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However, because Horn clauses admit only positive conclusions or facts, they give rise to amonotonic semantics, i.e. one by which previous conclusions are never questioned in spite ofadditional information, and thus the number of derived conclusions cannot decrease { hence themonotonicity. Also, nothing can be concluded false, except by assuming that which is not �nitelyproven true is false. But this condition prevents, by de�nition, the appearance of any and allcontradictions.Thus, although Horn clause programming augmented with the NOT operator (cf. Prolog)under the SLDNF derivation procedure [41] does allow negative conclusions, these are only drawnby default (or implicitly), just in case the corresponding positive conclusion is not forthcoming ina �nite number of steps { hence the speci�c form of Closed World Assumption (CWA) [58] of thecompletion semantics given to such programs [15].This form of negation is capable of dealing with incomplete information, by assuming falseexactly what is not true in a �nite manner. However, there remains the issue of non-terminatingcomputations, even for �nite programs. To deal with this and other problems of the completionsemantics, a spate of semantics proposals were set forth, from the late eighties onwards, includingthe well-founded semantics (WFS) of [24], which deals semantically with non-terminating top-down computations, by assigning such computations the truth value of \false" or \unde�ned", andthereby giving semantics to every program. For this semantics several query evaluation procedureshave been de�ned [7, 11, 13, 32, 47, 53, 54, 57, 61]. The well-founded semantics deals only withnormal programs, i.e. those with just negation by default, and thus it provides no mechanism forexplicitly declaring the falsity of literals. This can be a serious limitation.The evolution of Logic Programming (LP) semantics has now included the introduction ofa new explicit form of negation, beside the older implicit (or default) negation typical of LogicProgramming. The richer language has been shown adequate for a diversity of knowledge repre-sentation and reasoning forms [9, 28, 48].In fact, in recent years several authors (e.g. [27, 48, 66]) have stressed the importance ofextending LP with a second kind of negation :; for use in deductive databases, knowledge rep-resentation, and non-monotonic reasoning (NMR). Di�erent semantics for extended LPs with:-negation (ELP) have appeared (e.g. [3, 27, 45, 55, 65, 66]). The particular generalization forextended programs of WFS de�ned in [45], WFSX, which is taken as the base semantics in thisarticle, provides an added qualitative representational expressivity that can capture a wide varietyof logical reasoning forms, and serve as an instrument for programming them.The two forms of negation, default and explicit, are not unrelated: our \coherence principle"stipulates that the latter entails the former. Default negation and the revision of believed assump-tions in the face of contradiction, or integrity constraint violation, are the two non-monotonicreasoning mechanisms available in logic programming. Their use in combination with explicitnegation adds on a qualitative representational expressivity, as we've shown in [48].For the widespread of such uses of extended logic programs the de�nition of a correct top-downquerying mechanism is required, much as for Prolog wrt. normal programs. Indeed, users normallywish to know the instances of a literal that belong to the semantics rather than the whole semantics.One purpose of this paper is to present and exploit a SLDNF-like derivation procedure, SLX, forprograms with explicit negation under well founded semantics (WFSX), and prove its soundnessand completeness. (Its soundness wrt. the answer-sets semantics is also shown.) Additionally,we have produced a Prolog interpreter for the procedure, and a pre-processor into Prolog basedon it, which show the procedure's amenability to implementation. Because of lack of space theseimplementations are not described in the paper but are available on request.The SLX derivation method is directly inspired on the semantic AND-tree characterization ofWFSX in our paper [2], but does not presuppose it. In fact, that work can be seen as a preliminarystep towards the de�nition of the procedure presented here, in which there was no concern with theactual construction of the trees (they were assumed to exist). The attribution of failure and successwas there made \a posteriori", and assuming all the required trees simultaneously available. Here,not only do we de�ne how the derivations are constructed in a top-down way, using an arbitraryselection rule, but also do we attribute success and failure of literals incrementally as the derivation2



develops. The characterization in [2] is a declarative semantics, and a �rst step towards the presentone, which is procedural.Our choice of WFSX as the base semantics is justi�ed by the structural properties it possess,which are paramount for top-down query evaluation. Indeed, because of its properties, whichother approaches do not fully enjoy,WFSX is a natural candidate to being the semantics of choicefor logic programs extended with explicit negation. Namely, it exhibits the structural properties:well-foundedness, cumulativity, rationality, relevance, and partial evaluation. By well-foundednesswe mean that it can be simply characterized (without any recourse to three-valued logic) by twoiterative �xpoint operators. By cumulativity [20, 38], we refer to the e�ciency related abilityof using lemmas, i.e. the addition of lemmas does not change the semantics of a program. Byrationality [20, 38], we refer to the ability to add the negation of a non-provable conclusion withoutchanging the semantics. By relevance [21], we mean that the top-down evaluation of a literal'struth-value requires only the call-graph below it. By partial evaluation [21] we mean that thesemantics of a partially evaluated program keeps to that of the original1. Additionally, it isamenable to both top-down and bottom-up procedures, and its complexity for �nite DATALOGprograms is polynomial2.Furthermore, WFSX is sound wrt. to the answer-sets semantics of [27], and it is a betteraproximation to answer-sets than simply usingWFS plus the renaming of :-literals (cf. proposition3.1). Thus, our top-down method can be used as a sound one for answer-sets, that provides lessincompleteness than others. These and other properties of WFSX are detailed and proven in [6].Since WFSX coincides with WFS on normal programs, our method is applicable to it and, forground programs, compares favourably with previous approaches [2].To the best of our knowledge paper [62] is the only in the literature that addresses the topic ofproof procedures for extended logic programs. The author uses the notion of conservative deriv-ability [66] as the proof-theoretic semantics for extended programs. The paper provides a programtransformation from such programs to normal ones. Then it is proved that Kunen semantics [39]applied to the transformed program is sound and complete wrt. conservative derivability. Thisapproach has several problems mainly motivated by the interpretation of default negation as �nitefailure as recognized by the author. For instance, in the program fa ag the literal :a is falsebut a is unde�ned, contrary to the results obtained by answer sets and WFSX where not a is true.As a �nal remark, conservative derivability is not de�ned for programs with functor symbols.Therefore the approach is only applicable to extended programs without functor symbols. WFSXsolves all these problems properly. This author, moreover, deals with contradiction by inhibitingthe propagation of its consequences.Of course, introducing explicit negation requires dealing in addition with veritable contra-diction. Indeed, information is not only normally incomplete but contradictory as well. Oneconsequence, not all (negation by) default assumptions can be made, but only those not partak-ing of contradiction. This amounts to the ancient and venerable logical principle of \reductio adabsurdum": if an assumption leads to contradiction withdraw it. One major contribution of ourwork is that of tackling this issue with some generality within our semantics of extended logicprograms.Like [62], we too allow for contradiction to appear, and show moreover how it can be removedby freely changing the truth-values of some subset of a set of pre-designated revisable literals. Toachieve this, we start by introducing a paraconsistent version of WFSX, WFSX p, that permitscontradictions, and for which our SLX top-down procedure is proven correct as well.This procedure can be used to detect the existence of pairs of complementary literals inWFSX psimply by detecting the violation of integrity rules f ( L;:L introduced for each L in the languageof the program. Furthermore, integrity constraints of a more general form are allowed (cf. section1Stable model based approaches [25], such as answer-sets [27], enjoy neither cumulativity, nor rationality, norrelevance.2Not so for stable model based approaches: there are no iterative top-down or bottom-up operators, and thecomplexity for computing the stable models of a program is co-NP-complete, even for DATALOG.3



