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Abstract

The evolution of Logic Programming semantics has included the introduction of a new
explicit form of negation, beside the older implicit (or default) negation typical of Logic
Programming. The richer language has been shown adequate for a spate of knowledge repre-
sentation and reasoning forms.

The widespread use of such extended programs requires the definition of a correct top-down
querying mechanism, much as for Prolog wrt. normal programs. One purpose of this paper
is to present and exploit a SLDNF-like derivation procedure, SLX, for programs with explicit
negation under well founded semantics (WFSX) and prove its soundness and completeness.
(Its soundness wrt. the answer-sets semantics is also shown.) Our choice of WFSX as the
base semantics is justified by the structural properties it enjoys, which are paramount for
top-down query evaluation.

Of course, introducing explicit negation requires dealing with contradiction. Consequently,
we allow for contradiction to appear, and show moreover how it can be removed by freely
changing the truth-values of some subset of a set of predefined revisable literals. To achieve
this, we have in this paper introduced a paraconsistent version of WEFSX, WFSX,, that allows
contradictions, and for which our SLX top-down procedure is proven correct as well.

This procedure can be used to detect the existence of pairs of complementary literals in
WFSX, simply by detecting the violation of integrity rules f < L, =L introduced for each
L in the language of the program. Furthermore, integrity constraints of a more general form
are allowed, whose violation can likewise be detected by SLX.

Removal of contradiction or integrity violation is accomplished by a variant of the SLX
procedure which collects, in a formula, the alternative combinations of revisable literals’ truth-
values that ensure the said removal. The formulas, after simplification, can then be satisfied
by a number of truth-values changes in the revisables, among “true”, “false”, and “undefined”.
A notion of minimal change is defined as well that establishes a closeness relation between a
program and its revisions. Forthwith, the changes can be enforced by introducing or deleting
program rules for the revisable literals.

To illustrate the usefulness and originality of our framework we applied it to obtain a novel
logic programming approach, and results, in declarative debugging and model based diagnosis
problems.

Keywords: Logic programming procedures; Logic programming semantics; Non-monotonic rea-
soning; Belief revision; Well founded semantics.

1 Introduction

For some time now, programming in logic has been shown to be a viable proposition. Since
the mid-fifties, the desire to impart the computer with the ability to reason logically lead to the
development of automated theorem proving, which took up the promise of giving logic to artificial
intelligence. As a result of the effort to find simple and efficient theorem proving strategies, Horn
clause programming under SLD resolution was discovered and implemented [16, 37].
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However, because Horn clauses admit only positive conclusions or facts, they give rise to a
monotonic semantics, i.e. one by which previous conclusions are never questioned in spite of
additional information, and thus the number of derived conclusions cannot decrease — hence the
monotonicity. Also, nothing can be concluded false, except by assuming that which is not finitely
proven true is false. But this condition prevents, by definition, the appearance of any and all
contradictions.

Thus, although Horn clause programming augmented with the NOT operator (cf. Prolog)
under the SLDNF derivation procedure [41] does allow negative conclusions, these are only drawn
by default (or implicitly), just in case the corresponding positive conclusion is not forthcoming in
a finite number of steps — hence the specific form of Closed World Assumption (CWA) [58] of the
completion semantics given to such programs [15].

This form of negation 1s capable of dealing with incomplete information, by assuming false
exactly what is not true in a finite manner. However, there remains the issue of non-terminating
computations, even for finite programs. To deal with this and other problems of the completion
semantics, a spate of semantics proposals were set forth, from the late eighties onwards, including
the well-founded semantics (WFS) of [24], which deals semantically with non-terminating top-
down computations, by assigning such computations the truth value of “false” or “undefined”, and
thereby giving semantics to every program. For this semantics several query evaluation procedures
have been defined [7, 11, 13, 32, 47, 53, 54, 57, 61]. The well-founded semantics deals only with
normal programs, i.e. those with just negation by default, and thus it provides no mechanism for
explicitly declaring the falsity of literals. This can be a serious limitation.

The evolution of Logic Programming (LP) semantics has now included the introduction of
a new explicit form of negation, beside the older implicit (or default) negation typical of Logic
Programming. The richer language has been shown adequate for a diversity of knowledge repre-
sentation and reasoning forms [9, 28, 48].

In fact, in recent years several authors (e.g. [27, 48, 66]) have stressed the importance of
extending LP with a second kind of negation —, for use in deductive databases, knowledge rep-
resentation, and non-monotonic reasoning (NMR). Different semantics for extended LPs with
—-negation (ELP) have appeared (e.g. [3, 27, 45, 55, 65, 66]). The particular generalization for
extended programs of WFS defined in [45], WFSX, which is taken as the base semantics in this
article, provides an added qualitative representational expressivity that can capture a wide variety
of logical reasoning forms, and serve as an instrument for programming them.

The two forms of negation, default and explicit, are not unrelated: our “coherence principle”
stipulates that the latter entails the former. Default negation and the revision of believed assump-
tions in the face of contradiction, or integrity constraint violation, are the two non-monotonic
reasoning mechanisms available in logic programming. Their use in combination with explicit
negation adds on a qualitative representational expressivity, as we’ve shown in [48].

For the widespread of such uses of extended logic programs the definition of a correct top-down
querying mechanism is required, much as for Prolog wrt. normal programs. Indeed, users normally
wish to know the instances of a literal that belong to the semantics rather than the whole semantics.
One purpose of this paper is to present and exploit a SLDNF-like derivation procedure, SLX, for
programs with explicit negation under well founded semantics ( WFSX), and prove its soundness
and completeness. (Its soundness wrt. the answer-sets semantics is also shown.) Additionally,
we have produced a Prolog interpreter for the procedure, and a pre-processor into Prolog based
on it, which show the procedure’s amenability to implementation. Because of lack of space these
implementations are not described in the paper but are available on request.

The SLX derivation method is directly inspired on the semantic AND-tree characterization of
WFSX in our paper [2], but does not presuppose it. In fact, that work can be seen as a preliminary
step towards the definition of the procedure presented here, in which there was no concern with the
actual construction of the trees (they were assumed to exist). The attribution of failure and success
was there made “a posteriori”, and assuming all the required trees simultaneously available. Here,
not only do we define how the derivations are constructed in a top-down way, using an arbitrary
selection rule, but also do we attribute success and failure of literals incrementally as the derivation



develops. The characterization in [2] is a declarative semantics, and a first step towards the present
one, which is procedural.

Our choice of WFSX as the base semantics is justified by the structural properties it possess,
which are paramount for top-down query evaluation. Indeed, because of its properties, which
other approaches do not fully enjoy, WFSX is a natural candidate to being the semantics of choice
for logic programs extended with explicit negation. Namely, it exhibits the structural properties:
well-foundedness, cumulativity, rationality, relevance, and partial evaluation. By well-foundedness
we mean that it can be simply characterized (without any recourse to three-valued logic) by two
iterative fixpoint operators. By cumulativity [20, 38], we refer to the efficiency related ability
of using lemmas,; i.e. the addition of lemmas does not change the semantics of a program. By
rationality [20, 38], we refer to the ability to add the negation of a non-provable conclusion without
changing the semantics. By relevance [21], we mean that the top-down evaluation of a literal’s
truth-value requires only the call-graph below it. By partial evaluation [21] we mean that the
semantics of a partially evaluated program keeps to that of the original!. Additionally, it is
amenable to both top-down and bottom-up procedures, and its complexity for finite DATALOG
programs is polynomial?.

Furthermore, WFSX is sound wrt. to the answer-sets semantics of [27], and it is a better
aproximation to answer-sets than simply using WFS plus the renaming of —-literals (cf. proposition
3.1). Thus, our top-down method can be used as a sound one for answer-sets, that provides less
incompleteness than others. These and other properties of WFSX are detailed and proven in [6].
Since WFSX coincides with WFS on normal programs, our method is applicable to it and, for
ground programs, compares favourably with previous approaches [2].

To the best of our knowledge paper [62] is the only in the literature that addresses the topic of
proof procedures for extended logic programs. The author uses the notion of conservative deriv-
ability [66] as the proof-theoretic semantics for extended programs. The paper provides a program
transformation from such programs to normal ones. Then it is proved that Kunen semantics [39]
applied to the transformed program is sound and complete wrt. conservative derivability. This
approach has several problems mainly motivated by the interpretation of default negation as finite
failure as recognized by the author. For instance, in the program {a <« a} the literal —a is false
but a is undefined, contrary to the results obtained by answer sets and WFSX where not a is true.
As a final remark, conservative derivability is not defined for programs with functor symbols.
Therefore the approach is only applicable to extended programs without functor symbols. WFSX
solves all these problems properly. This author, moreover, deals with contradiction by inhibiting
the propagation of its consequences.

Of course, introducing explicit negation requires dealing in addition with veritable contra-
diction. Indeed, information is not only normally incomplete but contradictory as well. One
consequence, not all (negation by) default assumptions can be made, but only those not partak-
ing of contradiction. This amounts to the ancient and venerable logical principle of “reductio ad
absurdum”: if an assumption leads to contradiction withdraw it. One major contribution of our
work is that of tackling this issue with some generality within our semantics of extended logic
programs.

Like [62], we too allow for contradiction to appear, and show moreover how it can be removed
by freely changing the truth-values of some subset of a set of pre-designated revisable literals. To
achieve this, we start by introducing a paraconsistent version of WFSX, WFSX,, that permits
contradictions, and for which our SLX top-down procedure is proven correct as well.

This procedure can be used to detect the existence of pairs of complementary literals in WFSX,,
simply by detecting the violation of integrity rules f <= L, =L introduced for each L in the language
of the program. Furthermore, integrity constraints of a more general form are allowed (cf. section

1Stable model based approaches [25], such as answer-sets [27], enjoy neither cumulativity, nor rationality, nor
relevance.

2Not so for stable model based approaches: there are no iterative top-down or bottom-up operators, and the
complexity for computing the stable models of a program is co-NP-complete, even for DATALOG.



7.1), whose violation can likewise be detected by SLX.

Removal of contradiction or integrity violation is accomplished by a variant of the SLX pro-
cedure which collects, in a formula, the alternative combinations of revisable literal’s truth-values
that ensure the said removal. The formulas, after simplification, can then be satisfied by a num-
ber of truth-values changes in the revisables, among “true”, “false”, and “undefined”. A notion
of minimal change (improving on previous work) is defined as well that establishes a closeness
relation between a program and its revisions. Forthwith, the changes to achieve a revision can be
enforced by introducing or deleting program rules only for the revisable literals.

We do not address here the minimization of the formulas obtained: it is susceptible of simplifica-
tion methods, generalized for the three-valued setting, once the formulais normalized. Incremental
simplification methods are also possible.

Our procedures have been implemented and used to run a great variety of non-monotonic
reasoning problems, solved using extended logic programming, many of which published in our
aforementioned references. We’ve also introduced extensions to the logic programming language
that allow for the representation of preference relations on the revisions [18]. This is essential for
efficient and practical revision methods.

1.1 Structure of the paper

The remainder of this paper is structured in sections, as follows. Firstly, we argue the need for
extended logic programs with two types of negation, default and explicit. Secondly, we produce an
overview of the WFSX base semantics. Thirdly, we motivate and recap a sound and (theoretically)
complete top-down procedure, SLX, for deciding whether a literal belongs to the well-founded
model of WFS5X.

To address the problem of revising contradiction we then introduce a paraconsistent version of
WFSX. Then we show that the SLX procedure is also sound and complete with respect to it, so as
to be able to detect for which pairs of complementary literals contradiction obtains. Subsequently,
we elaborate on the SLX procedure, by employing a combination of sound and complete pruning
rules wrt. to (at least) finite ground programs.

The following section addresses the issue of revising programs contradictory wrt. a set of
integrity constraints. First, the language is extended to allow for a general form of integrity
constraints. Next are introduced the notions of program state and revision, and of the closeness
of revisions to the original program.

Afterwards, the reader can find two extended application examples, in the fields of declarative
debugging and diagnosis, which show the utility of the general revision framework presented here.
The novelty of the present approach lies in its formalization, and the use of the closeness relation
with more general integrity constraints. For other applications to non-monotonic taxonomies,
hypothetical and abductive reasoning, reasoning about actions, and more model based diagnosis
and declarative debugging see [48, 50, 49, 51].

The next to last subsection overviews the issues involved in our implemented program revision
and minimization of change procedures but for lack of space does not detail them.

In the last subsection we provide more detailed theoretical insights, justifying the choice of our
particular closeness relation.

Finally, there follow the conclusions, a discussion, and mention of future work.

Appendix A contains the proof of correctness for SLX wrt. the paraconsistent WFSX. Ap-
pendix B contains proofs on distance and closeness between program states.

2 Extended logic programs

In this section we begin by reviewing the main motivations for introducing a second kind of
negation in logic programs.

In normal logic programs the negative information is implicit, 1.e. it is not possible to explicitly
state falsity, and propositions are assumed false if there is no reason to believe they are true. This



1s what is wanted in some cases. For instance, in the classical example of a database that explicitly
states flight connections, one wants to implicitly assume that the absence of a connection in the
database means that no such connection exists.

However this is a serious limitation in other cases. As argued in [44, 64], explicit negative
information plays an important role in natural discourse and common-sense reasoning. The rep-
resentation of some problems in logic programming would be more natural if logic programs had
some way of explicitly representing falsity. Consider for example the statement: “Penguins do not
fly” One way of representing this statement within logic programming could be:

no_fly(X) «— penguin(X)>

But this representation does not capture the connection between the predicate no_fly(X)
and the predication of flying. This becomes clearer if, additionally, we want to represent the
statement: “Birds fly”. Clearly this statement can be represented by fly(X) — bird(X). But
then no connection whatsoever exists between the predicates no_fly(X) and fly(X). Intuitively
one would like to have such an obvious connection established.

The importance of these connections grows if we think of negative information for representing
exceptions to rules [35]. The first statement above can be seen as an exception to the general rule
that normally birds fly. In this case we really want to establish the connection between flying and
not flying.

Exceptions expressed by sentences with negative conclusions are also common in legislation
[34, 36]. For example, consider the provisions for depriving British citizens of their citizenship:

40 - (1) Subject to the provisions of this section, the Secretary of State may by
order deprive any British citizen to whom this subsection applies of his
British citizenship if [.. ]
(5) The Secretary of State shall not deprive a person of British citizenship
under this section if [.. ]

Clearly, 40.1 has the logical form “P if QQ” whereas 40.5 has the form “= P if R”. Moreover, it
is also clear that 40.5 is an exception to the rule of 40.1.

