (induct rule: list-induct2)
case Nil
then show ?case by simp

next
case (Cons a as b bs)
have ih: as 6= bs =⇒ as ‖ bs by fact
show ?case
proof (cases a = b)

case True
then have as 6= bs using Cons by simp
then show ?thesis by (rule Cons-parallelI2 [OF True ih])

next
case False
then show ?thesis by (rule Cons-parallelI1)

qed
qed

end

theory Prefix-subtract
imports Main List-Prefix

begin

33

7 A small theory of prefix subtraction

The notion of prefix-subtract is need to make proofs more readable.

fun prefix-subtract :: ′a list ⇒ ′a list ⇒ ′a list (infix − 51)
where

prefix-subtract [] xs = []
| prefix-subtract (x#xs) [] = x#xs
| prefix-subtract (x#xs) (y#ys) = (if x = y then prefix-subtract xs ys else (x#xs))

lemma [simp]: (x @ y) − x = y
apply (induct x)
by (case-tac y , simp+)

lemma [simp]: x − x = []
by (induct x , auto)

lemma [simp]: x = xa @ y =⇒ x − xa = y
by (induct x , auto)

lemma [simp]: x − [] = x
by (induct x , auto)

lemma [simp]: (x − y = []) =⇒ (x ≤ y)
proof−

have ∃ xa. x = xa @ (x − y) ∧ xa ≤ y
apply (rule prefix-subtract .induct [of - x y], simp+)
by (clarsimp, rule-tac x = y # xa in exI , simp+)

thus (x − y = []) =⇒ (x ≤ y) by simp
qed

lemma diff-prefix :
[[c ≤ a − b; b ≤ a]] =⇒ b @ c ≤ a

by (auto elim:prefixE)

lemma diff-diff-appd :
[[c < a − b; b < a]] =⇒ (a − b) − c = a − (b @ c)

apply (clarsimp simp:strict-prefix-def)
by (drule diff-prefix , auto elim:prefixE)

lemma app-eq-cases[rule-format]:
∀ x . x @ y = m @ n −→ (x ≤ m ∨ m ≤ x)

apply (induct y , simp)
apply (clarify , drule-tac x = x @ [a] in spec)
by (clarsimp, auto simp:prefix-def)

lemma app-eq-dest :
x @ y = m @ n =⇒

(x ≤ m ∧ (m − x) @ n = y) ∨ (m ≤ x ∧ (x − m) @ y = n)
by (frule-tac app-eq-cases, auto elim:prefixE)

34

end

theory Myhill-2
imports Myhill-1 List-Prefix Prefix-subtract

begin

8 Direction regular language ⇒finite partition

8.1 The scheme

The following convenient notation x ≈A y means: string x and y are equiv-
alent with respect to language A.

definition
str-eq :: string ⇒ lang ⇒ string ⇒ bool (- ≈- -)

where
x ≈A y ≡ (x , y) ∈ (≈A)

The main lemma (rexp-imp-finite) is proved by a structural induction over
regular expressions. While base cases (cases for NULL, EMPTY, CHAR)
are quite straight forward, the inductive cases are rather involved. What
we have when starting to prove these inductive caes is that the partitions
induced by the componet language are finite. The basic idea to show the
finiteness of the partition induced by the composite language is to attach a
tag tag(x) to every string x. The tags are made of equivalent classes from
the component partitions. Let tag be the tagging function and Lang be the
composite language, it can be proved that if strings with the same tag are
equivalent with respect to Lang, expressed as:

tag(x) = tag(y) =⇒ x ≈Lang y

then the partition induced by Lang must be finite. There are two arguments
for this. The first goes as the following:

1. First, the tagging function tag induces an equivalent relation (=tag=)
(defiintion of f-eq-rel and lemma equiv-f-eq-rel).

2. It is shown that: if the range of tag (denoted range(tag)) is finite, the
partition given rise by (=tag=) is finite (lemma finite-eq-f-rel). Since
tags are made from equivalent classes from component partitions, and
the inductive hypothesis ensures the finiteness of these partitions, it is
not difficult to prove the finiteness of range(tag).

3. It is proved that if equivalent relation R1 is more refined than R2 (ex-
pressed as R1 ⊆ R2), and the partition induced by R1 is finite, then
the partition induced by R2 is finite as well (lemma refined-partition-finite).

35

4. The injectivity assumption tag(x) = tag(y) =⇒ x ≈Lang y implies
that (=tag=) is more refined than (≈Lang).

5. Combining the points above, we have: the partition induced by lan-
guage Lang is finite (lemma tag-finite-imageD).

definition
f-eq-rel (=-=)

where
(=f =) = {(x , y) | x y . f x = f y}

lemma equiv-f-eq-rel :equiv UNIV (=f =)
by (auto simp:equiv-def f-eq-rel-def refl-on-def sym-def trans-def)

lemma finite-range-image: finite (range f) =⇒ finite (f ‘ A)
by (rule-tac B = {y . ∃ x . y = f x} in finite-subset , auto simp:image-def)

lemma finite-eq-f-rel :
assumes rng-fnt : finite (range tag)
shows finite (UNIV // (=tag=))

proof −
let ?f = op ‘ tag and ?A = (UNIV // (=tag=))
show ?thesis
proof (rule-tac f = ?f and A = ?A in finite-imageD)

— The finiteness of f -image is a simple consequence of assumption rng-fnt :
show finite (?f ‘ ?A)
proof −

have ∀ X . ?f X ∈ (Pow (range tag)) by (auto simp:image-def Pow-def)
moreover from rng-fnt have finite (Pow (range tag)) by simp
ultimately have finite (range ?f)

by (auto simp only :image-def intro:finite-subset)
from finite-range-image [OF this] show ?thesis .