7.1), whose violation can likewise be detected by SLX.Removal of contradiction or integrity violation is accomplished by a variant of the SLX pro-cedure which collects, in a formula, the alternative combinations of revisable literal's truth-valuesthat ensure the said removal. The formulas, after simpli�cation, can then be satis�ed by a num-ber of truth-values changes in the revisables, among \true", \false", and \unde�ned". A notionof minimal change (improving on previous work) is de�ned as well that establishes a closenessrelation between a program and its revisions. Forthwith, the changes to achieve a revision can beenforced by introducing or deleting program rules only for the revisable literals.We do not address here the minimization of the formulas obtained: it is susceptible of simpli�ca-tion methods, generalized for the three-valued setting, once the formula is normalized. Incrementalsimpli�cation methods are also possible.Our procedures have been implemented and used to run a great variety of non-monotonicreasoning problems, solved using extended logic programming, many of which published in ouraforementioned references. We've also introduced extensions to the logic programming languagethat allow for the representation of preference relations on the revisions [18]. This is essential fore�cient and practical revision methods.1.1 Structure of the paperThe remainder of this paper is structured in sections, as follows. Firstly, we argue the need forextended logic programs with two types of negation, default and explicit. Secondly, we produce anoverview of the WFSX base semantics. Thirdly, we motivate and recap a sound and (theoretically)complete top-down procedure, SLX, for deciding whether a literal belongs to the well-foundedmodel of WFSX.To address the problem of revising contradiction we then introduce a paraconsistent version ofWFSX. Then we show that the SLX procedure is also sound and complete with respect to it, so asto be able to detect for which pairs of complementary literals contradiction obtains. Subsequently,we elaborate on the SLX procedure, by employing a combination of sound and complete pruningrules wrt. to (at least) �nite ground programs.The following section addresses the issue of revising programs contradictory wrt. a set ofintegrity constraints. First, the language is extended to allow for a general form of integrityconstraints. Next are introduced the notions of program state and revision, and of the closenessof revisions to the original program.Afterwards, the reader can �nd two extended application examples, in the �elds of declarativedebugging and diagnosis, which show the utility of the general revision framework presented here.The novelty of the present approach lies in its formalization, and the use of the closeness relationwith more general integrity constraints. For other applications to non-monotonic taxonomies,hypothetical and abductive reasoning, reasoning about actions, and more model based diagnosisand declarative debugging see [48, 50, 49, 51].The next to last subsection overviews the issues involved in our implemented program revisionand minimization of change procedures but for lack of space does not detail them.In the last subsection we provide more detailed theoretical insights, justifying the choice of ourparticular closeness relation.Finally, there follow the conclusions, a discussion, and mention of future work.Appendix A contains the proof of correctness for SLX wrt. the paraconsistent WFSX. Ap-pendix B contains proofs on distance and closeness between program states.2 Extended logic programsIn this section we begin by reviewing the main motivations for introducing a second kind ofnegation in logic programs.In normal logic programs the negative information is implicit, i.e. it is not possible to explicitlystate falsity, and propositions are assumed false if there is no reason to believe they are true. This4



is what is wanted in some cases. For instance, in the classical example of a database that explicitlystates 
ight connections, one wants to implicitly assume that the absence of a connection in thedatabase means that no such connection exists.However this is a serious limitation in other cases. As argued in [44, 64], explicit negativeinformation plays an important rôle in natural discourse and common-sense reasoning. The rep-resentation of some problems in logic programming would be more natural if logic programs hadsome way of explicitly representing falsity. Consider for example the statement: \Penguins do not
y" One way of representing this statement within logic programming could be:no fly(X)  penguin(X)3But this representation does not capture the connection between the predicate no fly(X)and the predication of 
ying. This becomes clearer if, additionally, we want to represent thestatement: \Birds 
y". Clearly this statement can be represented by fly(X)  bird(X). Butthen no connection whatsoever exists between the predicates no fly(X) and fly(X): Intuitivelyone would like to have such an obvious connection established.The importance of these connections grows if we think of negative information for representingexceptions to rules [35]. The �rst statement above can be seen as an exception to the general rulethat normally birds 
y. In this case we really want to establish the connection between 
ying andnot 
ying.Exceptions expressed by sentences with negative conclusions are also common in legislation[34, 36]. For example, consider the provisions for depriving British citizens of their citizenship:40 - (1) Subject to the provisions of this section, the Secretary of State may byorder deprive any British citizen to whom this subsection applies of hisBritish citizenship if [: : :](5) The Secretary of State shall not deprive a person of British citizenshipunder this section if [: : :]Clearly, 40.1 has the logical form \P if Q" whereas 40.5 has the form \: P if R". Moreover, itis also clear that 40.5 is an exception to the rule of 40.1.Above we argued for the need of having explicit negation in the heads of rules. But there arealso reasons that compel us to believe explicit negation is needed in their bodies too. Considerthe statement4:\A school bus may cross railway tracks under the condition that there is no approaching train"It would be wrong to express this statement by the rule cross  not train. The problem is thatthis rule allows the bus to cross the tracks when there is no information about either the presenceor the absence of a train. The situation is di�erent if explicit negation is used: cross  :train.Then the bus is only allowed to cross the tracks if the bus driver is sure that there is no approachingtrain. The di�erence between not p and :p in a logic program is essential whenever we cannotassume that available positive information about p is complete, i.e. we cannot assume that theabsence of information about p clearly denotes its falsity.Moreover, the introduction of explicit negation in combination with the existing default nega-tion allows for greater expressivity, say for representing statements like:\If the driver is not sure that a train is not approaching then he should wait"in a natural way: wait not :train.Examples of such combinations also appear in legislation. For example consider the followingarticle from \The British Nationality Act 1981" [29]:3Or equivalently, as suggested in [26], fly0(X) penguin(X).4This example is due to John McCarthy, and was published for the �rst time in [27].5



(2) A new{born infant who, after commencement, is found abandoned in the UnitedKingdom shall acquire British citizenship by section 1.2 if it is not shown that it is notthe case that the person is born [: : :]Clearly, conditions of the form \it is not shown that it is not the case that P" can be expressednaturally by not :P:Another motivation for introducing explicit negation in logic programs relates to the symmetrybetween positive and negative information. This is of special importance when the negativeinformation is easier to represent than the positive one. One can �rst represent it negatively, andthen say that the positive information corresponds to its complement.In order to make this clearer, take the following example [27]:Example 2.1 Consider a graph description based on the predicate arc(X;Y ), which expressesthat in the graph there is an arc from vertex X to vertex Y: Now suppose that we want to determinewhich vertices are terminals. Clearly, this is a case where the complement information is easierto represent, i.e. it is much easier to determine which vertices are not terminal. By using explicitnegation in combination with negation by default, one can then easily say that terminal verticesare those which are not nonterminal::terminal(X)  arc(X;Y )terminal(X)  not :terminal(X)Finally, another important motivation for extending logic programming with explicit negationis to generalize the relationships between logic programs and non-monotonic reasoning formalisms.Such relationships, drawn for the most recent semantics of normal logic programs, have proven ofextreme importance for both sides, giving them mutual bene�ts and clari�cations.Indeed, extended logic programming has been shown adequate for namely these forms ofreasoning: incomplete information, contradiction handling, belief revision, default, abductive,counter-factual, and hypothetical. And it has been shown adequate for namely these knowledgerepresentation forms: rules, default rules, constraints (denials), exceptions to defaults, preferencesamong defaults, hypothetical possibilities, and falsity, whether via explicit or default negation (seereferences in [9, 48]).3 WFSX overviewIn this section, for the sake of the paper's self-su�ciency, we recall the language of logic programsextended with explicit negation, or extended logic programs for short, and brie
y review theWFSX semantics [45]. An extended program is a set of rules of the form:L0  L1; : : : ; Lm; not Lm+1; : : : ; not Ln (0 � m � n)where each Li is an objective literal. An objective literal is either an atomA or its explicit negation:A: In the sequel, we also use : to denote complementary literal wrt. the explicit negation, sothat ::A = A. The set of all objective literals of a program P is called the extended Herbrandbase of P and denoted by H(P ): The symbol not stands for negation by default5. not L is calleda default literal. Literals are either objective or default literals. By not fa1; : : : ; an; : : :g we meanfnot a1; : : : ; not an; : : :g: An interpretation of an extended program P is denoted by T [ not F ,where T and F are disjoint subsets of H(P ): Objective literals in T are said to be true in I,objective literals in F false by default in I, and in H(P ) � I unde�ned in I.WFSX follows fromWFS for normal programs plus the coherence requirement relating the twoforms of negation:\For any objective literal L, if :L is entailed by the semantics then not L is also entailed".5This designation has been used in the literature instead of the more operational \negation as failure (to prove)".6