Above we argued for the need of having explicit negation in the heads of rules. But there are
also reasons that compel us to believe explicit negation is needed in their bodies too. Consider
the statement®:

“A school bus may cross railway tracks under the condition that there is no approaching train”

It would be wrong to express this statement by the rule ¢ross « not train. The problem is that
this rule allows the bus to cross the tracks when there is no information about either the presence
or the absence of a train. The situation is different if explicit negation is used: cross — —train.
Then the bus is only allowed to cross the tracks if the bus driver is sure that there is no approaching
train. The difference between not p and —p in a logic program is essential whenever we cannot
assume that available positive information about p is complete, i.e. we cannot assume that the
absence of information about p clearly denotes its falsity.

Moreover, the introduction of explicit negation in combination with the existing default nega-
tion allows for greater expressivity, say for representing statements like:

“If the driver is not sure that a train is not approaching then he should wait”

in a natural way: wait «— not —train.

Examples of such combinations also appear in legislation. For example consider the following
article from “The British Nationality Act 1981”7 [29]:

3Or equivalently, as suggested in [26], fly'(X) «— penguin(X).
*This example is due to John McCarthy, and was published for the first time in [27].



(2) A new—born infant who, after commencement, is found abandoned in the United
Kingdom shall acquire British citizenship by section 1.2 if it is not shown that it is not
the case that the person is born [.. ]

Clearly, conditions of the form “it is not shown that it is not the case that P” can be expressed
naturally by not = P.

Another motivation for introducing explicit negation in logic programs relates to the symmetry
between positive and negative information. This i1s of special importance when the negative
information is easier to represent than the positive one. One can first represent it negatively, and
then say that the positive information corresponds to 1ts complement.

In order to make this clearer, take the following example [27]:

Example 2.1 Consider a graph description based on the predicate are(X,Y), which expresses
that in the graph there is an arc from vertex X to vertex Y. Now suppose that we want to determine
which vertices are terminals. Clearly, this is a case where the complement information is easier
to represent, i.e. it is much easier to determine which vertices are not terminal. By using explicit
negation in combination with negation by default, one can then easily say that terminal vertices
are those which are not nonterminal:

—terminal(X) — arce(X,)Y)
terminal(X) — not —terminal(X)

Finally, another important motivation for extending logic programming with explicit negation
is to generalize the relationships between logic programs and non-monotonic reasoning formalisms.
Such relationships, drawn for the most recent semantics of normal logic programs, have proven of
extreme importance for both sides, giving them mutual benefits and clarifications.

Indeed, extended logic programming has been shown adequate for namely these forms of
reasoning: incomplete information, contradiction handling, belief revision, default, abductive,
counter-factual, and hypothetical. And it has been shown adequate for namely these knowledge
representation forms: rules, default rules, constraints (denials), exceptions to defaults, preferences
among defaults, hypothetical possibilities, and falsity, whether via explicit or default negation (see
references in [9, 48]).

3 WFSX overview

In this section, for the sake of the paper’s self-sufficiency, we recall the language of logic programs
extended with explicit negation, or extended logic programs for short, and briefly review the
WFSX semantics [45]. An extended program is a set of rules of the form:

Lo—1Li,...;Lm,not Lypy1,...,n0t Ly (0 <m < n)

where each L; 1s an objective literal. An objective literal is either an atom A or its explicit negation
= A. In the sequel, we also use = to denote complementary literal wrt. the explicit negation, so
that =—A = A. The set of all objective literals of a program P is called the extended Herbrand
base of P and denoted by H(P). The symbol not stands for negation by default®. not L is called
a default literal. Literals are either objective or default literals. By not {ai,...,an, ...} we mean
{not ay,...,not a,,...}. An interpretation of an extended program P is denoted by T'U not F,
where T and F' are disjoint subsets of H(P). Objective literals in T" are said to be true in I,
objective literals in F' false by default in I, and in H(P) — I undefined in I.

WFSX follows from WFS for normal programs plus the coherence requirement relating the two
forms of negation:
“For any objective literal L, if =L 1s entailed by the semantics then not L is also entatled”.

5This designation has been used in the literature instead of the more operational “negation as failure (to prove)”.



Note that this requirement is obeyed by answer-sets, but not so by WFS when explicitly negated
literals are simply replaced by new atoms (as in [55]). The requirement states that whenever some
literal is explicitly declared as false then, for coherence, it must be assumed false by default too.
In an epistemic view of logic program, coherence can be seen as an instance of the necessitation
principle. That principle states that if something is known then it is believed [4]. Consequently,
if something is known to be false (i.e. is explicitly false), then it is believed false (i.e. is false by

default).

Example 3.1 Consider the program:

married(mary,tom) — not married(mary, peter)
married(mary, peter) — not married(mary,tom)
—married(mary, tom)

Because of coherence, with WFSX this program entails not married(mary,tom) and, conse-
quently, married(mary, peter). This is the result of answer-sets as well.

By simply using WFS, with the renaming of explicitly negated literals, the program does not
entail married(mary, peter), which seems a counterintuive result.

Because more adequate for our purposes, here we present WFSX in a distinctly different
manner with respect to its original definition. This presentation is based on alternating fix-points
of Gelfond-Lifschitz T-like operators [25, 27]. The proof of equivalence between both definitions,
as well as proofs of other results in this section, can be found in [6]. We begin by recalling the
definition of T':

Definition 3.1 (The I'-operator) Let P be an extended program, I an interprelation, and let
P’ (resp. I') be obtained from P (resp. 1) by denoting every literal = A by a new atom, say —_A.
The GL-transformation IID—,I is the program obtained from P’ by removing all rules containing a
default literal not A such that A € I', and by then removing all the remaining default literals from
P. Let J be the least model of IID—,I. 'l s obtained from J by replacing the introduced atoms —_A
by —A.

To impose the coherence requirement we introduce:

Definition 3.2 (Semi-normal version of a program) The semi-normal version of a program
P is the program P obtained from P by adding to the (possibly empty) Body of each rule L — Body
the default literal not =L, where =L is the complement of L wrt. explicit negation.

Below we use T'(S) to denote T'p(S), and T's(S) to denote T'p_(5).

Definition 3.3 (Partial stable model) A set of objective literals T generales a partial stable
model (PSM) of an extended program P iff: (1) T =TT,T; and (2) T C T,T. The partial stable
model generated by T is the interpretation T Unot (H(P) — T'sT).

In other words, partial stable models are determined by the fix-points of I'T's. Given a fix-point
T, objective literals in T" are true in the PSM, objective literals not in I';T" are false by default,
and all others are undefined. Thus, objective literals in I';T" are all the true or undefined ones.
Note that condition (2) imposes that a literal cannot be both true and false by default (viz. if it
belongs to T it does not belong to H — I';7', and vice-versa). Moreover note how the use of T';
imposes coherence: if =L is true, i.e. it belongs to T, then in ;T via semi-normality, all rules
for L are removed and, consequently, L & [';7, i.e. L is false by default.

Example 3.2 Program P = {a; —a} has no partial stable models. Indeed, the only fix-point
of TT; is {a,na}, and {a,—a} € T {a,—a} = {}. Thus it is not a PSM.

Programs without partial stable models are said contradictory. In section b we elaborate further
on the results obtained by using I'T'y on contradictory programs. Now we define the semantics for
non-contradictory programs.



Theorem 3.1 ( WFSX semantics) Every non-contradictory program P has a least (wrt. C)
partial stable model, the well-founded model of P (WFM(P)).
To obtain an iterative “bottom-up” definition for WF M (P) we define the following transfinite

sequence {I,}: L = ()
Ioz+1 = ITI,
Is = U{la|a<é} for limit ordinal §

There exists a smallest ordinal A for the sequence above, such that Iy is the smallest fix-point

of ITs, and WFM(P) = IyUnot (H(P)—TsIx).

In this constructive definition literals obtained after an application of I'T (i.e. in some I,,) are
true in WFM(P), and literals not obtained after an application of T’y (i.e. not in I';1,, for some
«) are false by default in WFM(P).

Note that, like the alternating fix-point definition of WFS [63], this definition of WFSX also
relies on the application of two anti-monotonic operators. However, unlike the definition of WFS,
these operators are distinct. As we’ll see, this points to the definition of two kinds of derivation
procedures, one reflecting applications of I' and proving verity of objective literals, and the other
reflecting applications of 'y and proving non-falsity of objective literals. The two become meshed
when the proof of verity of not L is translated into the failure to prove the non-falsity of L.

Theorem 3.2 (Relation to WFS) For normal logic programs (i.e. without explicit negation)
WFSX coincides with the well-founded semantics of [24].

Theorem 3.3 (Relation to Answer-sets) Let P be an extended logic program with at least one
answer-set. Every answer-set of P is also a PSM of P. Moreover, for any objective literal L:

o If L e WFM(P) then L belongs to all answer-sets of P.
o Ifnot L € WFM(P) then L does not belong to any answer-set of P.

For lack of space, here we do not elaborate more on the relation to answer-sets, and on how
the use of semi-normality imposes coherence. However, it is interesting to note that also any other
combination of the I'-like operators used to define WFSX (i.e. the operators: I';T', TT®, and I';T';)
gives semantics that are sound wrt. answer-sets, but which are not as close to the latter as WFSX.
By “not as close” we mean that its least fix-points are subsets of the intersection of all answer-sets,
smaller (wrt. set inclusion) than WFSX itself. Thus we say that the WFSX combination is the
best approximation to answer-sets semantics, compared to the others.

Proposition 3.1 Let P be a non-contradictory program. Then:
o Ifp(Lsl) Cifp(L'sLs) CUfp(T'Ty)
o Ifp(LsT) CIfp(IT) CIfp(IT,)

4 SLX derivation procedure

In this section we review the definition of SLX7, a top-down derivation procedure for logic programs
extended with explicit negation under the well-founded semantics, first presented in [1], whose
correctness wrt. WFSX is proven there.

The definition of SLX relies on SLDNF-like well known definitions of derivation, refutation,
and failure. For the sake of simplicity, in [1] and also in this recap, the definition is only for ground
(but possibly infinite) programs.

In order to informally motivate the definitions, we start with the simpler problem of programs
without explicit negation. It is well known [11, 12, 13, 47, 61] that the main issues in the definition
of top-down procedures for WFS are infinite positive recursion, and infinite recursion through

8This combination exactly corresponds to WES with a renaming of explicitly negated literals, as in [55].
"Where X stands for eXtended programs, and SL stands for Selected Linear.



negation by default. The former gives rise to the truth value false (so that, for some L involved
in the recursion, there should exist a refutation for not L, and no refutation for L), and the latter
to the truth value undefined (so that both L and not L should have no refutation).

Apart from these additional problems, we mainly follow the ideas of SLDNF [15, 41] where
refutations are derivations ending with the empty goal, derivations are constructed via resolution,
and the negation as failure rule (stating that a selected not L is removed from the goal if L has
no refutation and is the last goal of the derivation if L has one).

To solve the problem of positive recursion, as in SLS-resolution [54], we have introduced a
failure rule for not necessarily finite derivations.

Example 4.1 Let P = {p < p}. The derivations for p are («— p,— p,...) and every prefix of it.
Nomne of the prefixes of this infinite derivation is a refutation, because all of them end with a goal
different from the empty goal. By stipulating that no infinite derivation is a refutation, there is
no refutation for — p, and so we have that («— not p,— O) is a refutation.

For recursion through negation by default we want both L and not L to have no refutations,
which seems to violate the negation as failure rule. In fact that rule in SLDNF states that if
there is no refutation for L, not L should succeed (i.e. be removed from the goal), and if L has a
refutation than not L should fail (i.e. be the last goal in the derivation).

This is so because SLDNF relies on a two-valued semantics, and so failure of verity means
falsity and vice-versa. In WFS| it being a three-valued semantics, the same cannot apply. In fact,
for WFS a failure of L simply means that L is not true, 1.e. it can be false or undefined.

To solve this problem, others [53, 54, 57, 61] have defined derivation procedures that consider
the extra status of “undefined” or “undetermined” assigned to goals. Literals involved in an
infinite recursion through negation are assigned that status. As we shall see below, this approach
does not easily generalize to extended programs (cf. remark 4.1).

Instead of considering an extra status, and for similarity with SLDNF | we’ve distinguished two
kinds of derivations: SLX-T-derivations that prove verity in the WFM, and SLX-TU-derivations
(where TU stands for “true or undefined”) that prove non-falsity in the WFM. Now, for any L,
the verity of not L succeeds iff there is no SLX-TU-refutation for L (i.e. L is false), and the
non-falsity of not L succeeds iff there is no SLX-T-refutation for L (i.e. L is not true).

Having these two kinds of derivations, it becomes easy to define the derived goal of a goal G|
even when the selected literal L is involved in recursion through negation by default. Indeed, since
in this case and according to WFS, L is to be undefined, it must be failed (i.e. be the last goal in
the derivation) if it occurs in a SLX-T-derivation, and refuted (i.e. be removed from the goal) if
it occurs in a SLX-TU-derivation.

Example 4.2 Let P = {p < not p}. In order to prove the verity of p we start by building a
SLX-T-derivation for <— p. By resolving the goal with the program rule we obtain «— p, «— not p.
Now, < not p is the last goal in the derivation if there is a SLX-TU-refutation for «— p, and is
replaced by the empty goal otherwise.

So we start building a SLX-TU-derivation for «— p. Resolving the goal with the program rule
we obtain < p, «— not p, and so there is a recursion in not p through negation by default. Thus, as
we are in a derivation for “true or undefined”, not p is removed from the goal, and its derived goal
is the empty goal. This gives a SLX-TU-refutation for < p, which in turn determines — not p
to be the last goal in the SLX-T-derivation above, making it a failed one. So p is undefined
(T-derivations fail and there is a successful TU-derivation).

Though having two kinds of derivations, we do not duplicate the work. In fact, each derivation
type can be simply seen as a status assigned to a usual derivation. One of the status fails literals
involved in recursion through negation, and the other succeeds those literals.

Now we motivate the generalization of this procedure to deal with explicit negation in WFSX.

In a lot of points the treatment of extended programs is akin to that of normal ones, where
instead of atoms we refer to objective literals, namely because, as expected, objective literals are
treated exactly like atoms in WFS.