qed
next

— The injectivity of f -image is a consequence of the definition of (=tag=):
show inj-on ?f ?A
proof−
{ fix X Y

assume X-in: X ∈ ?A
and Y-in: Y ∈ ?A
and tag-eq : ?f X = ?f Y

have X = Y
proof −

from X-in Y-in tag-eq
obtain x y

where x-in: x ∈ X and y-in: y ∈ Y and eq-tg : tag x = tag y
unfolding quotient-def Image-def str-eq-rel-def

str-eq-def image-def f-eq-rel-def
apply simp by blast

36

with X-in Y-in show ?thesis
by (auto simp:quotient-def str-eq-rel-def str-eq-def f-eq-rel-def)

qed
} thus ?thesis unfolding inj-on-def by auto

qed
qed

qed

lemma finite-image-finite: [[∀ x ∈ A. f x ∈ B ; finite B]] =⇒ finite (f ‘ A)
by (rule finite-subset [of - B], auto)

lemma refined-partition-finite:
fixes R1 R2 A
assumes fnt : finite (A // R1)
and refined : R1 ⊆ R2
and eq1 : equiv A R1 and eq2 : equiv A R2
shows finite (A // R2)

proof −
let ?f = λ X . {R1 ‘‘ {x} | x . x ∈ X }

and ?A = (A // R2) and ?B = (A // R1)
show ?thesis
proof(rule-tac f = ?f and A = ?A in finite-imageD)

show finite (?f ‘ ?A)
proof(rule finite-subset [of - Pow ?B])

from fnt show finite (Pow (A // R1)) by simp
next

from eq2
show ?f ‘ A // R2 ⊆ Pow ?B

unfolding image-def Pow-def quotient-def
apply auto
by (rule-tac x = xb in bexI , simp,

unfold equiv-def sym-def refl-on-def , blast)
qed

next
show inj-on ?f ?A
proof −
{ fix X Y

assume X-in: X ∈ ?A and Y-in: Y ∈ ?A
and eq-f : ?f X = ?f Y (is ?L = ?R)

have X = Y using X-in
proof(rule quotientE)

fix x
assume X = R2 ‘‘ {x} and x ∈ A with eq2
have x-in: x ∈ X

unfolding equiv-def quotient-def refl-on-def by auto
with eq-f have R1 ‘‘ {x} ∈ ?R by auto
then obtain y where

y-in: y ∈ Y and eq-r : R1 ‘‘ {x} = R1 ‘‘{y} by auto
have (x , y) ∈ R1

37

proof −
from x-in X-in y-in Y-in eq2
have x ∈ A and y ∈ A

unfolding equiv-def quotient-def refl-on-def by auto
from eq-equiv-class-iff [OF eq1 this] and eq-r
show ?thesis by simp

qed
with refined have xy-r2 : (x , y) ∈ R2 by auto
from quotient-eqI [OF eq2 X-in Y-in x-in y-in this]
show ?thesis .

qed
} thus ?thesis by (auto simp:inj-on-def)

qed
qed

qed

lemma equiv-lang-eq : equiv UNIV (≈Lang)
unfolding equiv-def str-eq-rel-def sym-def refl-on-def trans-def
by blast

lemma tag-finite-imageD :
fixes tag
assumes rng-fnt : finite (range tag)
— Suppose the rang of tagging fucntion tag is finite.
and same-tag-eqvt :

∧
m n. tag m = tag (n::string) =⇒ m ≈Lang n

— And strings with same tag are equivalent
shows finite (UNIV // (≈Lang))

proof −
let ?R1 = (=tag=)
show ?thesis
proof(rule-tac refined-partition-finite [of - ?R1])

from finite-eq-f-rel [OF rng-fnt]
show finite (UNIV // =tag=) .

next
from same-tag-eqvt
show (=tag=) ⊆ (≈Lang)

by (auto simp:f-eq-rel-def str-eq-def)
next

from equiv-f-eq-rel
show equiv UNIV (=tag=) by blast

next
from equiv-lang-eq
show equiv UNIV (≈Lang) by blast

qed
qed

A more concise, but less intelligible argument for tag-finite-imageD is given
as the following. The basic idea is still using standard library lemma finite-imageD :

[[finite (f ‘ A); inj-on f A]] =⇒ finite A

38

which says: if the image of injective function f over set A is finite, then A
must be finte, as we did in the lemmas above.

lemma
fixes tag
assumes rng-fnt : finite (range tag)
— Suppose the rang of tagging fucntion tag is finite.
and same-tag-eqvt :

∧
m n. tag m = tag (n::string) =⇒ m ≈Lang n

— And strings with same tag are equivalent
shows finite (UNIV // (≈Lang))
— Then the partition generated by (≈Lang) is finite.

proof −
— The particular f and A used in finite-imageD are:
let ?f = op ‘ tag and ?A = (UNIV // ≈Lang)
show ?thesis
proof (rule-tac f = ?f and A = ?A in finite-imageD)

— The finiteness of f -image is a simple consequence of assumption rng-fnt :
show finite (?f ‘ ?A)
proof −

have ∀ X . ?f X ∈ (Pow (range tag)) by (auto simp:image-def Pow-def)
moreover from rng-fnt have finite (Pow (range tag)) by simp
ultimately have finite (range ?f)

by (auto simp only :image-def intro:finite-subset)
from finite-range-image [OF this] show ?thesis .

qed
next

— The injectivity of f is the consequence of assumption same-tag-eqvt :
show inj-on ?f ?A
proof−
{ fix X Y

assume X-in: X ∈ ?A
and Y-in: Y ∈ ?A
and tag-eq : ?f X = ?f Y

have X = Y
proof −

from X-in Y-in tag-eq
obtain x y where x-in: x ∈ X and y-in: y ∈ Y and eq-tg : tag x = tag y

unfolding quotient-def Image-def str-eq-rel-def str-eq-def image-def
apply simp by blast

from same-tag-eqvt [OF eq-tg] have x ≈Lang y .
with X-in Y-in x-in y-in
show ?thesis by (auto simp:quotient-def str-eq-rel-def str-eq-def)

qed
} thus ?thesis unfolding inj-on-def by auto

qed
qed

qed

39

8.2 The proof

Each case is given in a separate section, as well as the final main lemma.
Detailed explainations accompanied by illustrations are given for non-trivial
cases.