Note that this requirement is obeyed by answer-sets, but not so byWFS when explicitly negatedliterals are simply replaced by new atoms (as in [55]). The requirement states that whenever someliteral is explicitly declared as false then, for coherence, it must be assumed false by default too.In an epistemic view of logic program, coherence can be seen as an instance of the necessitationprinciple. That principle states that if something is known then it is believed [4]. Consequently,if something is known to be false (i.e. is explicitly false), then it is believed false (i.e. is false bydefault).Example 3.1 Consider the program:married(mary; tom)  not married(mary; peter)married(mary; peter)  not married(mary; tom):married(mary; tom)Because of coherence, with WFSX this program entails not married(mary; tom) and, conse-quently, married(mary; peter). This is the result of answer-sets as well.By simply using WFS, with the renaming of explicitly negated literals, the program does notentail married(mary; peter), which seems a counterintuive result.Because more adequate for our purposes, here we present WFSX in a distinctly di�erentmanner with respect to its original de�nition. This presentation is based on alternating �x-pointsof Gelfond{Lifschitz �{like operators [25, 27]. The proof of equivalence between both de�nitions,as well as proofs of other results in this section, can be found in [6]. We begin by recalling thede�nition of �:De�nition 3.1 (The �{operator) Let P be an extended program, I an interpretation, and letP 0 (resp. I 0) be obtained from P (resp. I) by denoting every literal :A by a new atom, say : A.The GL{transformation P 0I0 is the program obtained from P 0 by removing all rules containing adefault literal not A such that A 2 I 0, and by then removing all the remaining default literals fromP . Let J be the least model of P 0I0 . �I is obtained from J by replacing the introduced atoms : Aby :A.To impose the coherence requirement we introduce:De�nition 3.2 (Semi-normal version of a program) The semi-normal version of a programP is the program Ps obtained from P by adding to the (possibly empty) Body of each rule L Bodythe default literal not :L; where :L is the complement of L wrt. explicit negation.Below we use �(S) to denote �P (S); and �s(S) to denote �Ps(S):De�nition 3.3 (Partial stable model) A set of objective literals T generates a partial stablemodel (PSM) of an extended program P i�: (1) T = ��sT ; and (2) T � �sT . The partial stablemodel generated by T is the interpretation T [ not (H(P ) � �sT ).In other words, partial stable models are determined by the �x-points of ��s. Given a �x-pointT , objective literals in T are true in the PSM, objective literals not in �sT are false by default,and all others are unde�ned. Thus, objective literals in �sT are all the true or unde�ned ones.Note that condition (2) imposes that a literal cannot be both true and false by default (viz. if itbelongs to T it does not belong to H � �sT , and vice-versa). Moreover note how the use of �simposes coherence: if :L is true, i.e. it belongs to T , then in �sT , via semi-normality, all rulesfor L are removed and, consequently, L 62 �sT , i.e. L is false by default.Example 3.2 Program P = fa; :ag has no partial stable models. Indeed, the only �x-pointof ��s is fa;:ag, and fa;:ag 6� �sfa;:ag = fg. Thus it is not a PSM.Programs without partial stable models are said contradictory. In section 5 we elaborate furtheron the results obtained by using ��s on contradictory programs. Now we de�ne the semantics fornon-contradictory programs. 7



Theorem 3.1 (WFSX semantics) Every non-contradictory program P has a least (wrt. �)partial stable model, the well-founded model of P (WFM (P )).To obtain an iterative \bottom-up" de�nition for WFM (P ) we de�ne the following trans�nitesequence fI�g: I0 = fgI�+1 = ��sI�I� = S fI� j � < �g for limit ordinal �There exists a smallest ordinal � for the sequence above, such that I� is the smallest �x-pointof ��s, and WFM (P ) = I� [ not (H(P )� �sI�).In this constructive de�nition literals obtained after an application of ��s (i.e. in some I�) aretrue in WFM (P ), and literals not obtained after an application of �s (i.e. not in �sI�, for some�) are false by default in WFM (P ).Note that, like the alternating �x-point de�nition of WFS [63], this de�nition of WFSX alsorelies on the application of two anti-monotonic operators. However, unlike the de�nition of WFS,these operators are distinct. As we'll see, this points to the de�nition of two kinds of derivationprocedures, one re
ecting applications of � and proving verity of objective literals, and the otherre
ecting applications of �s and proving non-falsity of objective literals. The two become meshedwhen the proof of verity of not L is translated into the failure to prove the non-falsity of L.Theorem 3.2 (Relation to WFS) For normal logic programs (i.e. without explicit negation)WFSX coincides with the well{founded semantics of [24].Theorem 3.3 (Relation to Answer-sets) Let P be an extended logic program with at least oneanswer-set. Every answer-set of P is also a PSM of P . Moreover, for any objective literal L:� If L 2WFM (P ) then L belongs to all answer-sets of P .� If not L 2WFM (P ) then L does not belong to any answer-set of P .For lack of space, here we do not elaborate more on the relation to answer-sets, and on howthe use of semi-normality imposes coherence. However, it is interesting to note that also any othercombination of the �{like operators used to de�ne WFSX (i.e. the operators: �s�, ��6, and �s�s)gives semantics that are sound wrt. answer-sets, but which are not as close to the latter asWFSX.By \not as close" we mean that its least �x-points are subsets of the intersection of all answer-sets,smaller (wrt. set inclusion) than WFSX itself. Thus we say that the WFSX combination is thebest approximation to answer-sets semantics, compared to the others.Proposition 3.1 Let P be a non-contradictory program. Then:� lfp(�s�) � lfp(�s�s) � lfp(��s)� lfp(�s�) � lfp(��) � lfp(��s)4 SLX derivation procedureIn this section we review the de�nition of SLX7, a top-down derivation procedure for logic programsextended with explicit negation under the well-founded semantics, �rst presented in [1], whosecorrectness wrt. WFSX is proven there.The de�nition of SLX relies on SLDNF-like well known de�nitions of derivation, refutation,and failure. For the sake of simplicity, in [1] and also in this recap, the de�nition is only for ground(but possibly in�nite) programs.In order to informally motivate the de�nitions, we start with the simpler problem of programswithout explicit negation. It is well known [11, 12, 13, 47, 61] that the main issues in the de�nitionof top-down procedures for WFS are in�nite positive recursion, and in�nite recursion through6This combination exactly corresponds to WFS with a renaming of explicitly negated literals, as in [55].7Where X stands for eXtended programs, and SL stands for Selected Linear.8