The main difference in the generalization to extended programs resides in the treatment of
negation by default. In order to fulfill the coherence requirement there must be an additional way
to refute a literal not L. In fact not L is true if =L is true.

Example 4.3 Consider P: a +— notb a —
b — nota

whose WFM is {—a, b, not a, not —b}.

In order to prove the verity of b, one starts to build one SLX-T-derivation for goal — 4. By
solving it with the only rule for b in P we obtain « b, «+— not a. Now, according to what was said
above, one has to build SLX-TU-derivations for — a.

Solving < a with the first program rule we obtain < a,« not b. Since this is a case of
recursion through negation by default, and we are in a TU-derivation, the derived goal is « O.
Consequently there is no refutation for < b. However, since —a is true, by coherence — not a
(and thus < b also) must be refuted, by the additional method of proof for default literals via
coherence.

In SLX-T-derivations, in order to obtain coherence, we introduce an extra possibility of re-
moving a not L from a goal:

In a SLX-T-derivation, a selected literal not L is removed from a goal if there is no
SLX-TU-refutation for L or if there s one SLX-T-refutation for —L.

Care must also be taken in non-falsity derivations because the coherence requirement can
override undefinedness (cf. [45]):

Example 4.4 Consider P :

a «— b -b

b «— mnotec ¢ <« mnotc

whose WFM is {—b, not a, not b, not —b, not —c}.

In trying to prove verity of not a one starts building SLX-TU-derivations for «— a to check
whether they fail. The only possible such derivation starts with <« a, < b, < not ¢. To determine
the derived goal of not ¢ one tries to find a SLX-T-refutation for < ¢ which, as the reader can
easily check, does not exist. Thus there is a SLX-TU-refutation for — a (— a, — b, — not ¢, — 0O),
so that there is no SLX-T-refutation for «— not a.

However, not a belongs to the WFM of P. Note that this problem occurs because there is a
SLX-TU-refutation for «— & which should not exist since b is false. Indeed the falsity of b in the
WFM is imposed by the coherence principle; since =b is true. Note that in the derivations above
—=b is not even used.

In fact, in the SLX-TU-derivation for < a, the goal « b should be the last one, because =b is
true. In general:

In a SLX-TU-derivation resolution can only be applied to a selected objective literal
L if there 1s no SLX-T-refutation for —L.

Remark 4.1 Note that coherence intervenes differently in T and TU-derivations. This is a con-
sequence of having two distinet anti-monotonic operators in the definition of the WFM.

At this point it 1s easter to understand the claim we made before that the usage of an undefined
status, instead of having two different kinds of derivation, hampers the generalization to extended
programs. In fact, in normal programs one can simply replace the two kinds of derivations by the
addition of an undefined status because the single difference between the two dertvation types is in
the success or failure of literals involved in infinite recursion through default negation. However,
mn extended programs there are other differences, namely in what regards the applications of the
coherence principle, which make the distinction crucial.
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The formalization of the intuitions presented above yields the following definitions of derivations
and refutations:

Definition 4.1 (SLX refutation and failure) A SLX-T-refutation (resp. SLX-TU-refutation)
for G in P is a finite SLX-T-derivation (resp. SLX-TU-derivation) which ends in the empty goal

(—0).
A SLX-T-derivation (resp. SLX-TU-derivation) for G in P is a SLX-T-failure iff it is not a
refutation, i.e. 1t 1s infinite or it ends with a goal other than the empty goal.

Definition 4.2 (SLX-T-derivation) Let P be an extended program, and R an arbilrary bul
fized computational rule. A SLX-T-deriwvation Go,G1, ... for G in P via R is defined as follows:
Go=0G. Let Gy be — Ly, ..., L, and suppose that R selects the literal Ly (1 < k < n). Then:

e if Ly 1s an objective literal, and the input rule is Ly — By,..., By, the derived goal is
FLla~~~aLk—1aBla~~~aBmaLk+1;~~~Ln~

o if Ly 1s not A then, if there is a SLX-T-refutation for —=A wn P or there is no SLX-TU-
refutation for A in P, the derived goal 1s — L1, ..., Ly_1, Liy1,...Ln.

e otherwise Gy is the last goal in the derivation

Definition 4.3 (SLX-TU-derivation) Let P be an exlended program, and R an arbilrary bul
fized computational rule. A SLX-TU-deriwvation Gy, Gy, ... for G in P via R is defined as follows:
Go=0G. Let Gy be — Ly, ..., L, and suppose that R selects the literal Ly (1 < k < n). Then:

e if Lj is an objective literal then

— if there exists a SLX-T-refutation for =Ly then Gy s the last goal in the derivation.
— otherwise, if the input rule is Ly «— By, ..., By, the derived goal is:

— ULy, ., Ly, B1, ..., By Lgg1, - L
— if there is no rule for Ly then G; is the last goal in the dervation.
e if L is not A then:

— if there is a SLX-T-refutation for — A in P then G; is the last goal in the derivation.
— if all SLX-T-derivations for — A are SLX-T-failures then the derived goal is:

— L1a~~~aLk—1aLk+1a~~~Ln~

— due to infinite recursion through default negation, 1t might happen that the previous
points are not enough to determine the derived goal. In such a case, by definition, the
derived goal 1s also «— Ly,...; Ly_1,Lyy1,...Lp.

The soundness of this procedure wrt. to both WFSX and the answer-sets semantics, as well
as its theoretical completeness® wrt. WFSX were proven in [1]. In this section we simply present
the theorems. Their proofs follow immediately from the proofs of theorems 5.5 and 5.6 presented
in appendix A.

Theorem 4.1 (Soundness of SLX) Let P be a non-contradictory extended logic program, L an
arbitrary literal from P. If there is an SLX-T-refutation for — L in P then L € WFM(P).

Corollary 4.1 (Soundness wrt. answer-sets) Lel P be an extended logic program with at least
one answer-set, and L an arbitrary objective literal from P. If there is an SLX-T-refutation for
— L in P then L belongs to all answer-sets of P. If there is an SLX-T-refutation for — not L in
P then there is no answer-set of P with L.

Theorem 4.2 (Theoretical completeness of SLX) Lel P be a non-contradictory program,
and L an arbitrary literal from P. If L € WFM(P) then there exists a SLX-T-refutation for
— L in P.

8In practice completeness cannot be achieved because in general the WFM is not computable [24]. However, in
theory, and with the possible need of constructing more than w derivations, completeness is obtained.
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5 Detecting Contradictions

As mentioned in the introduction, being able to “run” non-contradictory programs is not our only
goal. We're also interested in detecting occurrences of contradiction in order to remove it.

To remove a contradiction, as we shall see in detail in section 7, we need first to detect 1t and,
more importantly, we need to know what are the “reasons” or “causes” that lead to contradiction,
i.e. what are the assumptions made that are responsible for contradiction by supporting it. But
both the definition of WFSX and the correctness results for SLX do not serve these purposes. Note
that the WFM is only defined for non-contradictory programs, and correctness is only proven for
those programs.

It can be argued that the definition of WFSX is good enough for detecting contradiction, since
it is possible to know whether a program has PSMs. In [1], we’ve shown that SLX can detect
contradiction: if a program P is contradictory then there exists a L. € H for which there are
SLX-T-refutations for both «+— L and «— —L. But these results are still weak for the purpose of
using the semantics, as well as SLX| to determine how a contradiction is to be removed. They do
not guide us to the “causes” for the contradiction.

To be able to determine such “causes”, in this section we first generalize WFSX in order to
define a paraconsistent WFM for contradictory programs, and then show that the correctness of
SLX can be lifted to this paraconsistent case.

The main idea of the paraconsistent WFSX (or WFSX, for short) is to calculate, always in
keeping with coherence, all consequences of the program, even those leading to contradiction, as
well as those arising from contradiction®. The following example provides an intuitive preview of
what we intend to capture:

Example 5.1 Consider program P :
a— notb (i) d— mnota (i)
-a — mnotc (i) e — not ~a (iv)
not b and not ¢ hold since there are no rules for either b or c.
—a and a hold from 1 and rules (i) and (ii).
not a and not —a hold from 2 and the coherence principle relating the two negations.
d and e hold from 3 and rules (iii) and (iv).

not d and not e hold from 2 and rules (iii) and (iv), as they are the only rules for d and e.

SO e W N =

not —=d and not —e hold from 4 and the coherence principle.

The whole set of literal consequences is then:

{not b,not ¢,—a,a,not a,not —a,d, e, not d,not e, not =d,not —e}.

Here we do not argue that WFSX, is in fact a “semantics”. Instead we view WFSX, as a
tool needed for detecting contradiction and its causes, when WFSX is not able to assign meaning
to a program. This tool is then used as the basis for removing contradiction where possible.
The semantics assigned to the original is the WFSX of the program obtained after removing
contradiction.

Since the purpose of WFSX, is to detect contradiction on the basis of WFSX, every principle
that allows derivation of literals in WFSX must also be enforced in WFSX ,. This is why coherence
is still kept in the paraconsistent case.

WFSX is not defined for contradictory programs because such programs have no PSMs. By
definition of PSM, a program has none if either it has no fix-points of I'T'y or if all fix-points T" of
I'Ts do not comply with 7' C I';T. The next theorem shows that the first case is impossible, i.e.
all programs (contradictory or otherwise) have fix-points of I'T.

®This kind of paraconsistent reasoning is called liberal reasoning in [67].

12



Theorem 5.1 The operator I'T'y is monotonie, for arbitrary sets of literals.

Proof: We have to prove that for arbitrary sets of objective literals A and B: A C B = I'T;A C
I'TsB. To do so we begin by proving that both ' and 'y are anti-monotonic:

Assume that A C B. By definition of GL-transformation, it is clear that % C % (resp.
% C %). Since these transformed programs are definite, and Horn clause logic is monotonic, 1t

direZtly follows that TB C T A (resp. I';B C T 4).

Thus, if A C B, by anti-monotonicity of I's, I'sB C I's A, and by anti-monotonicity of T,
IT;ACTTB. $

Consequently every program has a least fix-point of I'T';. If, for some program P, the least
fix-point of TTs complies with condition (2) of definition 3.3 then the program is non-contradictory
and the least fix-point is the WFM. Otherwise the program is contradictory. Moreover, the test
for knowing whether a program is contradictory, given its least fix-point of I'T'y, can be simplified
to: “the program is non-contradictory iff its least fix-point of I'T'; has no pair of =-complementary
literals” (cf. theorem 5.3 below).

Lemma 5.2 Let S be any non-contradiclory setl of literals, i.e. such that AL € H, {L,-L} C S.
Then, SNTS CTS.

Proof: Let L be any literal such that L € SNT'S, 1.e. L € SAL €TS. Given that, by hypothesis,
S is non-contradictory, then =L ¢ S. Thus =L ¢ SA L € I'S, which, by definition of Ty, clearly
implies that L € T',5. &

Theorem 5.3 Let T be the least fiz-point of I'T's for a program P. Then:
TEU,T iff ALeH, {L,-L}CT
Proof:

< If3L € H, {L,~L} C T then when calculating T';T all rules for both L and —L are deleted.
Thus neither L nor =L belong to [';7, and so 1" € [',T.

= We prove that, if T = [fp(I'T) and AL € H, {L,~L} C T, then T C T, T.
We start by showing that with the above assumptions, TN I'yT is a post-fixed point of I'T';,
ie. T, (T'NT;T) CTNT,T. This inclusion is proven in two steps: (1) TT,(TNT,T) C T,
and (2) TT,(T'NT,TYNT CT,T.

1. Trivially TNT,T C T. By monotonicity of I'T;, this implies that TT (T N T',T) C
Ire,7T="1T.

2. Trivially TNT,T C T,T. By anti-monotonicity of I', this implies T =TT, 7 C T(T'N
I,T), ie YL, LET = L € (T NT,T).
Given that by hypothesis AL € H, {L,-L} C T, if L € T then =L & T, and since
TNnlr,TCT, it follows that =L ¢ TN, 7. Thus:

VL, LeT = (-LgTnNI,T A Lel(TNTT))

So, similarly to the proof of lemma 5.2: VL, L € T = L € T(T NT,T), ie.

TCT,(T'NT,T).

Again by anti-monotonicity of T', TT; (TN T,T) C T'T.

This implies that TT;(TNT,7)NT C TNTT, and by lemma 5.2:

It (rnt,T)nTCTNITCT,T

Since T'NTT is a post-fixed point of ['Ty, and I'Ty is monotonic, then'® I fp(T'Ts) C TNL,T.
Given that, by hypothesis, T = [fp(T'T,), T C T N TT, and so, by the properties of
intersection, 7' C I',T.$

10Recall that [ fp(F) = glb{z| F(z) < 2}, where I is any monotonic operator in a complete lattice.
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So, if one is interested only in the WFM, the condition 7" C T'yT" can be replaced by testing
whether 7" has —-complementary literals. As noted in page 7, the former condition guarantees
that literals cannot be both true and false by default. By removing that condition this guarantee
is no longer valid. But this is precisely what we want in the definition of the paraconsistent WFSX
(note how both a and not a belong to the desired semantics in example 5.1).

All which is explained above points towards a definition of WFSX, where the construction of
the WFM given by the least fix-point of I'T'y is kept, condition 7" C I';T i1s removed, and where
contradictory programs are those that contain a pair of complementary literals in the WFM:

Definition 5.1 (Paraconsistent WFSX) Lel P be an exlended program whose least fiz-point of
IT, is T. Then, the paraconsistent well-founded model of P is WFM,(P) =T Unot (H—-T,T).

Theorem 5.4 (Generalization of WFSX) Let P be such that WEFM,(P) =T Unot F. P is
non-contradictory iff for no objective literal L, {L,—L} CT. Moreover, if P is non-contradictory
then WFM,(P)=WFM(P).

Does this definition fulfill the objectives we put to ourselves in the beginning of this sectionT’
In other words, does WFSX, comply with coherencel’ And does it calculate all consequences of
the program, even those leading to contradiction, as well as those arising from contradictionl’

The answer to both these questions is yes. The fact that WFSX, complies with coherence is
easy to check. The same argument used for non-contradictory programs can also be used here:
for a model T'U not F, if =L belongs to T, then in I';7, via semi-normality, all rules for L are
removed and, consequently, L ¢ I';T",i.e. L € F.

