
LDTA 2006 Preliminary Version

Scannerless Boolean Parsing

Adam Megacz

Computer Science
UC Berkeley

Abstract

Scannerless generalized parsing techniques allow parsers to be derived directly
from unified, declarative specifications. Unfortunately, in order to uniquely parse
existing programming languages at the character level, disambiguation extensions
beyond the usual context-free formalism are required.

This paper explains how scannerless parsers for boolean grammars (context-free
grammars extended with intersection and negation) can specify such languages un-
ambiguously, and can also describe other interesting constructs such as indentation-
based block structure.

The sbp package implements this parsing technique and is publicly available as
Java source code.

Key words: boolean grammar, scannerless, GLR

1 Introduction

Although scannerless parsing 2 was first introduced in [1], it was not practical
for general use until combined with the Lang-Tomita Generalized LR parsing
algorithm [2,3] by Visser [7]. Unfortunately, the context-free grammars for
most programming languages are ambiguous at the character level, which mo-
tivated the introduction of six empirically-chosen disambiguation constructs:
follow, reject, prefer, avoid, associativity, and precedence.

2 Conjunctive and Boolean Grammars

Conjunctive grammars [8] augment the juxtaposition (·) and language-union
(|) operators of context-free grammars with an additional language-intersection
(&) operator. Boolean grammars [10] further extend conjunctive grammars by

1 Email: megacz@cs.berkeley.edu
2 also called “lexerless” or “character-level”

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Megacz

permitting the language-complement operator (∼) to be used, subject to some
basic well-formedness constraints 3 .

It should be noted that Visser arrives at a similar result from the opposite
direction by using reject productions, which act as conjunction with a nega-
tion. The paper goes on to reconstruct simple negation as well as intersection
in terms of this negated-conjunction primitive, even noting that “this feature
can give rise to as yet unforeseen applications.”[7]

3 Disambiguating with Boolean Constructs

We now examine each of the disambiguation constructs and explain how to
recast it as a boolean expression.

The prefer and avoid attributes effectively make a context-sensitive choice
between ambiguous parsings, thus turning an ambiguous context-free gram-
mar into an unambiguous context-sensitive grammar. We can replace prefer

and avoid with an ordered-choice operator (>), which is a metagrammatical
abbreviation for intersecting the lower-priority expression with the comple-
ment of the higher-priority expression 4

The associativity and precedence features cannot be expanded into simple
context-free expressions when they span multiple nonterminals, as in exam-
ple 4.5.11 of [5]. In this example, addition and multiplication expressions
are defined for the real numbers (R) and natural numbers (N). A subsump-
tion production (N → R) is included, but operations on the natural num-
bers assume higher priority than corresponding operations on the reals. This
sort of rich priority specification can be expressed in a manner similar to
the ordered-choice operator: expressions are intersected with the complement
of all higher-priority expressions, even those which involve productions from
multiple nonterminals.

Uses of the reject attribute can be trivially translated into intersection
with the complement of the rejected expression.

A follow restriction can be written as a boolean expression if one considers
character boundaries (pairs of adjacent characters) as input tokens. From this
perspective, a follow restriction amounts to intersecting an expression with
the set of all strings ending with a valid follow-boundary.

4 SBP: a Scannerless Boolean Parser

The sbp package is an implementation of the Lang-Tomita Generalized LR
Parsing Algorithm [2,3], employing Johnstone & Scott’s RNGLR algorithm
[13] for handling ε-productions and circularities.

3 for example, a nonterminal cannot be defined to produce exactly its own complement
4 for example, a > b expands to a | (b & ∼a)

2

Megacz

The input alphabet for sbp is typically the set of individual Unicode char-
acters, though any topological space 5 can be used. An interesting consequence
is that sbp can parse sentences constructed from non-discrete alphabets. 6

The parser’s grammars are built programmatically and can be manipulated
and through a simple API. A sample metagrammar is included; it supports
alternation (|), intersection (&), complement (∼), intersect-with-complement
(&∼), subexpressions (()), regular expressions (*, +, ?), repetition with a sep-
arator (*/, +/), maximal character repetition (++, **), ordered choice (>),
promotion operators (as in [12]), character ranges ([a-z]), and whitespace
insertion (/ws).

5 Examples

5.1 Dangling Else

A classic example of grammatical ambiguity is the so-called “dangling else”
construct [18]. Straightforward application of negation and intersection can
exclude expressions with a trailing else clause from the then-branch of an if

statement, leaving the intended interpretation as the only valid parse:

Expr = "if" "(" Expr ")" IfBody
| ...

IfBody = Expr "else" Expr
| Expr & ∼([∼]* "else" Expr)

The complement of the empty character class ([∼]) is an idiom used to
match any character.

5.2 Indentation Block Structure

Besides disambiguation, boolean grammatical constructs have an number of
other applications. The following example parses a language with indentation-
based block structure by imposing a well-formedness constraint on blocks. The
technique employed was inspired by [11].

We begin with the grammar for a simple fragment of a C-like language.
The grammar uses conjunction with a negated term to exclude identifiers
whose names happen to be keywords, just as in [6].