negation by default. The former gives rise to the truth value false (so that, for some L involvedin the recursion, there should exist a refutation for not L, and no refutation for L), and the latterto the truth value unde�ned (so that both L and not L should have no refutation).Apart from these additional problems, we mainly follow the ideas of SLDNF [15, 41] whererefutations are derivations ending with the empty goal, derivations are constructed via resolution,and the negation as failure rule (stating that a selected not L is removed from the goal if L hasno refutation and is the last goal of the derivation if L has one).To solve the problem of positive recursion, as in SLS-resolution [54], we have introduced afailure rule for not necessarily �nite derivations.Example 4.1 Let P = fp pg: The derivations for p are ( p; p; : : :) and every pre�x of it.None of the pre�xes of this in�nite derivation is a refutation, because all of them end with a goaldi�erent from the empty goal. By stipulating that no in�nite derivation is a refutation, there isno refutation for  p, and so we have that ( not p; 2) is a refutation.For recursion through negation by default we want both L and not L to have no refutations,which seems to violate the negation as failure rule. In fact that rule in SLDNF states that ifthere is no refutation for L, not L should succeed (i.e. be removed from the goal), and if L has arefutation than not L should fail (i.e. be the last goal in the derivation).This is so because SLDNF relies on a two-valued semantics, and so failure of verity meansfalsity and vice-versa. In WFS, it being a three-valued semantics, the same cannot apply. In fact,for WFS a failure of L simply means that L is not true, i.e. it can be false or unde�ned.To solve this problem, others [53, 54, 57, 61] have de�ned derivation procedures that considerthe extra status of \unde�ned" or \undetermined" assigned to goals. Literals involved in anin�nite recursion through negation are assigned that status. As we shall see below, this approachdoes not easily generalize to extended programs (cf. remark 4.1).Instead of considering an extra status, and for similarity with SLDNF, we've distinguished twokinds of derivations: SLX-T-derivations that prove verity in the WFM, and SLX-TU-derivations(where TU stands for \true or unde�ned") that prove non-falsity in the WFM. Now, for any L,the verity of not L succeeds i� there is no SLX-TU-refutation for L (i.e. L is false), and thenon-falsity of not L succeeds i� there is no SLX-T-refutation for L (i.e. L is not true).Having these two kinds of derivations, it becomes easy to de�ne the derived goal of a goal G,even when the selected literal L is involved in recursion through negation by default. Indeed, sincein this case and according to WFS, L is to be unde�ned, it must be failed (i.e. be the last goal inthe derivation) if it occurs in a SLX-T-derivation, and refuted (i.e. be removed from the goal) ifit occurs in a SLX-TU-derivation.Example 4.2 Let P = fp not pg: In order to prove the verity of p we start by building aSLX-T-derivation for  p. By resolving the goal with the program rule we obtain  p; not p:Now,  not p is the last goal in the derivation if there is a SLX-TU-refutation for  p, and isreplaced by the empty goal otherwise.So we start building a SLX-TU-derivation for  p: Resolving the goal with the program rulewe obtain p; not p; and so there is a recursion in not p through negation by default. Thus, aswe are in a derivation for \true or unde�ned", not p is removed from the goal, and its derived goalis the empty goal. This gives a SLX-TU-refutation for  p, which in turn determines  not pto be the last goal in the SLX-T-derivation above, making it a failed one. So p is unde�ned(T-derivations fail and there is a successful TU-derivation).Though having two kinds of derivations, we do not duplicate the work. In fact, each derivationtype can be simply seen as a status assigned to a usual derivation. One of the status fails literalsinvolved in recursion through negation, and the other succeeds those literals.Now we motivate the generalization of this procedure to deal with explicit negation in WFSX.In a lot of points the treatment of extended programs is akin to that of normal ones, whereinstead of atoms we refer to objective literals, namely because, as expected, objective literals aretreated exactly like atoms in WFS. 9



The main di�erence in the generalization to extended programs resides in the treatment ofnegation by default. In order to ful�ll the coherence requirement there must be an additional wayto refute a literal not L: In fact not L is true if :L is true.Example 4.3 Consider P : a  not b :a  b  not awhose WFM is f:a; b; not a; not :bg:In order to prove the verity of b, one starts to build one SLX-T-derivation for goal  b. Bysolving it with the only rule for b in P we obtain b; not a. Now, according to what was saidabove, one has to build SLX-TU-derivations for  a.Solving  a with the �rst program rule we obtain  a; not b. Since this is a case ofrecursion through negation by default, and we are in a TU-derivation, the derived goal is  2.Consequently there is no refutation for  b. However, since :a is true, by coherence  not a(and thus  b also) must be refuted, by the additional method of proof for default literals viacoherence.In SLX-T-derivations, in order to obtain coherence, we introduce an extra possibility of re-moving a not L from a goal:In a SLX-T-derivation, a selected literal not L is removed from a goal if there is noSLX-TU-refutation for L or if there is one SLX-T-refutation for :L.Care must also be taken in non-falsity derivations because the coherence requirement canoverride unde�nedness (cf. [45]):Example 4.4 Consider P : a  b :b  b  not c c  not cwhose WFM is f:b; not a; not b; not :b; not :cg:In trying to prove verity of not a one starts building SLX-TU-derivations for  a to checkwhether they fail. The only possible such derivation starts with  a; b; not c. To determinethe derived goal of not c one tries to �nd a SLX-T-refutation for  c which, as the reader caneasily check, does not exist. Thus there is a SLX-TU-refutation for a ( a; b; not c; 2),so that there is no SLX-T-refutation for  not a.However, not a belongs to the WFM of P . Note that this problem occurs because there is aSLX-TU-refutation for  b which should not exist since b is false. Indeed the falsity of b in theWFM is imposed by the coherence principle, since :b is true. Note that in the derivations above:b is not even used.In fact, in the SLX-TU-derivation for  a, the goal  b should be the last one, because :b istrue. In general:In a SLX-TU-derivation resolution can only be applied to a selected objective literalL if there is no SLX-T-refutation for :L.Remark 4.1 Note that coherence intervenes di�erently in T and TU-derivations. This is a con-sequence of having two distinct anti-monotonic operators in the de�nition of the WFM.At this point it is easier to understand the claim we made before that the usage of an unde�nedstatus, instead of having two di�erent kinds of derivation, hampers the generalization to extendedprograms. In fact, in normal programs one can simply replace the two kinds of derivations by theaddition of an unde�ned status because the single di�erence between the two derivation types is inthe success or failure of literals involved in in�nite recursion through default negation. However,in extended programs there are other di�erences, namely in what regards the applications of thecoherence principle, which make the distinction crucial.10



The formalizationof the intuitions presented above yields the following de�nitions of derivationsand refutations:De�nition 4.1 (SLX refutation and failure) A SLX-T-refutation (resp. SLX-TU-refutation)for G in P is a �nite SLX-T-derivation (resp. SLX-TU-derivation) which ends in the empty goal( 2).A SLX-T-derivation (resp. SLX-TU-derivation) for G in P is a SLX-T-failure i� it is not arefutation, i.e. it is in�nite or it ends with a goal other than the empty goal.De�nition 4.2 (SLX-T-derivation) Let P be an extended program, and R an arbitrary but�xed computational rule. A SLX-T-derivation G0; G1; : : : for G in P via R is de�ned as follows:G0 = G. Let Gi be  L1; : : : ; Ln and suppose that R selects the literal Lk (1 � k � n). Then:� if Lk is an objective literal, and the input rule is Lk  B1; : : : ; Bm, the derived goal is L1; : : : ; Lk�1; B1; : : : ; Bm; Lk+1; : : :Ln.� if Lk is not A then, if there is a SLX-T-refutation for :A in P or there is no SLX-TU-refutation for A in P , the derived goal is  L1; : : : ; Lk�1; Lk+1; : : :Ln.� otherwise Gi is the last goal in the derivationDe�nition 4.3 (SLX-TU-derivation) Let P be an extended program, and R an arbitrary but�xed computational rule. A SLX-TU-derivation G0; G1; : : : for G in P via R is de�ned as follows:G0 = G. Let Gi be  L1; : : : ; Ln and suppose that R selects the literal Lk (1 � k � n). Then:� if Lk is an objective literal then{ if there exists a SLX-T-refutation for :Lk then Gi is the last goal in the derivation.{ otherwise, if the input rule is Lk  B1; : : : ; Bm the derived goal is: L1; : : : ; Lk�1; B1; : : : ; Bm; Lk+1; : : :Ln{ if there is no rule for Lk then Gi is the last goal in the derivation.� if Lk is not A then:{ if there is a SLX-T-refutation for  A in P then Gi is the last goal in the derivation.{ if all SLX-T-derivations for  A are SLX-T-failures then the derived goal is: L1; : : : ; Lk�1; Lk+1; : : :Ln:{ due to in�nite recursion through default negation, it might happen that the previouspoints are not enough to determine the derived goal. In such a case, by de�nition, thederived goal is also  L1; : : : ; Lk�1; Lk+1; : : :Ln.The soundness of this procedure wrt. to both WFSX and the answer-sets semantics, as wellas its theoretical completeness8 wrt. WFSX were proven in [1]. In this section we simply presentthe theorems. Their proofs follow immediately from the proofs of theorems 5.5 and 5.6 presentedin appendix A.Theorem 4.1 (Soundness of SLX) Let P be a non-contradictory extended logic program, L anarbitrary literal from P . If there is an SLX-T-refutation for  L in P then L 2WFM (P ).Corollary 4.1 (Soundness wrt. answer-sets) Let P be an extended logic program with at leastone answer-set, and L an arbitrary objective literal from P . If there is an SLX-T-refutation for L in P then L belongs to all answer-sets of P . If there is an SLX-T-refutation for  not L inP then there is no answer-set of P with L.Theorem 4.2 (Theoretical completeness of SLX) Let P be a non-contradictory program,and L an arbitrary literal from P . If L 2 WFM (P ) then there exists a SLX-T-refutation for L in P .8In practice completeness cannot be achieved because in general the WFM is not computable [24]. However, intheory, and with the possible need of constructing more than ! derivations, completeness is obtained.11