Checking the verity of the answer to the second question is not so immediate. What we wish
to guarantee is that when a literal L is both true and false, we do consider both the consequences
of it being true, as well as those of it being false. Let’s first look at the following property of the
sequence for calculating the least fix-point of I'T'y of a program.

Proposition 5.1 Let {I,} be the sequence for calculating the least fiz-point T of TTy in program
P, let I be an element of that sequence, and L be an arbitrary literal from P. Then:

o if LE T, Ig then not L € WFM,(P);
o if L €T, Is then L € WFM,(P).

Proof (sketch): The proof of the second item is trivial given the monotonicity of I'T;. To prove
the first item, it is enough to prove that the sequence obtained by iterating I';T" starting with T';{}
is decreasing. This result is proven in [6]. For brevity, and given that the proof is rather long, we
do not present it here.

With this property one can envisage the applications of I'y as determining verity of default
literals, assuming that the not Ls are false for all Ls already determined true; and the applications
of I' as determining verity of objective literals, assuming that the not Ls are true for all Ls already
determined false.

Consequently, to guarantee that when a literal L is both true and false all the consequences
that should follow are obtained, one has to guarantee that, when applying 'y, both L and =L
always belong to its argument so as to maximize default literals; and that, when applying [,
neither L nor =L ever belong to its argument so as to maximize objective literals as well. The
next proposition does just that:

Proposition 5.2 Let P be a contradictory program whose least fiz-point of TT's is T, and such
that {L,—L} C T. Then there exisis an element I, of the sequence for calculating T such that
{L,~L} C I,. Moreover, for every ordinal 3 > o, {L,~L} C I, L ¢ T,1g, and ~L & T I;.

Proof (sketch): The existence of I, is guaranteed by definition of the sequence. The first conse-
quence follows immediately from the monotonicity of I'T';. The second and third follow from the
first one and the semi-normality in I's.
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Example 5.2 The sequence for the least fix-point of I'T'y of program P of example 5.1 is:

Iy = {}

I =TT {} =T{a,—a,d e} = {a,na}
I, = IT{a, —a} =T{} = {a,a,d, e}
Is =TT {a,~a,d e} = T{} ={a,—a,d, e} = I,

Thus WFM,(P) = {not b,not ¢, ~a, a,not a,not —a,d, e, not d, not e, not =d, not —e}.
Note that not d is obtained in Iy (i.e. d € T'sI1) because a € I, and that d is obtained in Iy
(i.e. d € T'512) because a € T, 1.

Having defined WFSX, for contradictory programs, in order to implement it, we wish to
define a “top-down” derivation procedure for it. The next theorems!! show that a new derivation
procedure is not needed because SLX is also correct wrt. the paraconsistent WFS5X.

Theorem 5.5 (Soundness of SLX) Let P be an extended logic program, L an arbitrary lileral
from P. If there is an SLX-T-refutation for — L in P then L € WFM,(P).

Theorem 5.6 (Theoretical completeness of SLX) Let P be an extended program, and L an
arbitrary literal from P. If L € WF M, (P) then there exists a SLX-T-refutation for — L in P.

6 On the Implementation of SLX

Although sound and complete for the paraconsistent WFSX, SLX is not effective (even for finite
ground programs). In fact, and because it furnishes no mechanism for detecting loops, termination
is not guaranteed. Completeness here is only ideal completeness. In order to provide an effective
implementation of SLX we have first to tackle the issue of guaranteeing termination.

As for the WFS of normal programs, WFSX and WFSX, too are in general not computable.
Thus, it is not possible to guarantee termination in the general case. In this section we modify
SLX such that termination is guaranteed (at least) for finite ground programs®?.

This modified SLX procedure can be easily implemented via a Prolog meta-interpreter'®. Due
to 1ts SLDNF-resemblance, it has also been rather easy to implement a pre-processor that com-
piles WFSX, programs into Prolog, using a format corresponding to the specialization of the
interpreter rules, plus a small number of general “built-in” predicates. Lack of space prevents us

from presenting these implementations here'®.

6.1 Guaranteeing Termination

To guarantee termination (at least) for finite ground programs, in this section we introduce rules
that prune SLX-derivations, and eliminate both cyclic positive recursion and cyclic recursion
through negation by default (hereafter simply called cyclic negative recursion).

To detect both kinds of cyclic recursions we use two kinds of ancestors:

e Local ancestors are assigned to literals in the goals of a derivation, and are used for detecting
cyclic positive recursion. For the purpose of including local ancestors, we replace literals in
goals by pairs L; : S;, where L; 1s a literal and S; 1s the set of its local ancestors.

e (lobal ancestors are assigned to derivations, and are used to detect cyclic negative recursion.

1 Proofs are presented in appendix A.

12The technique we're about to define also guarantees termination for allowed bounded-term non-ground pro-
grams. The discussion of guaranteeing termination for these cases is, however, beyond the scope of this paper.

13 This can be simply done by mimicking the definition of SLX-derivations with ancestors, considering a left-most
selection rule.

14 The code is available on request.
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Intuitively, and if one thinks of a derivation as expanding an AND-tree, the local ancestor of a
literal occurrence are the literals appearing in the path from the root of the tree to that occurrence.

Global ancestors of a subsidiary derivation are the local ancestors of the literal L that invoked
it, plus the ancestor goal of the derivation in which L appears. The top-goal derivation has
no global ancestors. Moreover we divide global ancestors into two sets: global T-ancestors and
global TU-ancestors. Global T-ancestors (resp. TU-ancestors) are those that were introduced in
a SLX-T-derivation (resp. SLX-TU-derivation).

To deal with the non-termination problem of cyclic positive recursion it suffices to guarantee
that no such infinite derivations are generated. That can be achieved if no selected literal belonging
to its set of local ancestor is ever expanded. This leads to the following pruning rule:

1. Let G be a goal in a SLX-derivation (either T or TU), and let Ly be the literal selected by
R. If Lj belongs to its local ancestors then G is the last goal in the derivation.

To treat cyclic negative recursion, tests over the global ancestors are necessary. It 1s easily
shown that any form of this recursion reduces to one of four combination cases, depending on the
cycle occurring between the two possible derivation types. In SLX-TU-derivations the selected
literal is removed from the goal, and in SLX-T-derivations the goal is the last in the derivation.
Moreover, all these combinations can be reduced to just one:

Lemma 6.1 (Reduction of negative cycles) All cyclic negative recursions can be detecled in
SLX-T-derwvations by looking only at its global T-ancestors.

The same does not hold for any other combination case, i.e. there are cycles that are only
detectable with the test of lemma 6.1 (cf. [2]). Lemma 6.1 yields pruning rule 2:

2. Let G5 be a goal in a SLX-T-derivation, and let Lj be the literal selected by R. If Ly belongs
to the set of global T-ancestors then G; is the last goal in the derivation.

Theorem 6.2 (Elimination of cyclic recursion for WFSX) Pruning rules 1 and 2 are nec-
essary and sufficient for guaranteeing that all positive and negative cyclic recursions are eliminated.

We now embed these two pruning rules in the definitions of SLX-derivation (refutations and
failures remain as before). Note that the pruning rules do not make use of TU-ancestors. So they
will not be considered in the definitions:

Definition 6.1 (SLX-T-derivation with ancestors) Let P be an extended program, and R an
arbitrary but fized computational rule. A SLX-T-derivation Gy, Gy, ... for G in P via R, with T-
ancestors ST is defined as follows: Go = G : {}. Let G; be — Ly : S1,..., L, : S, and suppose
that R selects Ly : Sy (1 < k <n). Then:

o if Ly is an objective literal, Ly ¢ Sp U ST, and the input rule is Ly, — Bi,..., By, the
derived goal is «— Ly : S1,...,Lg—1 : Sg—1,B1 5, ..., Bm : 5, L1 : Skq1,---Ln : Sy
where S = S U{Li}.

o if L is not A then, if there is a SLX-T-refulation for «— —A : {} in P with T-anceslors
ST U Sk, or there is no SLX-TU-refutation for — A : {} in P with the same ancestors, the
derived goal s — L1 1 S1,..., Lp—1: Sk—1, k41 : Skt1,-- - Ln 2 Sp.

e otherwise Gy is the last goal in the derivation.

Definition 6.2 (SLX-TU-derivation with ancestors) Let P be an extended program, and R
an arbitrary but fivred computational rule. A SLX-TU-derwation Gy, Gy, ... for G in P via R,
with T-ancestors ST is defined as follows: Go = G : {}. Let G; be — Ly,..., L, and suppose thal
R selects Ly, : Sy (1 <k <n). Then:

e if Lj is an objective literal then
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— of Ly € S or there is no rule for Ly then G; is the last goal in the derivation.

— else if there exists a SLX-T-refutation for «— —Ly : {} with T-ancestors ST then G; is
the last goal in the derivation.

— otherwise, if the input rule is Ly «— By, ..., By, the derived goal is:
— L1 S, LSk, B S B oS L1 Skaty Lt S
where S = S U{Li}.
e if L is not A then:

— if there is a SLX-T-refutation for — A : {} in P with T-ancestors ST then G; is the
last goal in the derivation.

— otherwise the derived goal 1s — L1 :S1, ..., Ly—1:Sk—1,Lk41 : Sk41,..-Ln : Sn.
Theorem 6.3 (Correctness for SLX with ancestors) Lel P be an extended program. Then:

o If L € WFM,(P) then there is a SLX-T-refutation for — L : {} with empty T-ancestors.
Moreover, all the subsidiary derivations needed in the refutation are finite, and in finite
number.

o If L & WFM,(P) then all SLX-T-derivations for — L : {} with empty T-ancestors are finite
and end with a goal different from — Q. Moreover, all the subsidiary derivations needed are
finite, and in finite number.

Proof: Follows from theorems 6.2, 5.5, and 5.6. {

7 Revision Framework

In the previous sections we presented both a paraconsistent version of WFSX and a corresponding
top-down querying procedure (able therefore to detect contradiction in programs). We are now
ready to foster the stance, adopted in the introduction, that if a program is contradictory its
revision is in order.

By revision of a contradictory program P we mean a non-contradictory program P’ obtained
from P without introducing new predicates. One question immediately arises: what changes are
allowed to P in order to obtain P'T

Clearly, any modification must result from changing directly the truth value of some, considered
basic, literals. Thus the above question hinges on the following one: for which literals, the revisable
ones, should we allow explicit modification in their truth valuesl’

As argued in our previous work [46, 50], the modification should be based solely on those literals
that depend on no other literals, and by introducing or removing rules for such basic literals only.
This is the stance we take here. Thus, for the purpose of defining revision, we begin by describing
a framework that explicitly divides the program into a pair called a program state: one element
contains the subprogram that cannot be changed; the other contains the subprogram that can
be changed in a predefined way, namely by adding rules of a simple fixed form for the revisable
literals only. The latter part is such that it contains rules only for literals that depend on no other.
A program state is changed (to another state) simply by modifying the latter part. In order to
formalize the notion of program states, we begin by defining open programs. These are “open”
in the sense that the part which can be changed is not yet fixed in truth value. The changes in
truth-value of the other, non revisable, literals will be indirectly brought about, via the program
rules, by the changes in the open part of the program, through the presence, in rules, of revisable
literals.
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Until now we’ve considered contradiction as coming simply from the nonexistence of a consis-
tent WFSX. In general, however there can be other reasons to consider a program state unaccept-
able, due to additional integrity knowledge about the intended program semantics. To encompass
these situations, we now extend our language to deal with general integrity constraints of the form:

Ll\/Lz\/...\/Ln<:Ln+1/\Ln+2/\.../\Ln+m (n—I—mZO)

where each L; is a literal, and <= stands for classical implication.

A program is contradictory iff its WFSX is contradictory, or violates some integrity constraint.
By theorem 5.3, the first proviso can be adroitly removed by adding the constraint <= L, =L, for
every literal L in the program.

In our previous work, we’ve always considered separately the two cases of removing contradic-
tion by changing the truth value of revisable literals either into undefined [5, 46], or into true [50].
Note that, in the absence of integrity constraints, contradiction can always be removed by chang-
ing the truth value of literals into undefined only. However, in order to apply our contradiction
removal approach to diagnosis, for instance, we also felt the need for stronger revisions, where the
truth value of literals can be changed into true. Indeed, whenever normality of some component
could not be assumed, we wanted that its abnormality be posited, in order to derive any available
information via known fault models.

In the present work, as already mentioned above, we will allow revision by introducing or
removing rules for revisable literals, such that we can change their truth values from any value
to any other value, in a mixed way. By relying on the above more general integrity constraints,
a mixture of literal revisions to undefined or to the default complement value can be obtained. If
no constraint requires otherwise, the truth value of literals is (knowledge minimally) changed into
undefined; if one desires a literal, say ab(C') in the diagnosis setting, to have solely truth-values
false and true then we may simply introduce the constraint ab(C) V not ab(C') < t.

Example 7.4.1 below shows how this mixed revision can be used to perform three-valued
declarative debugging, i.e. declarative debugging of programs under a three-valued semantics. We
also show the use and utility of this admixture in the diagnosis setting, in subsection 7.4.2.

The structure of the remainder of this section is as follows: we begin by extending the lan-
guage with the more general integrity constraints above. Then we present the framework of open
programs and program states, and in the next subsection we define the declarative semantics of
revision'®, by means of minimal changes to a current contradictory program state.

7.1 Integrity Constraints

As argued by Reiter in [60], the basic utility of integrity constraints is that only some program
(or database) states are considered acceptable, and the constraints are meant to enforce these
acceptable states by filtering out all other ones. Integrity constraints can be of two types:

Static The enforcement of these constraints depends only on the current state of the database,
independently of any prior state.

Dynamic These depend on two or more program states. Reiter gives as example that employee
salaries can never decrease.

It is not a purpose of this article address the evolution of a program in time, and thus only
static constraints are considered. Reiter shows that the classical accounts of integrity constraints
in first-order knowledge bases [33, 42, 59] (namely those of consistency with or entailment by the
database) do not capture our intuitions. The author argues that a program expresses knowledge
about the external world and the integrity constraints address this epistemic state, i.e. what the
program knows. These problems do not carry over to our setting because we assume the database

15The semantics is defined at present only for finite ground programs.
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has a single three-valued model (the program state) and therefore the epistemic and theoremhood
views coincide. We’d have to address these problems if we allow disjunction in the heads of rules.