For ever inductive case, there are two tasks, the easier one is to show the
range finiteness of of the tagging function based on the finiteness of compo-
nent partitions, the difficult one is to show that strings with the same tag are
equivalent with respect to the composite language. Suppose the composite
language be Lang, tagging function be tag, it amounts to show:

tag(x) = tag(y) =⇒ x ≈Lang y

expanding the definition of ≈Lang, it amounts to show:

tag(x) = tag(y) =⇒ (∀ z . x@z ∈ Lang ←→ y@z ∈ Lang)

Because the assumed tag equlity tag(x) = tag(y) is symmetric, it is suffcient
to show just one direction:∧

x y z . [[tag(x) = tag(y); x@z ∈ Lang]] =⇒ y@z ∈ Lang

This is the pattern followed by every inductive case.

8.2.1 The base case for NULL

lemma quot-null-eq :
shows (UNIV // ≈{}) = ({UNIV }::lang set)
unfolding quotient-def Image-def str-eq-rel-def by auto

lemma quot-null-finiteI [intro]:
shows finite ((UNIV // ≈{})::lang set)

unfolding quot-null-eq by simp

8.2.2 The base case for EMPTY

lemma quot-empty-subset :
UNIV // (≈{[]}) ⊆ {{[]}, UNIV − {[]}}

proof
fix x
assume x ∈ UNIV // ≈{[]}
then obtain y where h: x = {z . (y , z) ∈ ≈{[]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]}, UNIV − {[]}}
proof (cases y = [])

case True with h
have x = {[]} by (auto simp: str-eq-rel-def)
thus ?thesis by simp

40

next
case False with h
have x = UNIV − {[]} by (auto simp: str-eq-rel-def)
thus ?thesis by simp

qed
qed

lemma quot-empty-finiteI [intro]:
shows finite (UNIV // (≈{[]}))

by (rule finite-subset [OF quot-empty-subset]) (simp)

8.2.3 The base case for CHAR

lemma quot-char-subset :
UNIV // (≈{[c]}) ⊆ {{[]},{[c]}, UNIV − {[], [c]}}

proof
fix x
assume x ∈ UNIV // ≈{[c]}
then obtain y where h: x = {z . (y , z) ∈ ≈{[c]}}

unfolding quotient-def Image-def by blast
show x ∈ {{[]},{[c]}, UNIV − {[], [c]}}
proof −
{ assume y = [] hence x = {[]} using h

by (auto simp:str-eq-rel-def)
} moreover {

assume y = [c] hence x = {[c]} using h
by (auto dest !:spec[where x = []] simp:str-eq-rel-def)

} moreover {
assume y 6= [] and y 6= [c]
hence ∀ z . (y @ z) 6= [c] by (case-tac y , auto)
moreover have

∧
p. (p 6= [] ∧ p 6= [c]) = (∀ q . p @ q 6= [c])

by (case-tac p, auto)
ultimately have x = UNIV − {[],[c]} using h

by (auto simp add :str-eq-rel-def)
} ultimately show ?thesis by blast

qed
qed

lemma quot-char-finiteI [intro]:
shows finite (UNIV // (≈{[c]}))

by (rule finite-subset [OF quot-char-subset]) (simp)

8.2.4 The inductive case for ALT

definition
tag-str-ALT :: lang ⇒ lang ⇒ string ⇒ (lang × lang)

where
tag-str-ALT L1 L2 = (λx . (≈L1 ‘‘ {x}, ≈L2 ‘‘ {x}))

lemma quot-union-finiteI [intro]:

41

fixes L1 L2 ::lang
assumes finite1 : finite (UNIV // ≈L1)
and finite2 : finite (UNIV // ≈L2)
shows finite (UNIV // ≈(L1 ∪ L2))

proof (rule-tac tag = tag-str-ALT L1 L2 in tag-finite-imageD)
show

∧
x y . tag-str-ALT L1 L2 x = tag-str-ALT L1 L2 y =⇒ x ≈(L1 ∪ L2) y

unfolding tag-str-ALT-def
unfolding str-eq-def
unfolding Image-def
unfolding str-eq-rel-def
by auto

next
have ∗: finite ((UNIV // ≈L1) × (UNIV // ≈L2))

using finite1 finite2 by auto
show finite (range (tag-str-ALT L1 L2))

unfolding tag-str-ALT-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

8.2.5 The inductive case for SEQ

For case SEQ, the language L is L1 ;; L2. Given x @ z ∈ L1 ;; L2, according
to the defintion of L1 ;; L2, string x @ z can be splitted with the prefix in
L1 and suffix in L2. The split point can either be in x (as shown in Fig.
1(a)), or in z (as shown in Fig. 1(c)). Whichever way it goes, the structure
on x @ z cn be transfered faithfully onto y @ z (as shown in Fig. 1(b)
and 1(d)) with the the help of the assumed tag equality. The following tag
function tag-str-SEQ is such designed to facilitate such transfers and lemma
tag-str-SEQ-injI formalizes the informal argument above. The details of
structure transfer will be given their.