5 Detecting ContradictionsAs mentioned in the introduction, being able to \run" non-contradictory programs is not our onlygoal. We're also interested in detecting occurrences of contradiction in order to remove it.To remove a contradiction, as we shall see in detail in section 7, we need �rst to detect it and,more importantly, we need to know what are the \reasons" or \causes" that lead to contradiction,i.e. what are the assumptions made that are responsible for contradiction by supporting it. Butboth the de�nition ofWFSX and the correctness results for SLX do not serve these purposes. Notethat the WFM is only de�ned for non-contradictory programs, and correctness is only proven forthose programs.It can be argued that the de�nition of WFSX is good enough for detecting contradiction, sinceit is possible to know whether a program has PSMs. In [1], we've shown that SLX can detectcontradiction: if a program P is contradictory then there exists a L 2 H for which there areSLX-T-refutations for both  L and  :L. But these results are still weak for the purpose ofusing the semantics, as well as SLX, to determine how a contradiction is to be removed. They donot guide us to the \causes" for the contradiction.To be able to determine such \causes", in this section we �rst generalize WFSX in order tode�ne a paraconsistent WFM for contradictory programs, and then show that the correctness ofSLX can be lifted to this paraconsistent case.The main idea of the paraconsistent WFSX (or WFSX p for short) is to calculate, always inkeeping with coherence, all consequences of the program, even those leading to contradiction, aswell as those arising from contradiction9. The following example provides an intuitive preview ofwhat we intend to capture:Example 5.1 Consider program P :a not b (i) d not a (iii):a not c (ii) e not :a (iv)1. not b and not c hold since there are no rules for either b or c.2. :a and a hold from 1 and rules (i) and (ii).3. not a and not :a hold from 2 and the coherence principle relating the two negations.4. d and e hold from 3 and rules (iii) and (iv).5. not d and not e hold from 2 and rules (iii) and (iv), as they are the only rules for d and e.6. not :d and not :e hold from 4 and the coherence principle.The whole set of literal consequences is then:fnot b; not c;:a; a; not a; not :a; d; e; not d; not e; not :d; not :eg:Here we do not argue that WFSX p is in fact a \semantics". Instead we view WFSX p as atool needed for detecting contradiction and its causes, when WFSX is not able to assign meaningto a program. This tool is then used as the basis for removing contradiction where possible.The semantics assigned to the original is the WFSX of the program obtained after removingcontradiction.Since the purpose of WFSX p is to detect contradiction on the basis of WFSX, every principlethat allows derivation of literals inWFSX must also be enforced inWFSX p. This is why coherenceis still kept in the paraconsistent case.WFSX is not de�ned for contradictory programs because such programs have no PSMs. Byde�nition of PSM, a program has none if either it has no �x-points of ��s or if all �x-points T of��s do not comply with T � �sT . The next theorem shows that the �rst case is impossible, i.e.all programs (contradictory or otherwise) have �x-points of ��s.9This kind of paraconsistent reasoning is called liberal reasoning in [67].12



Theorem 5.1 The operator ��s is monotonic, for arbitrary sets of literals.Proof: We have to prove that for arbitrary sets of objective literals A and B: A � B ) ��sA ���sB. To do so we begin by proving that both � and �s are anti-monotonic:Assume that A � B. By de�nition of GL-transformation, it is clear that PB � PA (resp.PsB � PsA ). Since these transformed programs are de�nite, and Horn clause logic is monotonic, itdirectly follows that �B � �A (resp. �sB � �sA).Thus, if A � B, by anti-monotonicity of �s, �sB � �sA, and by anti-monotonicity of �,��sA � ��sB. }Consequently every program has a least �x-point of ��s. If, for some program P , the least�x-point of ��s complies with condition (2) of de�nition 3.3 then the program is non-contradictoryand the least �x-point is the WFM. Otherwise the program is contradictory. Moreover, the testfor knowing whether a program is contradictory, given its least �x-point of ��s, can be simpli�edto: \the program is non-contradictory i� its least �x-point of ��s has no pair of :-complementaryliterals" (cf. theorem 5.3 below).Lemma 5.2 Let S be any non-contradictory set of literals, i.e. such that 6 9L 2 H; fL;:Lg � S.Then, S \ �S � �sS.Proof: Let L be any literal such that L 2 S \�S, i.e. L 2 S ^L 2 �S. Given that, by hypothesis,S is non-contradictory, then :L 62 S. Thus :L 62 S ^ L 2 �S, which, by de�nition of �s, clearlyimplies that L 2 �sS. }Theorem 5.3 Let T be the least �x-point of ��s for a program P . Then:T 6� �sT iff 9L 2 H; fL;:Lg � TProof:( If 9L 2 H; fL;:Lg � T then when calculating �sT all rules for both L and :L are deleted.Thus neither L nor :L belong to �sT , and so T 6� �sT .) We prove that, if T = lfp(��s) and 6 9L 2 H; fL;:Lg � T , then T � �sT .We start by showing that with the above assumptions, T \�sT is a post-�xed point of ��s,i.e. ��s (T \ �sT ) � T \�sT . This inclusion is proven in two steps: (1) ��s(T \�sT ) � T ,and (2) ��s(T \ �sT ) \ T � �sT .1. Trivially T \ �sT � T . By monotonicity of ��s, this implies that ��s(T \ �sT ) ���sT = T .2. Trivially T \ �sT � �sT . By anti-monotonicity of �, this implies T = ��sT � �(T \�sT ), i.e. 8L; L 2 T ) L 2 �(T \ �sT ).Given that by hypothesis 6 9L 2 H; fL;:Lg � T , if L 2 T then :L 62 T , and sinceT \ �sT � T , it follows that :L 62 T \ �sT . Thus:8L; L 2 T ) (:L 62 T \ �sT ^ L 2 �(T \ �sT ))So, similarly to the proof of lemma 5.2: 8L; L 2 T ) L 2 �s(T \ �sT ), i.e.T � �s(T \ �sT ).Again by anti-monotonicity of �, ��s(T \ �sT ) � �T .This implies that ��s(T \ �sT ) \ T � T \ �T , and by lemma 5.2:��s(T \ �sT ) \ T � T \ �T � �sTSince T \�sT is a post-�xed point of ��s, and ��s is monotonic, then10 lfp(��s) � T \�sT .Given that, by hypothesis, T = lfp(��s), T � T \ �sT , and so, by the properties ofintersection, T � �sT .}10Recall that lfp(F ) = glbfxj F (x) � xg, where F is any monotonic operator in a complete lattice.13