Due to the fact that we are considering a three-valued setting, the approaches of two-valued
revision or abductive frameworks (e.g [19, 22, 23, 30]) do not immediately carry over.

Let’s start by presenting our integrity constraint language:

Definition 7.1 (Integrity Constraints) An intlegrily constraint of an extended logic program
P has the following normal form, where each L; is a literal belonging to the language of P:

Ll\/Lz\/...\/Ln<:Ln+1/\Ln+2/\.../\Ln+m (n—I—mZO)

To an empty consequent (head) we associate the symbol £ and to an empty antecedent (body) the
symbol t. An integrity theory is a set of integrity constraints, standing for their conjunction.

Notice that the literals appearing in the constraints can be objective or default ones. According
to the theoremhood view of integrity constraint checking [59, 42] we define constraint satisfaction
in the following manner:

Definition 7.2 (Constraint Satisfaction) Given a set of literals I'°, a ground integrity con-
straint
Ll\/Lz\/...\/Ln<:Ln+1/\Ln+2/\.../\Ln+m (n—I—mZO)

1s violated by I off every literal Lypy1,..., Lpym € I and none of the literals Ly,..., L, € I.
Otherwise, the constraint is satisfied by I.

Equivalently, an integrity constraint is satisfied iff the following (classical) implication is satis-
fied:
Lielv.. . VLpel<lyyn €IAN. . ALpym €1 (n+m>0)

For simplicity, we restrict ourselves to constraints with a finite number of literals from finite
interpretations. In the general case (countable sets of literals) it is necessary to extend the setting
to first-order logic.

Except from that, we assume nothing about the underlying interpretations because we’d like
to be as general as possible. Enforcing some condition on them has to be by an explicit statement
in the integrity theory.

It is only necessary to consider, as our basic building blocks, constraints of the form L < t and
f < L, where L is a literal, to be able to “program” more elaborate conditions. By combining these
primitive constraints using the connectives ‘A’, vV’ and ‘<=’ we can express any property about some
interpretation /. Subsequently, any such condition can be easily rewritten into integrity theory
form by using the properties of propositional classical logic, 1.e. translated into a conjunction of
simple classical implications in the normal form “disjunction if conjunction”. To impose a given
value condition on a specific literal in I use table 1, where L = f (resp. u, t) we mean that L is
false (resp. undefined, true), to obtain the corresponding integrity constraint theory.

Condition | Integrity Theory | | Condition | Integrity Theory
L=f not L <t L#£f f<not L
L=nu f<=L)A{f<not L) L#u Lvnot L <t
L=t L&t L#t f<L

Table 1: Basic conditions on [

16 Remark that the notion of constraint satisfaction refers to an arbitrary set of literals I, be it contradictory or
otherwise.
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Example 7.1 Imagine the condition “if a is undefined and b is false then ¢ is true” must be
verified by a given interpretation. We lookup to table 1 and formalize it as:

(c=t)<=[f<a)A{ < not a) A(not b<=t)]
By means of the classical (meta-)interpretation of integrity constraints we obtain:

(cel<t)y<[f<achA({f<=notacl)A(notbel<=t)

cEICaQI/\n&aQI/\nmﬁbEI
Moving the negated conjuncts to the consequent of the last implication, we produce:
celVaelVnotacel<notbel
which is nothing more than the integrity constraint theory:
{eVaVnot a < not b} (1)
The reader can check any interpretation obeys the enounced condition iff it makes (1) true. 0

Special integrity theories enforce some well-known basic principles. Suppose that for all ground
objective literals I at least one of the conditions below is present in the integrity theory.

not L <=L (cl) t<LAnotL (c3) Lvnot L<t (cb)
-L<not L (c2) f<LA-L (c4) Lv-L <t (¢6)

Condition ¢ is nothing more than the coherence requirement on interpretations. Condition ¢2
expresses a type of Closed World Assumption, i.e. if L can be assumed false then it 1s explicitly false;
in combination with ¢/ they make explicit negation and default negation equivalent. Conditions
¢ and ¢4 enforce non-contradiction of the interpretations (notice that if coherence is imposed then
¢4 reduces to ¢3). Non-undefinedness of literals is ensured by ¢4 or ¢6 (condition ¢§ is stronger
than ¢6 in the presence of the coherence principle.).

In the following we’ll mainly make use of the explicit contradiction avoidance condition (¢f),
because the meaning of our programs will be given by the paraconsistent well-founded model,
which already enforces coherence and ¢3.

7.2 Open Programs

Next we formally define the framework of open programs and program states mentioned at the
beginning of this section.

The truth-varying basic beliefs are represented in an open program by a set of objective literals
(the open literals) whose truth-values are not determined beforehand. The fixed part of an open
program 1s an arbitrary extended logic program, which derives additional knowledge from the
open literals once their value is known. Integrity constraints prune out unintended combinations
of literals. Formally:

Definition 7.3 (Open Program) An open program is a triple (P, IC's,O,). The first compo-
nent, P, is an extended logic program, the second one a set of integrity constraints as in defini-
tion 7.1, and the third a set of objective literals O, C H(P) such that L € O, iff L € O,. O, is
the set of open literals. Additionally, there are no rules in P for any of the open literals.

Given an open program, a state for it is established by introducing, for each open literal, a
rule defining its truth value.

Definition 7.4 (Program State) A program state of a given open program {Priy, ICs,0,) is
a tuple {Ppig, Pvar, ICs,Op). For each literal L € O, the variable part, Py,,, contains just one
of the rules L — t or L — u or L — f. Moreover, if L — t € Py, then =L — £ € Pyy, (or if
—L — 1t € Pygr then L —f € Pyg,. ). No other rules belong to Pygy.
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By definiton, the symbols t and not f belong to all models. Neither u nor not u belong to any
model. The meaning of these symbols can be “programmed” with fact t, the rule u < not u and
the absence of any fact or rule for £. In other words, by adding the rule I — ¢ (resp. L «— u,
L — 1) literal L is assigned the truth-value true (resp. undefined, false).

Example 7.2 The program P:

a < mnotc ¢ «— notd
—a <« notb d

is contradictory. To revise it we first characterize it by the state 0 = (Ppiz, Pvar, IC's, Op), where:

Ppiz = {a «— not ¢; —a < not b; ¢ — not d}
PV(M‘ :{bFf, _‘bFf, dHt, ﬁd%f}
1C's {f<L~-L|LeH}

0, ={b,=b,d, ~d}

To remove the contradiction we change the rules in Py g, .

A program state can be thought to correspond to an agent’s set of beliefs about the “world”.
The basic beliefs are represented by the variable part of the program state. The fixed part allows
the agent to express how to extract derived beliefs from the basic ones. The integrity theory states,
directly or indirectly, which combinations of (possibly contradictory) beliefs are sustainable by the
agent.

Note that it is trivial to make a fixed part rule dependent on a belief expressed by a variable
part literal. For instance, as we’ll see; in a diagnosis setting the variable part contains the non-
abnormality and the normal and faulty behaviour modes. The fixed part describes the behaviour
of components in correct or faulty modes, system topology, and the predicted “outcomes”. The
integrity theory can express some meta-knowledge about the system, e.g. that a component cannot
be abnormal and correct simultaneously, that a “node” cannot have two “values”, etc. ..

The variable component determines an interpretation, and vice-versa, as shown in table 2 for
a pair of open literals {L,—~L}. The coherence requirement is imposed by the additional proviso
in definition 7.4 and also guarantees non-contradiction in Py ... By convention, when writing the
variable part we omit all rules of the form L < f, since the effect 1s the same.

Interpretation | Variable Part | | Interpretation | Variable Part

{not L,not =L} | {L —f,-L— £} {} {L —u,~L —u}
{not L} {L —f,~L —u} {not L,-L} | {L —1f,~L—t}
{not =L} {L «—u,~L —{} {L,not =L} | {L —t,~L—1f}

Table 2: Correspondence between interpretations and the variable part

To each program state we associate two interpretations. Let €2 denote an open program
(Priz, ICs,Op) and o a program state {Priz, Pvar, IC's, O,) of Q. The model of Q determined by
o, and denoted by M (o), is WFSX ,(Priz U Pygar). The basic beliefs of o, denoted by B(o), are
captured by the WFSX,, i.e. B(o) = M (o) UH(Pvar).

Definition 7.5 (Contradictory Program State) A program stale o is coniradictory iff Pp;;U
Py s contradictory or there exists at least one integrity constraint in o which is violated by
M (o). Otherwise it is non-contradictory.

Clearly, as argued at the beginning of this section, the sentence “Pp;, U Py, is contradictory”
can be removed from definition 7.5 if ICs of the form f <= L, =L are introduced for all L:
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Proposition 7.1 Let o be a state of an open program {Pr;y, [C's,O,) such that:
ICs D{f < L,~L|L € H(Priz)}

Then, o 1s contradictory off there exists at least one integrity constraint in IC's which is violated

by M (o).
Example 7.2 (cont.) For the program state o in example 7.2:

B(c) = {not b,not =b,d, not —~d}
M (o) = B(o) U{not ¢, not e, a,—a,not a,not —a}

This state is contradictory because it violates the constraint f <= a, —a.

Note that open programs can be seen as a three-valued abductive framework for WFSX, along
the lines of Generalized Stable Models [30] extension of Stable Model semantics [25].

7.3 Minimal Change

Contradictory states correspond to a situation where the basic beliefs of an agent are non-
satisfactory. In such a situation the agent has to change its basic or revisable beliefs, so as to
“reach” a new non-contradictory state. However this change is not arbitrary.

Because the agent starts by holding an (intrinsic) epistemic preference for the initial program
state, intuitively it should change its beliefs in a minimal way with respect to it. The new program
states (i.e. the new states of belief) should be as close as possible to the initial set of beliefs. The
first issue is how to define this notion of “closeness” between two program states.

Given that notion of closeness we can define minimal revisions of a program state. We will
only consider revisions of a single program state, thereof obtaining several new program states'”.
Thus, with the approach of this section, iteration of revisions is only possible after the agent
epistemically chooses a unique program state from the set of revisions of another program state,
and again starts from a single state, taken as the preferred one.

Our notion of closeness is an extension, to the three-valued case, of Winslett’s difference be-
tween a pair of models of the Possible Model Approach (PMA) [68]. The difference between models
is defined as the facts upon which a pair of models disagree. In the PMA the models which have
minimal difference, 1.e. minimal change, in the sense of set-inclusion are preferred.

Because we are considering a three-valued setting, a refined notion of difference is necessary.
What is distinctive in our approach is that if a literal is not undefined then we prefer to revise
it first to undefined before revising to the opposite truth-value; if it is undefined then we revise
it either to true or false. This 1s mainly motivated by the truth and knowledge orders among
literals'®: moving from true to false or vice-versa, in either ordering, is always through undefined.

Definition 7.6 (Difference between interpretations) Let T be the set of all coherent sels of
literals wrt. to a finite language and I, Is € T such that 11 = T} Unot Iy and I = T5 Unot Fy.
The difference between interpretations Iy and Is ts defined by:

(F2 - Fl)x {f} U
Digsn 1y =4 (= By
(Tz - Tl) X {t}

Literals labeled with ¢ (resp. f) are those that change their truth-value to t (resp. f), when
going from I; to I». Literals labeled with u are those that change their original truth-value either
to u or to their complementary truth-value. Some of these sets might not be disjoint.

17In order to iterate revisions we should also consider revisions of sets of program states. We leave that to future
work.
18In the truth ordering f < 1 < t, and in the knowledge one u < f and u < t.
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Example 7.3 Let I} = {a} Unot {b,c,d} and I = b,eUnot d, f, then

Diff(jl ) 12) = {(a’ t)’ (b’ t)’ (b’ u)’ (c,u), (6’ t)a (fa f)}

For a more detailed, motivated, and theoretically based approach to the previous definition see
subsection 7.6.

Definition 7.7 (Closeness relation) Let T be the set of all interpretations wrl. a finite lan-

guage, and M, A and B € T. We say that A is closer to M than B iff Dif f(M, A) C Diff(M, B).

The closeness relation is defined between interpretations; not between program states. When
program states are considered, one of the following two interpretations could be used: either the
model determined by a program state, M (o), or its associated beliefs; B (o). We assume that
what changes are the agent’s basic beliefs; and that other changes of belief are just consequences
of basic belief changes. Any belief can readily be made dependent on a basic one (c.f. 7.4.1). So,
when facing contradiction, the agent should minimally change its basic beliefs; not necessarily
what it extracts from those beliefs (i.e. their consequences). This has close connections with the
belief base revision methods in the literature (see [43] and references therein).

Definition 7.8 (Revision of a program state) Lel o be the initial program state of an open
program Qp. A revision of o is an element T of p (the set of non-contradictory program states)
such that:

Vsenp Diff(B(0),B(8)) C Diff(B(0),B(r)) = 6=

Notice that revision is defined here in terms of a single initial program state. Immediate
extensions to more general cases can be defined as in [14]. There the authors define “local” and
“global” belief revision semantics corresponding to, respectively, the notions of update and revision
operators of [31]. In a local semantics one computes the revisions of each initial program state
and the revision of the initial set is the set union of all these revisions. In a global semantics the
preferred revisions are the ones with minimal difference with respect to the whole set of initial
program states. For more details and comparisons see [14, 31].