definition
tag-str-SEQ :: lang ⇒ lang ⇒ string ⇒ (lang × lang set)

where
tag-str-SEQ L1 L2 =

(λx . (≈L1 ‘‘ {x}, {(≈L2 ‘‘ {x − xa}) | xa. xa ≤ x ∧ xa ∈ L1}))

The following is a techical lemma which helps to split the x @ z ∈ L1 ;; L2

mentioned above.

lemma append-seq-elim:
assumes x @ y ∈ L1 ;; L2

shows (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2) ∨
(∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2)

proof−
from assms obtain s1 s2

where eq-xys: x @ y = s1 @ s2

42

xa x− xa

x z

x@z ∈ L1; ;L2

(x− xa)@z ∈ L2xa ∈ L1

(a) First possible way to split x@z

ya y − ya

y z

y@z ∈ L1; ;L2

(y − ya)@z ∈ L2ya ∈ L1

(b) Transferred structure corresponding to the first way of splitting

x za z − za

z

x@z ∈ L1; ;L2

x@za ∈ L1

(c) The second possible way to split x@z

y za z − za

z

y@z ∈ L1; ;L2

y@za ∈ L1

(d) Transferred structure corresponding to the second way of splitting

Figure 1: The case for SEQ

and in-seq : s1 ∈ L1 ∧ s2 ∈ L2

by (auto simp:Seq-def)
from app-eq-dest [OF eq-xys]
have

(x ≤ s1 ∧ (s1 − x) @ s2 = y) ∨ (s1 ≤ x ∧ (x − s1) @ y = s2)
(is ?Split1 ∨ ?Split2) .

moreover have ?Split1 =⇒ ∃ ya ≤ y . (x @ ya) ∈ L1 ∧ (y − ya) ∈ L2

using in-seq by (rule-tac x = s1 − x in exI , auto elim:prefixE)
moreover have ?Split2 =⇒ ∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ y ∈ L2

using in-seq by (rule-tac x = s1 in exI , auto)
ultimately show ?thesis by blast

qed

lemma tag-str-SEQ-injI :
fixes v w
assumes eq-tag : tag-str-SEQ L1 L2 v = tag-str-SEQ L1 L2 w
shows v ≈(L1 ;; L2) w

43

proof−
— As explained before, a pattern for just one direction needs to be dealt with:

{ fix x y z
assume xz-in-seq : x @ z ∈ L1 ;; L2

and tag-xy : tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y
havey @ z ∈ L1 ;; L2

proof−
— There are two ways to split x@z :
from append-seq-elim [OF xz-in-seq]
have (∃ xa ≤ x . xa ∈ L1 ∧ (x − xa) @ z ∈ L2) ∨

(∃ za ≤ z . (x @ za) ∈ L1 ∧ (z − za) ∈ L2) .
— It can be shown that ?thesis holds in either case:
moreover {

— The case for the first split:
fix xa
assume h1 : xa ≤ x and h2 : xa ∈ L1 and h3 : (x − xa) @ z ∈ L2

— The following subgoal implements the structure transfer:
obtain ya

where ya ≤ y
and ya ∈ L1

and (y − ya) @ z ∈ L2

proof −

—

By expanding the definition of

tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y

and extracting the second compoent, we get:
have {≈L2 ‘‘ {x − xa} |xa. xa ≤ x ∧ xa ∈ L1} =

{≈L2 ‘‘ {y − ya} |ya. ya ≤ y ∧ ya ∈ L1} (is ?Left = ?Right)
using tag-xy unfolding tag-str-SEQ-def by simp
— Since xa ≤ x and xa ∈ L1 hold, it is not difficult to show:

moreover have ≈L2 ‘‘ {x − xa} ∈ ?Left using h1 h2 by auto

—
Through tag equality, equivalent class ≈L2 ‘‘ {x − xa}
also belongs to the ?Right :

ultimately have ≈L2 ‘‘ {x − xa} ∈ ?Right by simp
— From this, the counterpart of xa in y is obtained:

then obtain ya
where eq-xya: ≈L2 ‘‘ {x − xa} = ≈L2 ‘‘ {y − ya}
and pref-ya: ya ≤ y and ya-in: ya ∈ L1

by simp blast
— It can be proved that ya has the desired property:
have (y − ya)@z ∈ L2

proof −
from eq-xya have (x − xa) ≈L2 (y − ya)

unfolding Image-def str-eq-rel-def str-eq-def by auto
with h3 show ?thesis unfolding str-eq-rel-def str-eq-def by simp

qed
— Now, ya has all properties to be a qualified candidate:
with pref-ya ya-in
show ?thesis using that by blast

44

qed
— From the properties of ya, y @ z ∈ L1 ;; L2 is derived easily.

hence y @ z ∈ L1 ;; L2 by (erule-tac prefixE , auto simp:Seq-def)
} moreover {

— The other case is even more simpler:
fix za
assume h1 : za ≤ z and h2 : (x @ za) ∈ L1 and h3 : z − za ∈ L2

have y @ za ∈ L1

proof−
have ≈L1 ‘‘ {x} = ≈L1 ‘‘ {y}

using tag-xy unfolding tag-str-SEQ-def by simp
with h2 show ?thesis

unfolding Image-def str-eq-rel-def str-eq-def by auto
qed
with h1 h3 have y @ z ∈ L1 ;; L2

by (drule-tac A = L1 in seq-intro, auto elim:prefixE)
}
ultimately show ?thesis by blast

qed
}
— ?thesis is proved by exploiting the symmetry of eq-tag :
from this [OF - eq-tag] and this [OF - eq-tag [THEN sym]]

show ?thesis unfolding str-eq-def str-eq-rel-def by blast
qed

lemma quot-seq-finiteI [intro]:
fixes L1 L2 ::lang
assumes fin1 : finite (UNIV // ≈L1)
and fin2 : finite (UNIV // ≈L2)
shows finite (UNIV // ≈(L1 ;; L2))

proof (rule-tac tag = tag-str-SEQ L1 L2 in tag-finite-imageD)
show

∧
x y . tag-str-SEQ L1 L2 x = tag-str-SEQ L1 L2 y =⇒ x ≈(L1 ;; L2) y

by (rule tag-str-SEQ-injI)
next

have ∗: finite ((UNIV // ≈L1) × (Pow (UNIV // ≈L2)))
using fin1 fin2 by auto

show finite (range (tag-str-SEQ L1 L2))
unfolding tag-str-SEQ-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