So, if one is interested only in the WFM, the condition T � �sT can be replaced by testingwhether T has :-complementary literals. As noted in page 7, the former condition guaranteesthat literals cannot be both true and false by default. By removing that condition this guaranteeis no longer valid. But this is precisely what we want in the de�nition of the paraconsistent WFSX(note how both a and not a belong to the desired semantics in example 5.1).All which is explained above points towards a de�nition of WFSX p where the construction ofthe WFM given by the least �x-point of ��s is kept, condition T � �sT is removed, and wherecontradictory programs are those that contain a pair of complementary literals in the WFM:De�nition 5.1 (ParaconsistentWFSX) Let P be an extended program whose least �x-point of��s is T . Then, the paraconsistent well-founded model of P is WFMp(P ) = T [ not (H� �sT ).Theorem 5.4 (Generalization of WFSX) Let P be such that WFMp(P ) = T [ not F . P isnon-contradictory i� for no objective literal L, fL;:Lg � T . Moreover, if P is non-contradictorythen WFMp(P ) = WFM (P ).Does this de�nition ful�ll the objectives we put to ourselves in the beginning of this section?In other words, does WFSX p comply with coherence? And does it calculate all consequences ofthe program, even those leading to contradiction, as well as those arising from contradiction?The answer to both these questions is yes. The fact that WFSX p complies with coherence iseasy to check. The same argument used for non-contradictory programs can also be used here:for a model T [ not F , if :L belongs to T , then in �sT , via semi-normality, all rules for L areremoved and, consequently, L 62 �sT , i.e. L 2 F .Checking the verity of the answer to the second question is not so immediate. What we wishto guarantee is that when a literal L is both true and false, we do consider both the consequencesof it being true, as well as those of it being false. Let's �rst look at the following property of thesequence for calculating the least �x-point of ��s of a program.Proposition 5.1 Let fI�g be the sequence for calculating the least �x-point T of ��s in programP , let I� be an element of that sequence, and L be an arbitrary literal from P . Then:� if L 62 �sI� then not L 2WFMp(P );� if L 2 ��sI� then L 2WFMp(P ).Proof (sketch): The proof of the second item is trivial given the monotonicity of ��s. To provethe �rst item, it is enough to prove that the sequence obtained by iterating �s� starting with �sfgis decreasing. This result is proven in [6]. For brevity, and given that the proof is rather long, wedo not present it here. }With this property one can envisage the applications of �s as determining verity of defaultliterals, assuming that the not Ls are false for all Ls already determined true; and the applicationsof � as determining verity of objective literals, assuming that the not Ls are true for all Ls alreadydetermined false.Consequently, to guarantee that when a literal L is both true and false all the consequencesthat should follow are obtained, one has to guarantee that, when applying �s, both L and :Lalways belong to its argument so as to maximize default literals; and that, when applying �,neither L nor :L ever belong to its argument so as to maximize objective literals as well. Thenext proposition does just that:Proposition 5.2 Let P be a contradictory program whose least �x-point of ��s is T , and suchthat fL;:Lg � T . Then there exists an element I� of the sequence for calculating T such thatfL;:Lg � I�. Moreover, for every ordinal � � �, fL;:Lg � I� , L 62 �sI�, and :L 62 �sI� .Proof (sketch): The existence of I� is guaranteed by de�nition of the sequence. The �rst conse-quence follows immediately from the monotonicity of ��s. The second and third follow from the�rst one and the semi-normality in �s. } 14



Example 5.2 The sequence for the least �x-point of ��s of program P of example 5.1 is:I0 = fgI1 = ��sfg = �fa;:a; d; eg = fa;:agI2 = ��sfa;:ag = �fg = fa;:a; d; egI3 = ��sfa;:a; d; eg = �fg = fa;:a; d; eg = I2Thus WFMp(P ) = fnot b; not c;:a; a; not a; not :a; d; e; not d; not e; not :d; not :eg.Note that not d is obtained in I1 (i.e. d 62 �sI1) because a 2 I1, and that d is obtained in I2(i.e. d 2 �sI2) because a 62 �sI1.Having de�ned WFSX p for contradictory programs, in order to implement it, we wish tode�ne a \top-down" derivation procedure for it. The next theorems11 show that a new derivationprocedure is not needed because SLX is also correct wrt. the paraconsistent WFSX.Theorem 5.5 (Soundness of SLX) Let P be an extended logic program, L an arbitrary literalfrom P . If there is an SLX-T-refutation for  L in P then L 2WFMp(P ).Theorem 5.6 (Theoretical completeness of SLX) Let P be an extended program, and L anarbitrary literal from P . If L 2 WFMp(P ) then there exists a SLX-T-refutation for  L in P .6 On the Implementation of SLXAlthough sound and complete for the paraconsistent WFSX, SLX is not e�ective (even for �niteground programs). In fact, and because it furnishes no mechanism for detecting loops, terminationis not guaranteed. Completeness here is only ideal completeness. In order to provide an e�ectiveimplementation of SLX we have �rst to tackle the issue of guaranteeing termination.As for the WFS of normal programs, WFSX and WFSX p too are in general not computable.Thus, it is not possible to guarantee termination in the general case. In this section we modifySLX such that termination is guaranteed (at least) for �nite ground programs12.This modi�ed SLX procedure can be easily implemented via a Prolog meta-interpreter13. Dueto its SLDNF-resemblance, it has also been rather easy to implement a pre-processor that com-piles WFSX p programs into Prolog, using a format corresponding to the specialization of theinterpreter rules, plus a small number of general \built-in" predicates. Lack of space prevents usfrom presenting these implementations here14.6.1 Guaranteeing TerminationTo guarantee termination (at least) for �nite ground programs, in this section we introduce rulesthat prune SLX-derivations, and eliminate both cyclic positive recursion and cyclic recursionthrough negation by default (hereafter simply called cyclic negative recursion).To detect both kinds of cyclic recursions we use two kinds of ancestors:� Local ancestors are assigned to literals in the goals of a derivation, and are used for detectingcyclic positive recursion. For the purpose of including local ancestors, we replace literals ingoals by pairs Li : Si, where Li is a literal and Si is the set of its local ancestors.� Global ancestors are assigned to derivations, and are used to detect cyclic negative recursion.11Proofs are presented in appendix A.12The technique we're about to de�ne also guarantees termination for allowed bounded-term non-ground pro-grams. The discussion of guaranteeing termination for these cases is, however, beyond the scope of this paper.13This can be simply done by mimicking the de�nition of SLX-derivations with ancestors, considering a left-mostselection rule.14The code is available on request. 15