Example 7.4 Consider the following interpretations corresponding to the variable part of four
program states o, ..., o3 of an open program:

Iy = {a} Unot {—a,b,—c} I = {a,c} Unot {-a,b,—ec}
I, = {a,d} Unot {-a,—e,~d} Is = {a,c,d}Unot {-a,—ec,~d}

Suppose the agent believes in Iy and that the corresponding program state (og) is contradictory.
Additionally, 17, I; and I3 are the unique beliefs that are consistent with the agent’s current
knowledge. Given the above interpretations 17, Is and I3, we’ve the following “differences” to Iy:

Diff(IO’Il) = {(C,t)}
Diff(10’12) = {(b’ u)’ (d’ t)’ (_'d’ f)}
Diff(IO’I?)) = {(b’ u)’ (C, t)’ (d’t)’ (_'d’f)}

The revisions of the initial program state o are {01, 02} because Dif f(Iy, I1) C Dif f(Io, I3)
and lef(fo s Iz) g lef(fo s 13)

Example 7.2 (cont.) The revisions of state ¢ are the two states resulting from, in o, replacing
Py by either P‘}M or P‘%M, where:

Pl ={b—u; =b—f; d—t; ~d—f}
P, =1b—f -b—f;, d—u; ~d—f}

In other words, contradiction is removed by either undefining b or d.
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Suppose now that one is just interested in revisions of d to its default complement (i.e. revisions
of d to undefined are not allowed). To that end we need only add the constraint d V not d < t.
With this constraint, the revisions are the two states resulting from replacing Py 4, by either
P, or P2 where:
Péw ={b—1f -b—1;d—1; ~d—1}

i.e., the contradiction is removed by either undefining b or by making d false. 0

We end this subsection by showing the of ours relationship to Winslett’s closeness relation.
We show that when we have two-valued interpretations our definition of Diff is equivalent to
Winslett’s. Noting that given two arbitrary sets X and Y the sets X — Y and Y — X are disjoint,
the condition Dif f(M,B) C Diff(M,A) in theorem 7.5 is equivalent to:

(TB —TM) U (TM —TB) - (TA —TM) U (TM —TA) and
(FB—FM)U(FM—FB) - (FA—FM)U(FM—FA)

If only two-valued interpretations are considered then:

(TB—TM)U(TM—TB) = (FB—FM)U(FM—FB) and
(TA—TM)U(TM—TA) = (FA—FM)U(FM—FA)

and therefore Dif f(M, B) C Dif f(M, A) iff (T —Tau)JU(Tar—TB) C (Ta—Tar)I(Tar—Ta). This

corresponds to Winslett’s [68] notion of closeness between two interpretations (possible worlds).
Also note that if our initial program state has all literals false, minimality by set inclusion is

obtained. This shows the relationship to our two-valued contradiction removal methods of [50].

7.4 Application Examples

We now present two examples of application of the revision techniques. First, we show for the
first time how to achieve three-valued declarative debugging, and next the benefits of using mixed
two- and three-valued revisions in model based diagnosis applications.

7.4.1 Declarative Debugging Example

Consider the following logic program:

a — not b b—c¢
¢ —bd ¢ — not ¢

whose well-founded model is {not d, not —a,not —b, not —c¢, not —d}

In order to perform debugging we transform this program into an open one in a straightforward
way, by explicitly assuming each rule not incorrect and that each predicate covers intended calls
to it. The open literals are the inc (for incorrect), and unc (for uncovered literals [40] and their
explicit complements (cf. [49] for a detailed justification of this program rendering, and non-
propositional examples). The fixed part is:

a «— not b,not inc(a/1) a — unc(a)
b — e, not inc(b/1) b — unc(b)
¢ b,d,not inc(c/1) ¢ — unc(c)
¢ «— not ¢,not inc(c/2) d — unc(d)
—a — unc(—a) —b — une(—b)
—c — unc(—d) —¢ — une(—d)

Suppose now the intended model of the program is {b,d} Unot {c, ~a,—b,—c,~d}. Our integrity
theory expresses this information as:
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f < not a not ¢ <t not —a < t
f<a d <t not =b <t
b=t not —e < t not =d < t

f<aA-a f<=bA-b f<cA-ec f<dnAn-d

The number of possible program states of this open program is exactly 2176782336!!! We
consider our initial set of beliefs to have all open literals false, making the initial program state
equivalent to the original program. This associated program state is contradictory, and therefore
we must perform a revision to regain consistency. We obtain a unique revision with variable part:

Py or = {unc(a) — u,unc(b) — t,inc(c/1) — t,inc(c/2) — t,unc(d) — t} (2)

The remaining literals in Py, are all false. The revision “returns” the bugs of the initial
program. The diagnosis is that there are rules missing for literals b and d, to make them true as
desired; then a rule for keeping a undefined is lacking given the newly imposed truth of b; and
both rules for ¢ are incorrect.

The existence of a single revision 1is justified by the fact that the intended model is completely
known. When this happens debugging ensures that all bugs become known. If only part of
the intended model is known or specified then several revisions may exist. For instance, if the
truth-value of literal ¢ is not given then two minimal revisions exist:

P ={unc(a) — u,unc(b) — t,unc(d) — t}
P2 . ={unc(a) — u,unc(c) — t,unc(d) — t}

Notice that the first revision is a subset of (2). Intuitively, the above two revisions cover all
the possible buggy situations dependent on the truth-value of ¢.

7.4.2 Model Based Diagnosis Example

Consider the anomalous situation of the four inverter circuit of figure 1:

a b c d e
Ob{@clb% 0

Figure 1: Four inverter circuit

The normal and abnormal behaviour of the inverter gate is modeled by the rules below. We
assume that our first two inverter gates, of type 1, have two known modes of erroneous behaviour,
either the output is always “0” (mode “stuck at 0”) or is always “1” (mode “stuck at 17). Tt is
also implicit that any abnormality is permanent and not intermitent. The second type of gate, to
which belong the other two, has no specified model of faulty behaviour. We begin by defining the
fixed program part:

invl(G,I,1) — not ab(G),node(I,0)
invl(G,1,0) — not ab(G),node(1,1)
inv2(G,I,1) — not ab(G),node(1,0)
inv2(G,1,0) — not ab(G),node(1,1)
invl(G,,0) — ab(G),s.at 0(G)
invl(G,, 1) — ab(G),s.at 1(G)

s.at 0(G) —  fault_mode(G, s0)

scat 1(G) —  fault_mode(G, sl)
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The value at a node is either predicted or observed:

node(N,V) «— predicted(N,V)
node(N,V) «— observed(N,V)

The connections among components and nodes are described by:

predicted(b, B) — invl(gl,a, B) predicted(c,C) — invl(g2,b,C)
predicted(d, D) — inv2(g3,¢, D) predicted(e,F) — inv2(g4,d, E)

The first integrity rule below ensures that the fault modes are exclusive, 1.e. to an abnormal
gate at most one fault mode can be assigned simultaneously. The second integrity rule expresses
that, for each node, a single value can be predicted or observed at any one time.

t <  fauwltomode(G,S1) A fault_mode(G, S2) A St # Sa
f < node(N, Vi) Anode(N,Va) AV # Vs

Our open literals are of the form ab(G) and fault_mode(G, M) and their explicit complements.
In the initial program state all open literals are taken to be false. Suppose we make the first
measurements in nodes a and ¢ and obtain a 0 and a 1, respectively. The values of the nodes are
described in the program by the new facts observed(a,0) and observed(c,1). Now the program is
in a contradictory program state (because it predicts for node ¢ value “0”), and therefore should
be revised. There are just two revisions according to wheter either ab(gl) or ab(g2) have value
undefined. Thus the possible causes of malfunction are due to gate 1 or gate 2.

If an additional observation is made at node e, modeled by adding the fact observed(e,0),
two more revisions are obtained ( from the initial variable program state) with either ab(g3) and
ab(g4) undefined.

Till now we’ve only imposed consistency with the observations, and so revising the ab literals is
sufficient to regain consistency. If we further want a revision to explain how the circuit model can
predict every observed wrong output, a new integrity constraint is added to the open program:

predicted(N,V) <« observed(N,V) (I1)

But now any state of the program is contradictory because inverters of type 2 cannot have thier
wrong outputs explained: their fault models are missing (in the general case fault models may be
incomplete). If we only enforce the condition above on node ¢, i.e. replacing (I1) by

predicted(c,V) <<= observed(c,V)

the existing revisions are'®:

{ab(gl) — t, fault_mode
{ab(gl) — t, fault_mode
{ab(g2) — t, fault_mode
{ab(g2) — t, fault_mode

g1l,50) — t,ab(g3) — u}

g1l,50) — t,ab(g4) — u}

¢2,51) — t,ab(g3) — u}
) (94)

92, s1) — t,ab(g4) — u}

PPy

Note that these revisions, containing undefined literals, can be seen as approximations to the
two—valued case. Hence the use of the “undefined” value, in order to make it possible to work
with incomplete models. Also mark that to impose that literals be predicted is computationally
more expensive, due to the necessity of using alternative fault models, which in real applications
can be very complex.

Another use of a mixed two- and three-valued revision is that we might want to delve into
the fault model of one part of the system so as to explain observations, whilst simply requiring
consistency from another part in relation to which we don’t want to delve deeper. One can thereby
decrease the computational effort required for such a more focused analysis.

19Recall that all other literals are false.
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In general there may exist an exponential number of revisions, which is inherent to the com-
plexity of the type of problem being solved. In order to cope with this complexity, more powerful
techniques like preferences, abstractions and refinement strategies are needed [18]. The use of
additional observations and measurements also improve the diagnoses obtained. These avenues of
research are still being pursued at present.

7.5 Computing Revisions

We have devised and implemented an algorithm to compute revisions??, based on the SLX proce-
dure with ancestors. The algorithm uses two functions, insert and delete, each of which returns a
first-order sub-formula. The syntax is del(L, Cz, AnsL, AnsG) and ins(L,Cz, AnsL, AnsG).

The topmost first-order formula expresses the conditions on the open literals which guarantee
a non-contradictory state. The basic conditions are tests on the verity and on the non-falsity of
open literals, used to construct the formula. Finding these is achieved by a top-down procedure in
all respects similar to SLX plus that it collects all the relevant conditions on open literals, which
are then simplified.

The deletion function is defined in terms of the insertion one as del(L,Cx, AnsL, AnsG) =~
ins(L,Cx, AnsL, AnsG). The first argument of ins is a literal, the second a flag of the form ¢ or
tu, and the other two the sets of ancestors necessary to guarantee termination of cyclic derivations.

The insertion function determines the necessary and sufficient conditions to enforce a literal
true (if C'z = ¢) or to enforce its non-falsity (if Cx = tu). The deletion function in turn guarantees
non-verity of a literal (if C'z = ¢) or its falsity (if C'z = tu). Consider again example 7.2:

Example 7.2 (cont.) Take the constraint f <= aA—a. The first necessary step for finding the con-
ditions on open literals which satisfy the integrity constraint is to reformulate it using the deletion
and insertion functions. Namely the constraint is satisfied iff del(a,t, {}, {}) V del(—a,t,{},{}),
i.e. if @ or —a are not true. By applying the revision algorithm we obtain the following formula:

dgIVv(-bgTIAnotb¢g)
Note that the two revisions in page 23 are the ones that satisfy this condition.

The above does not describe a complete algorithm to compute closest revisions. It only provide
the first step (albeit the most important) of revision generation. To have a full revision system it
is necessary to equip it with a method for formula minimization, so as to get only closest revisions.

7.6 Distance and Closeness Relations

We present in this section our theoretical results justifying the use of closeness relation defi-
nition 7.7 to guide the revision process. It is not essential for the sequel. We first define a
natural metric between program states, obtained from the classic and Fitting orderings among
three-valued interpretations. Afterwards, we point some problems of a closeness relation based on
minimal distance according to the said metric, and provide an alternative definition of closeness.
We characterize 1t and present some of its properties.

The classic and Fitting orderings among three-valued interpretations are the generalization to
sets of literals of the truth and knowledge orders among literals. Roughly, the classic ordering
says that interpretations with less degree of truth are preferred, and the Fitting ordering amounts
to prefer minimizing information (i.e. maximizing the degree of undefinedness). If not explicitly
stated, we assume interpretations are always given with respect to some language £. Formally,
we have:

Definition 7.9 (Classical and Fitting Orderings) If I = Ty Unot Fy and Is = To Unot Fy
are two interpretations, then we say that:

o Iy ¢ L iff 1 C Ty and Fy C Fy (classic “truth” ordering);

20For lack of space these are not completely described here, but the implementation is available on request.
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o Iy Xp L iff 1 CTy and Fy C Fy (Fitting “knowledge” ordering);

Using these two partial orders among interpretations we proceed to define our “distance unit.”
Intuitively, given a finite partial order, the nearest elements to an arbitrary element of the poset
of interpretations (i.e. at a minimum distance) are its cover and covering elements (wrt. to the
given partial order).

Definition 7.10 (Nearest elements) Let (M, <) be a finite poset. The set of nearest elements
of a given A € M, denoted by Ag, 1s defined by:

Agzdef{BeM|(B<AA/HCB<C<A)V(A<BA/HCA<C<B)}

Now, we can use the classic or Fitting orderings to determine the nearest interpretations (Igc

and IQF) to some interpretation /. The following result strongly supports our notion of nearest
elements. The two partial orders (and also their dual relations) have the same set of nearest
elements:

Theorem 7.1 Let I = T'Unot F be a finite three-valued interpretation wrt. to some language
[/21:

19, =15, ={ {(TU{L})Unot F|LEFALETA-LEF }U
- {TUnot (FU{L}) |LEFALET }U
{(T={LHUnot F | LeT } U

{TUnot (F—-{L})|LEFA-LET}|LEL}

Given this characterization of nearest elements, we can next define the distance between two
interpretations by counting the minimal number of steps necessary to go from one interpretation
to the other. A “step” consists in moving from one element to one of its nearest ones. Before we do
that we must enforce another condition on the poset (besides being finite): the Hasse diagram of the
poset must be connected. Posets obeying the previous condition are said connected. Intuitively,
this ensures it is always possible to go from one place to another in the poset. Notice that a
poset having a bottom or a top element automatically verifies the “connectivity” condition. The
definition of distance follows directly from the above characterization of nearest elements:

Definition 7.11 (Distance) Let (M, <) be a finite connected poset. The elements reachable
from x € M in n steps are defined recursively as follows:

(+2) 1°= {2}
(+2) 10+9=U{s2 1w e (+2) 1}

The distance between two elements x,y € M s given by:

ds(a.y) = min i| {ve («2) I'}
The next theorem shows that this notion of distance has the required properties:

Theorem 7.2 Let (M, <) be a connected poset; then (M, d<) is a metric space, i.e., d< satisfies,
for any x,y, 2 € M, the following properties required of a distance:

d1) d<(x,x) = 0;
d2) If x #y then d<(x,y) > 0;
d3) df(x’y) = df(y’ x);

21Proof of this and the main theorems in this section are presented in appendix B.
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df) d<(z,y) < d<(x,2) + d<(z,9).

Now we can use the above results to characterize the distance between interpretations when
the classic or Fitting orderings are used to “sort” them. Note that this result is also valid if the
duals of the former orderings are used, since the nearest worlds are the same for the four partial
orders among interpretations.