8.2.6 The inductive case for STAR

This turned out to be the trickiest case. The essential goal is to proved y @
z ∈ L1∗ under the assumptions that x @ z ∈ L1∗ and that x and y have
the same tag. The reasoning goes as the following:

45

1. Since x @ z ∈ L1∗ holds, a prefix xa of x can be found such that xa
∈ L1∗ and (x − xa)@z ∈ L1∗, as shown in Fig. 2(a). Such a prefix
always exists, xa = [], for example, is one.

2. There could be many but fintie many of such xa, from which we can
find the longest and name it xa-max, as shown in Fig. 2(b).

3. The next step is to split z into za and zb such that (x − xa-max) @
za ∈ L1 and zb ∈ L1∗ as shown in Fig. 2(e). Such a split always exists
because:

(a) Because (x − x-max) @ z ∈ L1∗, it can always be splitted into
prefix a and suffix b, such that a ∈ L1 and b ∈ L1∗, as shown in
Fig. 2(c).

(b) But the prefix a CANNOT be shorter than x − xa-max (as shown
in Fig. 2(d)), becasue otherwise, ma-max@a would be in the
same kind as xa-max but with a larger size, conflicting with the
fact that xa-max is the longest.

4. By the assumption that x and y have the same tag, the structure on
x @ z can be transferred to y @ z as shown in Fig. 2(f). The detailed
steps are:

(a) A y-prefix ya corresponding to xa can be found, which satisfies
conditions: ya ∈ L1∗ and (y − ya)@za ∈ L1.

(b) Since we already know zb ∈ L1∗, we get (y − ya)@za@zb ∈ L1∗,
and this is just (y − ya)@z ∈ L1∗.

(c) With fact ya ∈ L1∗, we finally get y@z ∈ L1∗.

The formal proof of lemma tag-str-STAR-injI faithfully follows this informal
argument while the tagging function tag-str-STAR is defined to make the
transfer in step ?? feasible.

definition
tag-str-STAR :: lang ⇒ string ⇒ lang set

where
tag-str-STAR L1 = (λx . {≈L1 ‘‘ {x − xa} | xa. xa < x ∧ xa ∈ L1?})

A technical lemma.

lemma finite-set-has-max : [[finite A; A 6= {}]] =⇒
(∃ max ∈ A. ∀ a ∈ A. f a <= (f max :: nat))

proof (induct rule:finite.induct)
case emptyI thus ?case by simp

next
case (insertI A a)
show ?case
proof (cases A = {})

46

xa x− xa

x z

x@z ∈ L1∗

(x− xa)@z ∈ L1∗xa ∈ L1∗

(a) First split

xa max x− xa max

x z

x@z ∈ L1∗

(x− xa max)@z ∈ L1∗xa ∈ L1∗

(b) Max split

xa max x− xa max

x z

x@z ∈ L1∗

(x− xa max)@z ∈ L1∗xa ∈ L1∗

a ∈ L1 b ∈ L1∗

(c) Max split with a and b (the right situation)

xa max x− xa max

x z

x@z ∈ L1∗

(x− xa max)@z ∈ L1∗xa ∈ L1∗

a ∈ L1 b ∈ L1∗

(d) Max split with a and b (the wrong situation)

xa max x− xa max za zb

x z

x@z ∈ L1∗

(x− xa max)@za ∈ L1xa max ∈ L1∗ zb ∈ L1∗

(x− xa max)@z ∈ L1∗

(e) Last split

ya y − ya za zb

y z

y@z ∈ L1∗

(y − ya)@za ∈ L1ya ∈ L1∗ zb ∈ L1∗

(y − ya)@z ∈ L1∗

(f) Structure transferred to y

Figure 2: The case for STAR

47

case True thus ?thesis by (rule-tac x = a in bexI , auto)
next

case False
with insertI .hyps and False
obtain max

where h1 : max ∈ A
and h2 : ∀ a∈A. f a ≤ f max by blast

show ?thesis
proof (cases f a ≤ f max)

assume f a ≤ f max
with h1 h2 show ?thesis by (rule-tac x = max in bexI , auto)

next
assume ¬ (f a ≤ f max)
thus ?thesis using h2 by (rule-tac x = a in bexI , auto)

qed
qed

qed

The following is a technical lemma.which helps to show the range finiteness
of tag function.

lemma finite-strict-prefix-set : finite {xa. xa < (x ::string)}
apply (induct x rule:rev-induct , simp)
apply (subgoal-tac {xa. xa < xs @ [x]} = {xa. xa < xs} ∪ {xs})
by (auto simp:strict-prefix-def)

lemma tag-str-STAR-injI :
fixes v w
assumes eq-tag : tag-str-STAR L1 v = tag-str-STAR L1 w
shows (v ::string) ≈(L1?) w

proof−
— As explained before, a pattern for just one direction needs to be dealt with:

{ fix x y z
assume xz-in-star : x @ z ∈ L1?