Intuitively, and if one thinks of a derivation as expanding an AND-tree, the local ancestor of aliteral occurrence are the literals appearing in the path from the root of the tree to that occurrence.Global ancestors of a subsidiary derivation are the local ancestors of the literal L that invokedit, plus the ancestor goal of the derivation in which L appears. The top-goal derivation hasno global ancestors. Moreover we divide global ancestors into two sets: global T-ancestors andglobal TU-ancestors. Global T-ancestors (resp. TU-ancestors) are those that were introduced ina SLX-T-derivation (resp. SLX-TU-derivation).To deal with the non-termination problem of cyclic positive recursion it su�ces to guaranteethat no such in�nite derivations are generated. That can be achieved if no selected literal belongingto its set of local ancestor is ever expanded. This leads to the following pruning rule:1. Let Gi be a goal in a SLX-derivation (either T or TU), and let Lk be the literal selected byR. If Lk belongs to its local ancestors then Gi is the last goal in the derivation.To treat cyclic negative recursion, tests over the global ancestors are necessary. It is easilyshown that any form of this recursion reduces to one of four combination cases, depending on thecycle occurring between the two possible derivation types. In SLX-TU-derivations the selectedliteral is removed from the goal, and in SLX-T-derivations the goal is the last in the derivation.Moreover, all these combinations can be reduced to just one:Lemma 6.1 (Reduction of negative cycles) All cyclic negative recursions can be detected inSLX-T-derivations by looking only at its global T-ancestors.The same does not hold for any other combination case, i.e. there are cycles that are onlydetectable with the test of lemma 6.1 (cf. [2]). Lemma 6.1 yields pruning rule 2:2. Let Gi be a goal in a SLX-T-derivation, and let Lk be the literal selected by R. If Lk belongsto the set of global T-ancestors then Gi is the last goal in the derivation.Theorem 6.2 (Elimination of cyclic recursion for WFSX) Pruning rules 1 and 2 are nec-essary and su�cient for guaranteeing that all positive and negative cyclic recursions are eliminated.We now embed these two pruning rules in the de�nitions of SLX-derivation (refutations andfailures remain as before). Note that the pruning rules do not make use of TU-ancestors. So theywill not be considered in the de�nitions:De�nition 6.1 (SLX-T-derivation with ancestors) Let P be an extended program, and R anarbitrary but �xed computational rule. A SLX-T-derivation G0; G1; : : : for G in P via R, with T-ancestors ST is de�ned as follows: G0 = G : fg. Let Gi be  L1 : S1; : : : ; Ln : Sn and supposethat R selects Lk : Sk (1 � k � n). Then:� if Lk is an objective literal, Lk 62 Sk [ ST , and the input rule is Lk  B1; : : : ; Bm, thederived goal is  L1 : S1; : : : ; Lk�1 : Sk�1; B1 : S0; : : : ; Bm : S0; Lk+1 : Sk+1; : : :Ln : Snwhere S0 = Sk [ fLkg.� if Lk is not A then, if there is a SLX-T-refutation for  :A : fg in P with T-ancestorsST [ Sk, or there is no SLX-TU-refutation for  A : fg in P with the same ancestors, thederived goal is  L1 : S1; : : : ; Lk�1 : Sk�1; Lk+1 : Sk+1; : : :Ln : Sn.� otherwise Gi is the last goal in the derivation.De�nition 6.2 (SLX-TU-derivation with ancestors) Let P be an extended program, and Ran arbitrary but �xed computational rule. A SLX-TU-derivation G0; G1; : : : for G in P via R,with T-ancestors ST is de�ned as follows: G0 = G : fg. Let Gi be  L1; : : : ; Ln and suppose thatR selects Lk : Sk (1 � k � n). Then:� if Lk is an objective literal then 16



{ if Lk 2 Sk or there is no rule for Lk then Gi is the last goal in the derivation.{ else if there exists a SLX-T-refutation for  :Lk : fg with T-ancestors ST then Gi isthe last goal in the derivation.{ otherwise, if the input rule is Lk  B1; : : : ; Bm the derived goal is: L1 : S1; : : : ; Lk�1 : Sk�1; B1 : S0; : : : ; Bm : S0; Lk+1 : Sk+1; : : :Ln : Snwhere S0 = Sk [ fLkg.� if Lk is not A then:{ if there is a SLX-T-refutation for  A : fg in P with T-ancestors ST then Gi is thelast goal in the derivation.{ otherwise the derived goal is  L1 : S1; : : : ; Lk�1 : Sk�1; Lk+1 : Sk+1; : : :Ln : Sn.Theorem 6.3 (Correctness for SLX with ancestors) Let P be an extended program. Then:� If L 2 WFMp(P ) then there is a SLX-T-refutation for  L : fg with empty T-ancestors.Moreover, all the subsidiary derivations needed in the refutation are �nite, and in �nitenumber.� If L 62WFMp(P ) then all SLX-T-derivations for L : fg with empty T-ancestors are �niteand end with a goal di�erent from  2. Moreover, all the subsidiary derivations needed are�nite, and in �nite number.Proof: Follows from theorems 6.2, 5.5, and 5.6. }7 Revision FrameworkIn the previous sections we presented both a paraconsistent version of WFSX and a correspondingtop-down querying procedure (able therefore to detect contradiction in programs). We are nowready to foster the stance, adopted in the introduction, that if a program is contradictory itsrevision is in order.By revision of a contradictory program P we mean a non-contradictory program P 0 obtainedfrom P without introducing new predicates. One question immediately arises: what changes areallowed to P in order to obtain P 0?Clearly, any modi�cationmust result from changing directly the truth value of some, consideredbasic, literals. Thus the above question hinges on the following one: for which literals, the revisableones, should we allow explicit modi�cation in their truth values?As argued in our previous work [46, 50], the modi�cation should be based solely on those literalsthat depend on no other literals, and by introducing or removing rules for such basic literals only.This is the stance we take here. Thus, for the purpose of de�ning revision, we begin by describinga framework that explicitly divides the program into a pair called a program state: one elementcontains the subprogram that cannot be changed; the other contains the subprogram that canbe changed in a prede�ned way, namely by adding rules of a simple �xed form for the revisableliterals only. The latter part is such that it contains rules only for literals that depend on no other.A program state is changed (to another state) simply by modifying the latter part. In order toformalize the notion of program states, we begin by de�ning open programs. These are \open"in the sense that the part which can be changed is not yet �xed in truth value. The changes intruth-value of the other, non revisable, literals will be indirectly brought about, via the programrules, by the changes in the open part of the program, through the presence, in rules, of revisableliterals. 17



Until now we've considered contradiction as coming simply from the nonexistence of a consis-tent WFSX. In general, however there can be other reasons to consider a program state unaccept-able, due to additional integrity knowledge about the intended program semantics. To encompassthese situations, we now extend our language to deal with general integrity constraints of the form:L1 _ L2 _ : : :_ Ln ( Ln+1 ^ Ln+2 ^ : : :^ Ln+m (n+m � 0)where each Li is a literal, and ( stands for classical implication.A program is contradictory i� its WFSX is contradictory, or violates some integrity constraint.By theorem 5.3, the �rst proviso can be adroitly removed by adding the constraint ( L;:L, forevery literal L in the program.In our previous work, we've always considered separately the two cases of removing contradic-tion by changing the truth value of revisable literals either into unde�ned [5, 46], or into true [50].Note that, in the absence of integrity constraints, contradiction can always be removed by chang-ing the truth value of literals into unde�ned only. However, in order to apply our contradictionremoval approach to diagnosis, for instance, we also felt the need for stronger revisions, where thetruth value of literals can be changed into true. Indeed, whenever normality of some componentcould not be assumed, we wanted that its abnormality be posited, in order to derive any availableinformation via known fault models.In the present work, as already mentioned above, we will allow revision by introducing orremoving rules for revisable literals, such that we can change their truth values from any valueto any other value, in a mixed way. By relying on the above more general integrity constraints,a mixture of literal revisions to unde�ned or to the default complement value can be obtained. Ifno constraint requires otherwise, the truth value of literals is (knowledge minimally) changed intounde�ned; if one desires a literal, say ab(C) in the diagnosis setting, to have solely truth-valuesfalse and true then we may simply introduce the constraint ab(C) _ not ab(C)( t.Example 7.4.1 below shows how this mixed revision can be used to perform three-valueddeclarative debugging, i.e. declarative debugging of programs under a three-valued semantics. Wealso show the use and utility of this admixture in the diagnosis setting, in subsection 7.4.2.The structure of the remainder of this section is as follows: we begin by extending the lan-guage with the more general integrity constraints above. Then we present the framework of openprograms and program states, and in the next subsection we de�ne the declarative semantics ofrevision15, by means of minimal changes to a current contradictory program state.7.1 Integrity ConstraintsAs argued by Reiter in [60], the basic utility of integrity constraints is that only some program(or database) states are considered acceptable, and the constraints are meant to enforce theseacceptable states by �ltering out all other ones. Integrity constraints can be of two types:Static The enforcement of these constraints depends only on the current state of the database,independently of any prior state.Dynamic These depend on two or more program states. Reiter gives as example that employeesalaries can never decrease.It is not a purpose of this article address the evolution of a program in time, and thus onlystatic constraints are considered. Reiter shows that the classical accounts of integrity constraintsin �rst-order knowledge bases [33, 42, 59] (namely those of consistency with or entailment by thedatabase) do not capture our intuitions. The author argues that a program expresses knowledgeabout the external world and the integrity constraints address this epistemic state, i.e. what theprogram knows. These problems do not carry over to our setting because we assume the database15The semantics is de�ned at present only for �nite ground programs.18