Theorem 7.3 Let T be the set of all three-valued coherent interpretations wrt. to a finite language
and x,y € T such that x = Ty Unot Fy and y = Ty Unot Fy. Then d<.(x,y) = d<,(x,y) =
dist(z,y), where

dist(z,y) = #(11 = To) + #(To = Th) + #(I" — F2) + #(F2 — I1)
ie. dist(z,y) = #Diff(x,y).

Definition 7.12 (Distance between program states) Lel o1 and o2 be lwo program stales
of an open program Qp. The distance between o1 and oa, denoted by dstate(o1,02) is equal to

dist(B (o1),B(02)).

When we restrict to two-valued interpretations, our definition of distance is tantamount to
extension of Dalal’s [17]. Dalal measures distance between worlds (i.e. models) by counting the
number of propositions that differ in their truth-values. Tt can be easily seen that dist(z,y) =
4 X dpajai(2,y). This results in part from the fact that to change a literal to its complement
truth-value costs 2. But when we change an objective literal to its opposite truth-value coherence
imposes that we should also change its explicit negation complement, which again costs 2. But in
general our distance function is more refined than Dalal’s, because of the extra truth-value and
the explicitly negated literals.

Given this distance relation between states, we could now define our notion of “closeness” to a
contradictory state like in [17], by selecting as close those states that are at a minimum distance
from the current one. It is known from the literature [14] that the use of this closeness relation as
the basis for state revision preference has some problems, exemplified in the following, relative to
accumulated distances of successive state changes.

Example 7.5 Consider the following two-valued interpretations, corresponding to the variable
part of four program states oy ...o3 of an open program:

Iy = {—a,=b,~c}Unot {a,b,c} T, = {—a,—b,c}Unot {a,b,—c}
I, = {a,b,~c}Unot {—a,—b,c} Is={a,b,c} Unot {-a,—b, —c}

Suppose the agent believes in I initially and that the corresponding program state (og) is con-
tradictory. Additionally, I, Is and I3 are the unique beliefs that are consistent with the agent’s
current knowledge. If minimal distance is used the agent will change its beliefs to o1 because
dist(Iy, I) = 4, dist(Iy, I2) = 8 and dist(Iy, Is) = 12. Later, imagine the agent finds out that
o1 too is not sustainable because of, say, some introduced integrity constraint. Therefore, it will
change again its beliefs to o3 because dist(I1,Is) = 12 and dist(I1, I3) = 8. The agent will have
changed to a farther “world”, o3, with respect to the initial one oy (see figure 2). This example
functions also as a counter-argument to the use of minimal distance even with Dalal’s definitions.

Since the change from one state to another is spurred by the violation of a program’s integrity
theory, it 1s important to guarantee that the order in which the integrity constraints are considered
i1s immaterial or commutative with regard to obtaining the same set of equally close final revised
states 22

Because the diagram contains all states, any edge can be implicitly expressed by an integrity
constraint and vice-versa. The successive satisfaction of integrity constraints can be seen as a
path such that any rules added for open literals must be kept along the way, to ensure continued
satisfaction of the already introduced constraints.

22Tn terms of the AGM [52] revision operator this means that the natural property K + (6 AY) = (K + ?) +
Y = (K + ¢) + ¢ is not verified.
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1st move: constraint=dVa/AbAc

S0

12

2nd move: constraint=a/Ab/Ac

/I\
SN

Figure 2: Minimum distance counter-argument example

Thus, on account of these problems with prefering revised states at a minimal distance, which is
sensitive to program change order, we need another notion of closeness. In the example, intuitively
o5 should also be at the same degree of closeness from oy as o1 so that it is possible to go there,
whatever the order the ICs are taken in.

Suppose we start from an initial state o and add an arbitrary integrity constraint. The integrity
constraint determines univocally a set of program states C. If an additional constraint is enforced
a subset Co, of C would be obtained. Firstly, the set of closest elements of C must be such that it
contains the elements at minimal distance of o. Furthermore, it should contain those elements in
C guaranteeing that, if we change to C., then for every state o1 at minimal distance of the initial
program state o there exists a state in C at minimal distance of 1. Therefore we don’t loose any
program state irrespective of the order of treatment of constraints. This motivates the definition:

Definition 7.13 (Closeness within C) Given a finite metric space (M, d<), let M € M and
CC M.

C’losedﬁ(M,C) = {AEC |VBEC (df (M,A) Idf (M,B)—I—dj (B,A) :>AIB)}

A geometric analogy is given in figure 3. To find a closest element A we draw a line between
the initial element and an arbitrary element B of C. The closest element will be the one nearer to
the initial program state M.

Closest elements

M - Initial state
A - A closest state
B - A farther world

Figure 3: Closeness relation

The following property ensures what we want. Roughly, it says that all original distances of
elements in C are “preserved” in the set of closest elements.

Theorem 7.4 Given a finite metric space (M, d<), let M € M and C C M, then:
Vpec Jaeciosea (m0) d<(M, D) = d<(M, A) + d<(4, D)

Obviously, the metric space considered in Close above is the set of all program states with
metric dstate. Now we proceed to equivalently characterize the set of revisions in terms of Dif f.
The extension to program states follows immediately.
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Theorem 7.5 Let T be the set of all interpretations wrt. to a finite language, M € T and C C 1.
Then,
Ae ClOS@dist(M, C) = VBec lef(M, B) - lef(M, A) = A=21H

The above theorems states that the interpretations closer to M are the ones with minimal
difference in the sense of set inclusion, as we’ve defined. Therefore, the revisions of a program
state are those program states for which the beliefs differ minimally (i.e. with minimal Diff)
from the current ones. When C = {B(()r): 7 € Xp} and M = B(()o) we obtain definition 7.8.

Finally, we should point out that the minimum distance approach has the advantage of being
computationally less expensive than the adopted closeness relation. In fact, the revision with
minimum distance approach is polynomially bounded, in contrast to the exponential complexity
of the minimal Dif f revision method.

8 Conclusions, Discussion, and Future work

The widespread use of the richer representation language of extended logic programs and its
applications requires the definition of a correct top-down querying mechanism, much as for Prolog
wrt. to normal programs. In this paper we’ve presented and exploited a SLDNF-like derivation
procedure, SLX| for extended programs under WFSX and proven its soundness and completeness.

The introduction of explicit negation required us to deal with contradiction. We showed how it
can be removed by freely changing the truth-values of some subset of a set of predefined revisable
literals. To achieve this, we first introduced a paraconsistent version of WFSX, WFSX,, that
allows contradictions to appear, and for which our SLX top-down querying procedure was proven
correct as well.

SLX was then used to detect the existence of pairs of complementary literals in WFSX, simply
by detecting the violation of integrity rules f <= L, =L introduced for each L in the language of the
program. Integrity constraints of a general form were allowed, whose violation is likewise detected
by SLX.

Contradiction removal is accomplished by a variant of SLX which collects, in a formula, the
alternative combinations of revisable literals’ truth-values that ensure the said removal. A notion
of minimal change was defined as well, which establishes a closeness relation between a program
and its revisions. Changes are enforced by introducing or deleting program rules for the revisable
literals only.

To illustrate the usefulness and originality of our framework we applied it to obtain a novel
logic programming approach, and results, to declarative debugging and model based diagnosis.

One point of discussion that might be raised is that SLX is applicable only to (infinite) ground
programs. Moreover, for these programs, the computational complexity of SLX can be greater
than that of the iterative bottom-up definition of WFSX. So why would one prefer SLXT

The reasons for prefering SLX to the bottom-up definition of WFSX are tantamount to those
for usually prefering Prolog to bottom-up procedures of normal programs. Note that the problem
of complexity also occurs when comparing, in the ground case, the complexity of SLD resolution
to that of the Tp bottom-up operator.

Moreover, specially in non-ground programs, users normally wish to know the instances of a
literal that belong to the semantics rather than the whole semantics.

But SLX, as it is, can also be applied to non-ground programs, provided they are allowed
and bounded-term. Moreover, we intend to extend SLX to deal with (non-allowed) non-ground
programs.

A straightforward generalization method for non-ground programs would be to proceed as usual
in the expansion of goals with rule variants, and keeping the test for inclusion in the ancestors lists.
However it has two problems: first, as shown in [8], this loop detection method does not guarantee
termination in the nonground case, even for (non-allowed) term-bounded programs; second, the
procedure flounders on non-ground default literals.
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To guarantee termination for non-ground term-bounded programs, we intend to introduce
tabulation methods into SLX?3. This will also decrease the computational complexity of the pro-
cedure.

Such a modification differs significantly from existing procedures for WFS that use tabulation
(e.g. [10, 12]). On the one hand, SLX is applicable to programs with explicit negation whilst
others aren’t; on the other hand, even for normal programs, SLX does not need a status distinct
from successful and failed, as i1t is based on two types of proof, whilst others include a status
unknown as well, because based on a single proof type, which complicates the procedure. Another
subject of future work is that of introducing in SLX constructive negation techniques for solving
the floundering problem.

One further point of discussion is whether there might be some program transformation, from
ELPs into normal programs, such that available top-down procedures for WFS could be then
applied to obtain an equivalent semantics to that of WFSX, where if the program is contradictory
this must be detected. We have one such transformation, but even so, the very fact that the
resulting program has a specific form makes any general WFS procedure less than optimal because
the specifity would not be exploited (in particular, programs double in size and derivations are
repeated). In contradistinction, our SLX procedure takes into account the WFSX particulars. In
any case, in our paper [2], we compare our approach to other WFS top-down procedures, for the
case of normal programs.

Another possible generalization of this work is to introduce program rules with disjunctive
heads. Over our semantics several approaches to digjunction in program rules might be con-
structed. We have not yet adopted any one approach because the ongoing research on disjunction
for logic programs is still stabilizing, though we favour one similar to that of [56]. One problem is
that none of the proposals to this date include explicit negation as we define it. Another is that
contradiction removal methods when disjunction is involved have yet to be devised and given a
semantics. We are working towards a satisfactory solution to these issues. Till one is found it
would premature to incorporate fully fledged disjunction. For the moment though, our integrity
constraints can capture the intended effect of many uses of disjunction.

Finally, 1t is our intention to proceed with the study of more efficient implementations of SLX
and revision procedures. Indeed, this is the subject of a national project in cooperation with
LTACC in Porto, within which we will implement our procedures at abstract machine level using
sidetracking (i.e. deterministic call priority), parallelism, and low-level support for tabulation.
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A Proofs of SLX correctness

We begin by assigning ranks to derivations. The proofs of correctness essentially rely on two
lemmas proven by transfinite induction on the rank of derivations. In order to trim the proof we
begin by making some simplifications in the definitions of derivations:

In definition 4.2 of SLX-T-derivation one possible way of removing a selected default literal
not A from a goal is to find a SLX-T-refutation for «— —A. However this case is redundant. Note
that the other case for removing not A is when there is no SLX-TU-refutation for — A. But
definition 4.3 states that in a SLX-TU-derivation, if there is a SLX-T-refutation for the explicit
complement of a selected objective literal then the goal 1s the last in the derivation. Thus, if there
is a SLX-T-refutation for < — A, the only SLX-TU-derivation for «— A is this single goal and is a
failure, and so, even when not considering the first possibility, not A is nevertheless removed from
the goal. Consequently, in definition 4.2 the case L; = not A can be simplified to:

—if there 1s no SLX-TU-refutation for A in P then the derived goal is
—Ly,...,Ly_1,Lpq1,... Ly

Now let’s look at the cases for a selected objective literal Lj; in definition 4.3. Clearly the
first one corresponds to introducing not =Ly in the derived goal. This is so because if there is a
SLX-T-refutation for < =L the derivation will become a failure (and this is equivalent to the first
case), and if there is no such refutation it is simply removed (and this is equivalent to the second
case). Consequently, in definition 4.3 we remove the first case for a selected objective literal, keep
the third, and modify the second to??:

—of the input rule is Ly — By, ..., By the derived goal ts
<—L1,...,Lk_1,n0t ﬁLk,Bl,...,Bm,Lk_H,...Ln

Now we assign ranks to these simplified derivations. As the proofs shall show, we do not need
to assign a rank neither to SLX-T-failures nor to SLX-TU-refutations. These do not contribute
towards proving literals that belong to the WFM?25,

24Note how this exactly corresponds to using a semi-normal version of the program in SLX-TU-derivations.
25This is tantamount to having no need to assign a rank to undetermined nodes in [61].
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Intuitively, the rank of a SLX-T-refutation reflects the depth of “calls” of subsidiary trees that
are considered in the refutation. Its definition, below, can be seen as first assigning to each literal
removed from a goal an associated rank. When removing an objective literal no subsidiary tree is
considered, and so the rank is not affected. The empty goal has rank 0. When removing a default
literal, the depth of subsidiary trees that has to be considered is the maximum (more precisely, the
least upper bound for the infinite case) of the depth of all SLX-TU-failures?®. The depth needed
for finally removing all literals from a goal is the maximum of the ranks associated with each of
the literals in the goal.

Definition A.1 (Rank of a SLX-T-refutation) The rank of a SLX-T-refutation is the rank
of its first goal. Ranks of goals in the refutation are defined as follows:

e The rank of — O is 0.

o Let Gy be a goal in a refutation whose next selected literal is objective. The rank of G; 1s the

rank of Giy1.

o Let Gy be a goal in a refutation whose next selected literal 1s a default one, not L, and let

a be the least ordinal upper bound (i.e. mazimum in the finite case) of the ranks of the
SLX-TU-failures for — L*7. The rank of G; is the mazimum of o and the rank of Giy1.

Ranks of SLX-TU-failures reflect the depth of “calls” that is needed to fail the derivation of
subsidiary trees. Note that the failure of a derivation is uniquely determined by the last goal
in the derivation, and more precisely by its selected literal. If that literal is objective then no
subsidiary tree is needed to fail it, and thus its rank is 0. For failing a default literal not L one has
to find a SLX-T-refutation for < L. Several might exist, but it is enough to consider the one with
minimum depth. Moreover, in this case one has to increment the rank, since the default literal
not L was failed, and caused an extra “call”. Note that, for SLX-T-refutations this increment is
not considered. The issue of incrementing the rank only for one kind of derivations is tantamount
to that of considering the increment of levels of I;s in the sequence for constructing the WFM
only after the application of the two operators, I' and I's.