and tag-xy : tag-str-STAR L1 x = tag-str-STAR L1 y
have y @ z ∈ L1?
proof(cases x = [])

— The degenerated case when x is a null string is easy to prove:
case True
with tag-xy have y = []

by (auto simp add : tag-str-STAR-def strict-prefix-def)
thus ?thesis using xz-in-star True by simp

next
— The nontrival case:

case False

—

Since x @ z ∈ L1?, x can always be splitted by a prefix xa together
with its suffix x − xa, such that both xa and (x − xa) @ z are
in L1?, and there could be many such splittings.Therefore, the
following set ?S is nonempty, and finite as well:

let ?S = {xa. xa < x ∧ xa ∈ L1? ∧ (x − xa) @ z ∈ L1?}

48

have finite ?S
by (rule-tac B = {xa. xa < x} in finite-subset ,

auto simp:finite-strict-prefix-set)
moreover have ?S 6= {} using False xz-in-star

by (simp, rule-tac x = [] in exI , auto simp:strict-prefix-def)

—
Since ?S is finite, we can always single out the longest and
name it xa-max :

ultimately have ∃ xa-max ∈ ?S . ∀ xa ∈ ?S . length xa ≤ length xa-max
using finite-set-has-max by blast

then obtain xa-max
where h1 : xa-max < x
and h2 : xa-max ∈ L1?
and h3 : (x − xa-max) @ z ∈ L1?
and h4 :∀ xa < x . xa ∈ L1? ∧ (x − xa) @ z ∈ L1?

−→ length xa ≤ length xa-max
by blast

—
By the equality of tags, the counterpart of xa-max among y-
prefixes, named ya, can be found:

obtain ya
where h5 : ya < y and h6 : ya ∈ L1?
and eq-xya: (x − xa-max) ≈L1 (y − ya)

proof−
from tag-xy have {≈L1 ‘‘ {x − xa} |xa. xa < x ∧ xa ∈ L1?} =
{≈L1 ‘‘ {y − xa} |xa. xa < y ∧ xa ∈ L1?} (is ?left = ?right)
by (auto simp:tag-str-STAR-def)

moreover have ≈L1 ‘‘ {x − xa-max} ∈ ?left using h1 h2 by auto
ultimately have ≈L1 ‘‘ {x − xa-max} ∈ ?right by simp
thus ?thesis using that

apply (simp add :Image-def str-eq-rel-def str-eq-def) by blast
qed

—
The ?thesis, y @ z ∈ L1?, is a simple consequence of the following
proposition:

have (y − ya) @ z ∈ L1?
proof−

— The idea is to split the suffix z into za and zb, such that:
obtain za zb where eq-zab: z = za @ zb

and l-za: (y − ya)@za ∈ L1 and ls-zb: zb ∈ L1?
proof −

— Since xa-max < x, x can be splitted into a and b such that:
from h1 have (x − xa-max) @ z 6= []

by (auto simp:strict-prefix-def elim:prefixE)
from star-decom [OF h3 this]
obtain a b where a-in: a ∈ L1

and a-neq : a 6= [] and b-in: b ∈ L1?
and ab-max : (x − xa-max) @ z = a @ b by blast

— Now the candiates for za and zb are found:
let ?za = a − (x − xa-max) and ?zb = b
have pfx : (x − xa-max) ≤ a (is ?P1)

and eq-z : z = ?za @ ?zb (is ?P2)
proof −

49

—
Since (x − xa-max) @ z = a @ b, string (x − xa-max) @ z can
be splitted in two ways:

have ((x − xa-max) ≤ a ∧ (a − (x − xa-max)) @ b = z) ∨
(a < (x − xa-max) ∧ ((x − xa-max) − a) @ z = b)
using app-eq-dest [OF ab-max] by (auto simp:strict-prefix-def)

moreover {
— However, the undsired way can be refuted by absurdity:
assume np: a < (x − xa-max)

and b-eqs: ((x − xa-max) − a) @ z = b
have False
proof −

let ?xa-max ′ = xa-max @ a
have ?xa-max ′ < x

using np h1 by (clarsimp simp:strict-prefix-def diff-prefix)
moreover have ?xa-max ′ ∈ L1?

using a-in h2 by (simp add :star-intro3)
moreover have (x − ?xa-max ′) @ z ∈ L1?

using b-eqs b-in np h1 by (simp add :diff-diff-appd)
moreover have ¬ (length ?xa-max ′ ≤ length xa-max)

using a-neq by simp
ultimately show ?thesis using h4 by blast

qed }
— Now it can be shown that the splitting goes the way we desired.
ultimately show ?P1 and ?P2 by auto

qed
hence (x − xa-max)@?za ∈ L1 using a-in by (auto elim:prefixE)
— Now candidates ?za and ?zb have all the requred properteis.
with eq-xya have (y − ya) @ ?za ∈ L1

by (auto simp:str-eq-def str-eq-rel-def)
with eq-z and b-in

show ?thesis using that by blast
qed
— ?thesis can easily be shown using properties of za and zb:
have ((y − ya) @ za) @ zb ∈ L1? using l-za ls-zb by blast
with eq-zab show ?thesis by simp

qed
with h5 h6 show ?thesis

by (drule-tac star-intro1 , auto simp:strict-prefix-def elim:prefixE)
qed

}
— By instantiating the reasoning pattern just derived for both directions:
from this [OF - eq-tag] and this [OF - eq-tag [THEN sym]]
— The thesis is proved as a trival consequence:

show ?thesis unfolding str-eq-def str-eq-rel-def by blast
qed

lemma — The oringal version with less explicit details.
fixes v w
assumes eq-tag : tag-str-STAR L1 v = tag-str-STAR L1 w
shows (v ::string) ≈(L1?) w