Statement = Expr "()"
| "while" Expr block

Expr = ident
| [0-9]++

ident = [a-z]++ & ∼keywords
keywords = "while" | "if"

We can now use boolean language operations to impose additional struc-

5 one for which the ∪, ∩, ∼ operators and the ⊆ (or simply =) test are supplied
6 although we have not yet found a practical use for this capability

3

Megacz

ture. We will do this by defining a nonterminal for syntactic blocks, and
intersecting it with another production which requires that no line in a block
can be indented less than the first line. Lastly, we use the ordered choice
operator to prefer “tall” (left-associative) BlockBody productions.

indent = " "*
outdent = " " outdent " "

| " " [∼]* "\n"

block = "\n" indent BlockBody
&∼ "\n" outdent [∼] [∼]*

BlockBody = Statement
> Statement BlockBody

The block rule matches code blocks which start a new line. The rule re-
quires a newline, followed by some number of spaces, followed by a BlockBody.
This production is intersected with a well-formedness production: the newline
must not be followed by an outdent.

Similar to the sort of rule used to match balanced parentheses, the outdent
rule matches any text which begins with indentation and also contains some
other (disjoint) instance of indentation which is shorter than the first instance.
In the context of the block production, this would describe any block con-
taining a line with indentation less than that of the first line in the block.

6 Related Work

The original scannerless generalized parser, sglr[5] was designed as an im-
proved parser for the ASF+SDF[4] framework. Dparser [17] is an implemen-
tation of the GLR algorithm in ANSI C, with support for most of Visser’s
disambiguation rules.

Several GLR parsers are available which require a tokenizer. 7 These in-
clude Elkhound[14], and the GLR extensions to bison.

Parsing Expression Grammars (PEG)s[15] include a limited form of in-
tersection and complement, and the corresponding algorithm [16] is effective
at parsing character-level grammars. However, many interesting context-free
grammars are not PEGs, and cannot be parsed this way.

7 Future Directions

The current implementation is written in Java. It generates parse tables
(which can be saved and restored), but currently only provides support for

7 some can be used as “character level” parsers, but lack the disambiguation capabilities
necessary to parse most programming languages at this level

4

Megacz

interpreting these tables. Emitting compilable source code equivalent to pars-
ing from these tables will be an important step in improving the performance
of sbp.

Like the sglr parser, sbp deliberately excludes support for semantic ac-
tions, preferring to keep grammar definitions implementation-language-neutral.
One consequence is that parsing requires space which is linear in the input,
since the entire parse tree (modulo portions removed using the drop operator)
must be constructed before any part of it can be consumed. An important
future direction is the possibility of constructing lazy parse forests which can
be incrementally consumed and discarded by a process running concurrently
with the parser.

8 Availability

The source code for sbp is available under the terms of the BSD license, at
http://research.cs.berkeley.edu/project/sbp/.

References

[1] Daniel J. Salomon and Gordon V. Cormack. Scannerless NSLR(1) parsing of
programming languages. SIGPLAN ’89, pp 170-178. ACM Press, 1989.

[2] Lang, Bernard. Deterministic Techniques for Efficient Non-deterministic
Parsers. Automata, Languages and Programming, Springer, 1974.

[3] Tomita, M. (1987). An efficient augmented-context-free parsing algorithm.
Computational Linguistics, 13(1-2), 31–46.

[4] A. van Deursen, J. Heering and P. Klint (eds.), Language Prototyping: An
Algebraic Specification Approach, AMAST Series in Computing, Volume 5,
World Scientific, September 1996

[5] Visser, Eelco. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, September 1997.

[6] M. G. J. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation
filters for scannerless generalized LR parsers. In Compiler Construction
(CC’02), Lecture Notes in Computer Science. Springer-Verlag, 2002.

[7] Visser, E. (1997b). Scannerless generalized-LR parsing. Technical Report
P9707, Programming Research Group, University of Amsterdam.

[8] Okhotin, Alexander. Conjunctive Grammars. Journal of Automata, Languages
and Combinatorics 6(4): 519-535 (2001)

[9] Okhotin, Alexander. LR Parsing for Boolean Grammars. Developments in
Language Theory 2005: 362-373.

5

http://research.cs.berkeley.edu/project/sbp/

Megacz

[10] Okhotin, Alexander. Boolean Grammars. Developments in Language Theory
2003: 398-410.

[11] Okhotin, Alexander. On the existence of a Boolean grammar for a simple
procedural language. Proceedings of AFL 2005.

[12] Johnstone, Adrian and Scott, Elizabeth. Constructing reduced derivation trees.
University of London CSD-TR-97-27 (1997)

[13] Johnstone, Adrian and Scott, Elizabeth. Generalised reduction modified LR
parsing for domain specific language prototyping. Proc. 35th Annual Hawaii
International Conference On System Sciences (HICSS02), IEEE Computer
Society, New Jersey, (January 2002).

[14] Scott McPeak and George C. Necula. Elkhound: A Fast, Practical GLR Parser
Generator. Proceedings of Conference on Compiler Constructor (CC04), April
2004.

[15] Bryan Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear Time.
International Conference on Functional Programming, October 4-6, 2002,
Pittsburgh

[16] Bryan Ford. Parsing Expression Grammars: A Recognition-Based Syntactic
Foundation. Symposium on Principles of Programming Languages, January 14-
16, 2004, Venice, Italy.

[17] http://dparser.sourceforge.net/

[18] Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language,
Second Edition Prentice Hall, Inc., 1988. ISBN 0-13-110362-8

6

http://dparser.sourceforge.net/

	Introduction
	Conjunctive and Boolean Grammars
	Disambiguating with Boolean Constructs
	SBP: a Scannerless Boolean Parser
	Examples
	Dangling Else
	Indentation Block Structure

	Related Work
	Future Directions
	Availability
	References