Definition A.2 (Rank of a SLX-TU-failure) An infinite SLX-TU-failure has rank 0. The
rank of a finite SLX-TU-failure is the rank of its last goal. Let Gy, be the last goal of the derivation,
and let Ly be its selected literal:

e if L 1s an objective literal then the rank is 0.

o if Ly 1s a default literal, not A, then the rank is o+ 1, where « is the minimum of the ranks
of all SLX-T-refutations for — A.

The following lemma is used in the proofs of correctness. This lemma relates the existence of
sequences where some default literals are removed to the I operator by which some default literals
are removed from the body of rules:

Lemma A.1 Let I be an interpretation, and let (— L), Gy, ... be a sequence of goals constructed
as per definition 4.3 (resp. definition 4.2), except that selected default literals not Ly such that
Ly & I are immediately removed from goals. Then, L € T'iI (resp. L € T'1) iff the sequence is
finite and ends with the empty goal.

Proof (sketch): Here we omit the proof for I € T'T with definition 4.2, which is similar.

If L € I's1 then, as per the definition of I', there must exist a finite set of rules in % such
that L belongs to its least model. According to the definition of % and of semi-normal program,

there is a finite set of rules in P such that for each default literal not L in their bodies L & I, and
for each such rule with head H, =H & I. Let P* be the subset of P formed by those rules.

26Note that for removing a default literal all SLX-TU-failures must be considered. This is the reason behind
“maximum”.
27Note that, since we are in a SLX-T-refutation, all SLX-TU-derivations for — L are failures.
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The only default literals to be considered by definition 4.3 will be those in the bodies, plus
the default negations of —-complements of the heads of rules used in the derivation. So, given the
completeness of SL-resolution?® [41], and the fact that all these introduced literals are not in I
(as shown above), a sequence of goals considering only the rules in the finite P* exists and ends

) P*
in the empty goal. Thus the least model of ~

contains L.

Lemma A.2 Let P be an extended logic program, L an objective literal, and {I,} be the sequence
constructed for the WFM, of P, as per theorem 3.1. In that case:

1. if there 1s a SLX-T-refutation for — L in P with rank < ¢ then L € I;.
2. 4f all SLX-TU-derivations for — L in P are failures with rank < i then L & I's1;.

Proof: By transfinite induction on i:

7 1s a limit ordinal §: The case where 6 = 0 1s trivial.

For 6 # 0, for point 1, assume that there is a SLX-T-refutation for «— L with rank < §.
Thus, there is a o < é for which such a refutation exists with rank < «. Then, 3,«sL € I,.
Thus, L € Jyes Lo, ie. L€ 5.

For point 2 the proof is similar, and omitted here for brevity.

Induction step: Assume points 1 and 2 of the lemma hold for some i. We now prove that point
1 also holds for i + 1 (the proof for point 2 is similar, and it too is omitted for brevity).

If there is a SLX-T-refutation for « L with rank < i41 then, by definition of ranks for these
refutations, all subsidiary derivations for default literals not L; in the refutation are failed
and of rank < i+ 1 (and thus < 4) and are simply removed. So, given point 2, Vj, L; ¢ T', I;.

From lemma A.1, by tacking there the interpretation I = I';I;, and by removing all not L;
literals, it follows that L € I'T's[;, i.e. L € [;41.$

Proof of theorem 5.5: If I is an objective literal, then the result follows immediately from
lemma A.2, and the monotonicity of I'T (theorem 5.1).

Let L = not A. If there 1s a SLX-T-refutation for « not A with rank ¢ then, by definition of
SLX-T-refutation, all SLX-TU-derivations for « A are failures of rank < i. By point 2 of lemma
A2 Ag ;.

Let M be the least fix-point of I'l'y. Given that I'T'y is monotonic, I; C M, i.e. for any
objective literal A, A € I; = A € M. By anti-monotonicity of I'y, A € 'sM = A € I'sI;. Thus,
since A€ T,I;, A¢ T, M ie. by definition of the WEM,, not A € WFM,(P). &

Now we prove theoretical completeness of SLX. To do so we begin by proving a lemma that,
like lemma A.1, relates sequences with the I'" operator. Then we prove completeness for objective
literals by transfinite induction on the ranks for a particular class of computation rules. Finally
we lift this restriction, and prove completeness also for default literals.

Lemma A.3 Let I be an interpretation, and L an objective literal. If L & TsI (resp. L ¢ TI)
then each possible sequence of goals starting with — L and constructed as per definition 4.3 (resp.
definition 4.2), except that selected default literals not Ly such that Ly, & I are immediately removed
from goals, 1s either: infinite; ends with a goal where the selected literal is objective; ends with a
goal where the selected literal is not A and A € 1.

Proof: Similar to the proof of lemma A.1.

Lemma A.4 Let P be an extended logic program, L an objective literal, and {I,} be the sequence
constructed for the WFM, of P. Then, there exists a selection rule R such that:

28 Note that for definite programs both T and TU derivations reduce to SL-derivation.
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1. of L € 1; then there is ¢ SLX-T-refutation for — L in P with rank < 1.
2. 4f L & Usl; then all SLX-T'U-derivations for — L in P are failures with rank < 4.

Proof: Let R be a selection rule that begins by selecting all objective literals, and then default
ones subject to that it selects a not L before a not L' if there is a j in the sequence of the {I,}
such that L € I',I; and L' € I, ;.

By transfinite induction on ¢:

i 1s a limit ordinal é: The case where 6 = 0 is trivial. For point 1 and é # 0, the proof is similar
to the one presented in lemma A.2 when ¢ = 6.

For point 2 and 6 # 0, assume that L ¢ I's /5. By lemma A.3, making the / in that lemma
equal to Is, each SLX-TU-derivation for < L 1is either:

e infinite, and in this case a failure of rank 0.

e ends with a goal where the selected literal is objective, i.e. a failure of rank 0.

e ends with a goal where the selected literal is not A and A € Is. In this case, and given
that point 1 is already proven for ¢ = 8, there is a SLX-T-refutation for +— A with rank
< « such that o < é. Thus, and according to the definition of ranks, the rank of this
derivation is < 6.

Note that, by considering the special selection rule R in the sequences mentioned in lemma
A3, these become indeed equal to derivations, where the not Ly such that Ly & I5 are never
selected.

Induction step: Assume points 1 and 2 of the lemma hold. We begin by proving that point 1
also holds for ¢ + 1.

Assume that L € I'T;I;. By lemma A.1l, there exists a sequence ending with the empty
goal, constructed as per definition 4.2, except that selected default literals not Lj such
that Ly & ['s1; are immediately removed from goals. By point 2, for any L, all SLX-TU-
derivations for «— Lj are failures with rank < i. Therefore the sequence 1s a refutation.
Moreover its rank is < ¢ and thus also < . This proves point 1.

Now we prove that point 2 also holds for ¢ + 1. Assume that L &€ [';/;1;. By lemma A.3,
considering the I in that lemma equal to I; 41, each SLX-TU-derivation for « L is either:

e infinite, and in this case a failure of rank 0.

e ends with a goal where the selected literal is objective, i.e. a failure of rank 0.

e ends with a goal where the selected literal is not A and A € I;41. In this case, and
given that point 1 is already proven, there is a SLX-T-refutation for «— A with rank
< 24 1. Thus, and according to the definition of ranks, the rank of this derivation is
<i+21e <i+1.

The argument for saying that the sequences of lemma A.3 are derivation is similar to the
one used above for limit ordinals.{

Note that, in the proof of point 1 above, we never use the special selection rule R. Thus, for
SLX-T-derivations an arbitrary selection rule can be used.

Moreover, in point 2, the only usage of R is to guarantee that the rank of all SLX-TU-failures
is indeed < ¢. This is needed for proving the lemma by induction. However, it is clear that if
by using R all SLX-TU-derivations are failures, although with a possibly greater rank, the same
happens with an arbitrary selection rule?®. This is why there is no need to consider the special
selection rule in theorem 5.6.

Proof of theorem 5.6: If L is an objective literal the proof follows from lemma A .4.

29Note that literals involved in infinite recursion through negation do not give rise to SLX-TU-failures.
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Let L = not A. By definition of WFM,, there exists an ordinal A such that I is the least
fix-point of I'l'y. Thus, again by definition of WFM,, A ¢ I',I,, and by point 2 of lemma A .4 all
SLX-TU-derivations for < A in P are failures. Consequently, the SLX-T-derivation consisting of
the single goal < not A is a refutation. {

B Proofs on distance and closeness

Proof of theorem 7.1: We prove one same case for both orderings. The other three cases are
similar. Let 7 =T Unot F, J =T} Unot F} and K =15 Unot Fy such that I <p JA—-Ig I <
K <p J, in other words:
TCTHAFCIHAT#ETIVFE#F)A
I, R [TCTOANFCPRAT#ToVE#Fy) A
TLCTiANFRCHIAT#TIVE #£T1F)]

Thus, J is a nearest element of /. Suppose T'# 17 and F' # Fy then 75 = T and Fy = F} falsifies
the condition above, thus 7" = 7} or F' = Fy. Consider the case where T' # 71, F' = F} and
T CTi. In order to satisfy the above condition T3, must be equal to T'U {L} such that L & T". If
Ty has more than one element than 7', there is a K that makes the condition above false (namely
the one obtained by adding a single element to the true literals in ). In order to ensure that
J is an interpretation, 7' and F' should be disjoint, and thus L must not belong to F' (because
L € T1), and should obey coherence, and therefore =L must be in F'. We have proven that the
interpretations { TU{L}Unot F | L& FALgT A-L€EF } arenearest elements of I.

We now proceed to show the same case for the classical ordering among interpretations. Con-
sider again I, J and K, such that [ <¢ J A—=dxg I <¢ K <¢ J, so:

TCTHARLCFAT#TIVEF#F)A
I, R [TCTOANF CFAT#ToVE#Fy) A
TLCTiANRLCF AT #£#TIVE #£T1F)]
Thus, J is a nearest element of I and similarly, 7" = 7} or F = Fy. Consider the case where

T#T,,F=F and T CT,. For the same reasons, T must be equal to TU{L}, such that L ¢ T'.
Disjointness and coherence must also be enforced and therefore Igc = IQF. &

Proof of theorem 7.3: The proof is by induction on dist(z, y):

Base case: If dist(z,y) = 0 then # = y by (dI) and therefore T} = T5 and F; = Fy and thus
#Diff(z,y) =0.
Induction Step: Suppose dist(z,y) = n + 1 then there exist a z = T3 Unot F3 such that
dist(z,z) = nand y € zSF By induction: dist(z,z) = #(T1 — Ts) + #(T5 — T1) + #(F1 —
Fg) + ##(F5 — I). -
But if y € zSF either
1.y=T5U{L}Unot Fsand L &€ Fs AL & T3 AN—L € Fs;
2. y=TsUnot (FsU{L})and L & Fs AL & T5;
3. y=(Ts —{L})Unot F5 and L € T5;
4. y=TsUnot (Fs—{L})and L € F3 AL & T5.
We prove only case 1, the others are similar. If y = Ts U{L}Unot F5 and L & F3 AL ¢
TsA—L € Fythendist(z,y) = #[Th — (T3 U{LPD]+# (T3 U{L}) — Th]|+#(F1—F3)+#(Fs—
F1). Then two cases can occur: L € Ty or L ¢ T1. The former leads to contradiction, since
for L € Ty then # [Th — (T3 U{L})] = #(Th—T3)—1land # (T3 U{L}) — Th] = #(T5—T1)+1

and the sum above is equal to dist(z, z) = n, and by induction dist(z,y) = n. Contradiction.

If L ¢ T1 then # [T1 — (T3 U {L})] = #(T1 — Tg) and # [(Tg U {L}) — Tl] = #(Tg — Tl) + 1,
therefore dist(x,y) = dist(z,z)+ 1 =n+ 1.
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The set Dif f(x,y) contains the difference of y to x. If a literal changes from either t or f to
undefined then it appears in Dif f(z,y) labeled with u. If it changes from false to true (resp. true
to false) it appears labeled both with u and t (resp. u and f). The intuition is that changing a
literal to undefined (or from undefined to false or true ) costs one “unit”. A change from false
to true (or from true to false) costs 2 because it is necessary to change the literal from false to
undefined and then from undefined to true. Therefore, the distance between  and y is given by

the cardinality of Dif f(xz,y). ¢
Proof of theorem 7.4: By induction on d<(M, D):

Base case: If d<(M,D) = 0 then M = A = D by (d1). So M € Closeq (C, M), since
Vpecd<(M, M) = d<(M, B) +d<(B, M) implies D = M (d< is a metric).

Induction Step: If D € Closeds, (C, M) then the result follows trivially. Consider D ¢
Closedq (C, M), i.e h
dpec dj(M,D)Idj( j(B,D)/\dj(B,D)ZO
Thus, by induction: 34 : A € Closedg_ (C,
Therefore d<(M,D) =d<(M,A) + d<(_A B)
But by d4) we have d<(B, D) < d<(A,B) +d

B) +

)/\ d<(M B) = d<(M A) + d<(A B)
+ d<(B D)

<(B, D) and therefore

df(M’D) > df(M’A)—i_dj(A’D)

Again by (d4), d<(M, D) < d<(M, A)+d<(A, D) andso d<(M, D) = d<(M, A)+d<(A, D).$

Proof of theorem 7.5: It is enough to prove that: dist(M, A) = dist(M, B) + dist(B, A) iff
Diff(M,B) C Diff(M,A). Here we only present the only if proof.
If Dif f(M, B) C Dif f(M, A) then:

TM—TBQTM—TA andTB—TMgTA—TM
FM—FBQFM—FA andFB—FMgFA—FM

We first show that Tay — Ta C (Tar — Tp) U (Tp — Ta), since

Ty NTaN(Ty NTpUTe NTa) =
(TM ﬂTA ﬂTB) (TM N1y ﬂTB) =
TMQTAQ(TBUTB) Ty — T4

Because T — Ty C Ty — Ty then Ty UTg C Ty UT,, and thus Thy NTLUTgNTy, C Ty ﬁﬁ, le.
TB—TA g TM—TA. Using TM—TB g TM—TA then we conclude (TM—TB)U(TB—TA) g TM—TA.
With similar proofs, we conclude:

TM—TAI(TM—TB)U(TB—TA)
TA—TMI(TB—TM)U(TA—TB)
FM—FAI(FM—FB)U(FB—FA)
FA—FMI(FB—FM)U(FA—FB)

From these equalities and the fact that the right-hand sides are all disjoint the result follows. {
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