50

proof−

—

According to the definition of ≈Lang, proving v ≈(L1?) w amounts
to showing: for any string u, if v @ u ∈ (L1?) then w @ u ∈ (L1?)
and vice versa. The reasoning pattern for both directions are the
same, as derived in the following:

{ fix x y z
assume xz-in-star : x @ z ∈ L1?

and tag-xy : tag-str-STAR L1 x = tag-str-STAR L1 y
have y @ z ∈ L1?
proof(cases x = [])

— The degenerated case when x is a null string is easy to prove:
case True
with tag-xy have y = []

by (auto simp:tag-str-STAR-def strict-prefix-def)
thus ?thesis using xz-in-star True by simp

next
— The case when x is not null, and x @ z is in L1?,

case False
obtain x-max

where h1 : x-max < x
and h2 : x-max ∈ L1?
and h3 : (x − x-max) @ z ∈ L1?
and h4 :∀ xa < x . xa ∈ L1? ∧ (x − xa) @ z ∈ L1?

−→ length xa ≤ length x-max
proof−

let ?S = {xa. xa < x ∧ xa ∈ L1? ∧ (x − xa) @ z ∈ L1?}
have finite ?S

by (rule-tac B = {xa. xa < x} in finite-subset ,
auto simp:finite-strict-prefix-set)

moreover have ?S 6= {} using False xz-in-star
by (simp, rule-tac x = [] in exI , auto simp:strict-prefix-def)

ultimately have ∃ max ∈ ?S . ∀ a ∈ ?S . length a ≤ length max
using finite-set-has-max by blast

thus ?thesis using that by blast
qed
obtain ya

where h5 : ya < y and h6 : ya ∈ L1? and h7 : (x − x-max) ≈L1 (y − ya)
proof−

from tag-xy have {≈L1 ‘‘ {x − xa} |xa. xa < x ∧ xa ∈ L1?} =
{≈L1 ‘‘ {y − xa} |xa. xa < y ∧ xa ∈ L1?} (is ?left = ?right)
by (auto simp:tag-str-STAR-def)

moreover have ≈L1 ‘‘ {x − x-max} ∈ ?left using h1 h2 by auto
ultimately have ≈L1 ‘‘ {x − x-max} ∈ ?right by simp
with that show ?thesis apply

(simp add :Image-def str-eq-rel-def str-eq-def) by blast
qed
have (y − ya) @ z ∈ L1?
proof−

from h3 h1 obtain a b where a-in: a ∈ L1

51

and a-neq : a 6= [] and b-in: b ∈ L1?
and ab-max : (x − x-max) @ z = a @ b
by (drule-tac star-decom, auto simp:strict-prefix-def elim:prefixE)

have (x − x-max) ≤ a ∧ (a − (x − x-max)) @ b = z
proof −

have ((x − x-max) ≤ a ∧ (a − (x − x-max)) @ b = z) ∨
(a < (x − x-max) ∧ ((x − x-max) − a) @ z = b)

using app-eq-dest [OF ab-max] by (auto simp:strict-prefix-def)
moreover {

assume np: a < (x − x-max) and b-eqs: ((x − x-max) − a) @ z = b
have False
proof −

let ?x-max ′ = x-max @ a
have ?x-max ′ < x

using np h1 by (clarsimp simp:strict-prefix-def diff-prefix)
moreover have ?x-max ′ ∈ L1?

using a-in h2 by (simp add :star-intro3)
moreover have (x − ?x-max ′) @ z ∈ L1?

using b-eqs b-in np h1 by (simp add :diff-diff-appd)
moreover have ¬ (length ?x-max ′ ≤ length x-max)

using a-neq by simp
ultimately show ?thesis using h4 by blast

qed
} ultimately show ?thesis by blast

qed
then obtain za where z-decom: z = za @ b

and x-za: (x − x-max) @ za ∈ L1

using a-in by (auto elim:prefixE)
from x-za h7 have (y − ya) @ za ∈ L1

by (auto simp:str-eq-def str-eq-rel-def)
with b-in have ((y − ya) @ za) @ b ∈ L1? by blast
with z-decom show ?thesis by auto

qed
with h5 h6 show ?thesis

by (drule-tac star-intro1 , auto simp:strict-prefix-def elim:prefixE)
qed

}
— By instantiating the reasoning pattern just derived for both directions:
from this [OF - eq-tag] and this [OF - eq-tag [THEN sym]]
— The thesis is proved as a trival consequence:

show ?thesis unfolding str-eq-def str-eq-rel-def by blast
qed

lemma quot-star-finiteI [intro]:
fixes L1 ::lang
assumes finite1 : finite (UNIV // ≈L1)
shows finite (UNIV // ≈(L1?))

proof (rule-tac tag = tag-str-STAR L1 in tag-finite-imageD)
show

∧
x y . tag-str-STAR L1 x = tag-str-STAR L1 y =⇒ x ≈(L1?) y

52

by (rule tag-str-STAR-injI)
next

have ∗: finite (Pow (UNIV // ≈L1))
using finite1 by auto

show finite (range (tag-str-STAR L1))
unfolding tag-str-STAR-def
apply(rule finite-subset [OF - ∗])
unfolding quotient-def
by auto

qed

8.2.7 The conclusion

lemma rexp-imp-finite:
fixes r ::rexp
shows finite (UNIV // ≈(L r))

by (induct r) (auto)

end

theory Myhill
imports Myhill-2

begin

9 Preliminaries

9.1 Finite automata and Myhill-Nerode theorem

A determinisitc finite automata (DFA) M is a 5-tuple (Q,Σ, δ, s, F), where:

1. Q is a finite set of states, also denoted QM .

2. Σ is a finite set of alphabets, also denoted ΣM .

3. δ is a transition function of type Q × Σ ⇒ Q (a total function), also
denoted δM .

4. s ∈ Q is a state called initial state, also denoted sM .

5. F ⊆ Q is a set of states named accepting states, also denoted FM .

Therefore, we have M = (QM ,ΣM , δM , sM , FM). Every DFA M can be in-
terpreted as a function assigning states to strings, denoted δ̂M , the definition
of which is as the following:

δ̂M ([]) ≡ sM
δ̂M (xa) ≡ δM (δ̂M (x), a)

(2)

53

A string x is said to be accepted (or recognized) by a DFA M if δ̂M (x) ∈ FM .
The language recoginzed by DFA M , denoted L(M), is defined as:

L(M) ≡ {x | δ̂M (x) ∈ FM} (3)

The standard way of specifying a laugage L as regular is by stipulating that:
L = L(M) for some DFA M .

For any DFA M , the DFA obtained by changing initial state to another
p ∈ QM is denoted Mp, which is defined as:

Mp ≡ (QM ,ΣM , δM , p, FM) (4)

Two states p, q ∈ QM are said to be equivalent, denoted p ≈M q, iff.

L(Mp) = L(Mq) (5)

It is obvious that ≈M is an equivalent relation over QM . and the parti-
tion induced by ≈M has |QM | equivalent classes. By overloading ≈M , an
equivalent relation over strings can be defined:

x ≈M y ≡ δ̂M (x) ≈M δ̂M (y) (6)

It can be proved that the the partition induced by ≈M also has |QM | equiv-
alent classes. It is also easy to show that: if x ≈M y, then x ≈L(M) y,
and this means ≈M is a more refined equivalent relation than ≈L(M). Since
partition induced by ≈M is finite, the one induced by ≈L(M) must also be
finite, and this is one of the two directions of Myhill-Nerode theorem:

Lemma 1 (Myhill-Nerode theorem, Direction two). If a language L is reg-
ular (i.e. L = L(M) for some DFA M), then the partition induced by ≈L
is finite.

The other direction is:

Lemma 2 (Myhill-Nerode theorem, Direction one). If the partition induced
by ≈L is finite, then L is regular (i.e. L = L(M) for some DFA M).

The M we are seeking when prove lemma ?? can be constructed out of ≈L,
denoted ML and defined as the following:

QML ≡ {JxK≈L | x ∈ Σ∗} (7a)

ΣML ≡ ΣM (7b)

δML ≡ (λ(JxK≈L , a).JxaK≈L) (7c)

sML ≡ J[]K≈L (7d)

FML ≡ {JxK≈L | x ∈ L} (7e)

It can be proved that QML is indeed finite and L = L(ML), so lemma 2
holds. It can also be proved that ML is the minimal DFA (therefore unique)
which recoginzes L.

54

9.2 The objective and the underlying intuition

It is now obvious from section 9.1 that Myhill-Nerode theorem can be estab-
lished easily when reglar languages are defined as ones recognized by finite
automata. Under the context where the use of finite automata is forbiden,
the situation is quite different. The theorem now has to be expressed as:

Theorem 1 (Myhill-Nerode theorem, Regular expression version). A lan-
guage L is regular (i.e. L = L(e) for some regular expression e) iff. the
partition induced by ≈L is finite.

The proof of this version consists of two directions (if the use of automata
are not allowed):

Direction one: generating a regular expression e out of the finite partition
induced by ≈L, such that L = L(e).

Direction two: showing the finiteness of the partition induced by ≈L, un-
der the assmption that L is recognized by some regular expression e
(i.e. L = L(e)).

The development of these two directions consititutes the body of this paper.

10 Direction regular language ⇒finite partition

Although not used explicitly, the notion of finite autotmata and its rela-
tionship with language partition, as outlined in section 9.1, still servers as
important intuitive guides in the development of this paper. For example,
Direction one follows the Brzozowski algebraic method used to convert finite
autotmata to regular expressions, under the intuition that every partition
member JxK≈L is a state in the DFA ML constructed to prove lemma 2 of
section 9.1.

The basic idea of Brzozowski method is to set aside an unknown for ev-
ery DFA state and describe the state-trasition relationship by charateristic
equations. By solving the equational system such obtained, regular expres-
sions characterizing DFA states are obtained. There are choices of how DFA
states can be characterized. The first is to characterize a DFA state by the
set of striings leading from the state in question into accepting states. The
other choice is to characterize a DFA state by the set of strings leading
from initial state into the state in question. For the first choice, the lau-
guage recognized by a DFA can be characterized by the regular expression
characterizing initial state, while in the second choice, the languaged of the
DFA can be characterized by the summation of regular expressions of all
accepting states.

end

55

X0start

X1

X2

X3

a

b

b

a

c c

d

d

Σ− {a, b}

Σ− {b, c, d}

Σ
− {
a,
c, d
}

Σ

Figure 3: The relationship between automata and finite partition

56

	Preliminary definitions
	A slightly modified version of Arden's lemma
	Regular Expressions
	Folds for Sets
	Direction finite partition regular language
	The proof of this direction
	Basic properties
	Intialization
	Interation step
	Conclusion of the proof

	List prefixes and postfixes
	Prefix order on lists
	Basic properties of prefixes
	Parallel lists
	Postfix order on lists

	A small theory of prefix subtraction
	Direction regular language finite partition
	The scheme
	The proof
	The base case for NULL
	The base case for EMPTY
	The base case for CHAR
	The inductive case for ALT
	The inductive case for SEQ
	The inductive case for STAR
	The conclusion

	Preliminaries
	Finite automata and Myhill-Nerode theorem
	The objective and the underlying intuition

	Direction regular language finite partition