has a single three-valued model (the program state) and therefore the epistemic and theoremhoodviews coincide. We'd have to address these problems if we allow disjunction in the heads of rules.Due to the fact that we are considering a three-valued setting, the approaches of two-valuedrevision or abductive frameworks (e.g [19, 22, 23, 30]) do not immediately carry over.Let's start by presenting our integrity constraint language:De�nition 7.1 (Integrity Constraints) An integrity constraint of an extended logic programP has the following normal form, where each Li is a literal belonging to the language of P :L1 _L2 _ : : :_ Ln ( Ln+1 ^ Ln+2 ^ : : :^ Ln+m (n+m � 0)To an empty consequent (head) we associate the symbol f and to an empty antecedent (body) thesymbol t. An integrity theory is a set of integrity constraints, standing for their conjunction.Notice that the literals appearing in the constraints can be objective or default ones. Accordingto the theoremhood view of integrity constraint checking [59, 42] we de�ne constraint satisfactionin the following manner:De�nition 7.2 (Constraint Satisfaction) Given a set of literals I16, a ground integrity con-straint L1 _L2 _ : : :_ Ln ( Ln+1 ^ Ln+2 ^ : : :^ Ln+m (n+m � 0)is violated by I i� every literal Ln+1; : : : ; Ln+m 2 I and none of the literals L1; : : : ; Ln 2 I.Otherwise, the constraint is satis�ed by I.Equivalently, an integrity constraint is satis�ed i� the following (classical) implication is satis-�ed: L1 2 I _ : : :_Ln 2 I ( Ln+1 2 I ^ : : :^ Ln+m 2 I (n +m � 0)For simplicity, we restrict ourselves to constraints with a �nite number of literals from �niteinterpretations. In the general case (countable sets of literals) it is necessary to extend the settingto �rst-order logic.Except from that, we assume nothing about the underlying interpretations because we'd liketo be as general as possible. Enforcing some condition on them has to be by an explicit statementin the integrity theory.It is only necessary to consider, as our basic building blocks, constraints of the form L( t andf ( L, where L is a literal, to be able to \program"more elaborate conditions. By combining theseprimitive constraints using the connectives `^', `_' and `(' we can express any property about someinterpretation I. Subsequently, any such condition can be easily rewritten into integrity theoryform by using the properties of propositional classical logic, i.e. translated into a conjunction ofsimple classical implications in the normal form \disjunction if conjunction". To impose a givenvalue condition on a speci�c literal in I use table 1, where L = f (resp. u, t) we mean that L isfalse (resp. unde�ned, true), to obtain the corresponding integrity constraint theory.Condition Integrity Theory Condition Integrity TheoryL = f not L( t L 6= f f ( not LL = u (f ( L) ^ (f ( not L) L 6= u L _ not L( tL = t L( t L 6= t f ( LTable 1: Basic conditions on I16Remark that the notion of constraint satisfaction refers to an arbitrary set of literals I, be it contradictory orotherwise. 19



Example 7.1 Imagine the condition \if a is unde�ned and b is false then c is true" must beveri�ed by a given interpretation. We lookup to table 1 and formalize it as:(c( t)( [(f ( a) ^ (f ( not a) ^ (not b( t)]By means of the classical (meta-)interpretation of integrity constraints we obtain:(c 2 I ( t)( [(f ( a 2 I) ^ (f ( not a 2 I) ^ (not b 2 I ( t)]�c 2 I ( a 62 I ^ not a 62 I ^ not b 2 IMoving the negated conjuncts to the consequent of the last implication, we produce:c 2 I _ a 2 I _ not a 2 I ( not b 2 Iwhich is nothing more than the integrity constraint theory:fc _ a _ not a( not bg (1)The reader can check any interpretation obeys the enounced condition i� it makes (1) true.Special integrity theories enforce some well-known basic principles. Suppose that for all groundobjective literals L at least one of the conditions below is present in the integrity theory.not L( :L (c1) f ( L ^ not L (c3) L _ not L( t (c5):L( not L (c2) f ( L ^:L (c4) L _:L( t (c6)Condition c1 is nothing more than the coherence requirement on interpretations. Condition c2expresses a type of ClosedWorld Assumption, i.e. if L can be assumed false then it is explicitly false;in combination with c1 they make explicit negation and default negation equivalent. Conditionsc3 and c4 enforce non-contradiction of the interpretations (notice that if coherence is imposed thenc4 reduces to c3). Non-unde�nedness of literals is ensured by c5 or c6 (condition c5 is strongerthan c6 in the presence of the coherence principle.).In the following we'll mainly make use of the explicit contradiction avoidance condition (c4),because the meaning of our programs will be given by the paraconsistent well-founded model,which already enforces coherence and c3 .7.2 Open ProgramsNext we formally de�ne the framework of open programs and program states mentioned at thebeginning of this section.The truth-varying basic beliefs are represented in an open program by a set of objective literals(the open literals) whose truth-values are not determined beforehand. The �xed part of an openprogram is an arbitrary extended logic program, which derives additional knowledge from theopen literals once their value is known. Integrity constraints prune out unintended combinationsof literals. Formally:De�nition 7.3 (Open Program) An open program is a triple hP; ICs;Opi. The �rst compo-nent, P , is an extended logic program, the second one a set of integrity constraints as in de�ni-tion 7.1, and the third a set of objective literals Op � H(P ) such that L 2 Op i� :L 2 Op. Op isthe set of open literals. Additionally, there are no rules in P for any of the open literals.Given an open program, a state for it is established by introducing, for each open literal, arule de�ning its truth value.De�nition 7.4 (Program State) A program state of a given open program hPFix; ICs;Opi isa tuple hPFix; PV ar; ICs;Opi. For each literal L 2 Op the variable part, PV ar, contains just oneof the rules L  t or L  u or L  f . Moreover, if L  t 2 PV ar then :L  f 2 PV ar (or if:L t 2 PV ar then L f 2 PV ar). No other rules belong to PV ar .20



By de�niton, the symbols t and not f belong to all models. Neither u nor not u belong to anymodel. The meaning of these symbols can be \programmed" with fact t, the rule u not u andthe absence of any fact or rule for f . In other words, by adding the rule L  t (resp. L  u,L f ) literal L is assigned the truth-value true (resp. unde�ned, false).Example 7.2 The program P : a  not c c  not d:a  not b dis contradictory. To revise it we �rst characterize it by the state � = hPFix; PV ar ; ICs;Opi, where:PFix = fa not c; :a not b; c not dgPV ar = fb f ; :b f ; d t; :d fgICs = ff ( L;:L j L 2 HgOp = fb;:b; d;:dgTo remove the contradiction we change the rules in PV ar .A program state can be thought to correspond to an agent's set of beliefs about the \world".The basic beliefs are represented by the variable part of the program state. The �xed part allowsthe agent to express how to extract derived beliefs from the basic ones. The integrity theory states,directly or indirectly, which combinations of (possibly contradictory) beliefs are sustainable by theagent.Note that it is trivial to make a �xed part rule dependent on a belief expressed by a variablepart literal. For instance, as we'll see, in a diagnosis setting the variable part contains the non-abnormality and the normal and faulty behaviour modes. The �xed part describes the behaviourof components in correct or faulty modes, system topology, and the predicted \outcomes". Theintegrity theory can express some meta-knowledge about the system, e.g. that a component cannotbe abnormal and correct simultaneously, that a \node" cannot have two \values", etc: : :The variable component determines an interpretation, and vice-versa, as shown in table 2 fora pair of open literals fL;:Lg. The coherence requirement is imposed by the additional provisoin de�nition 7.4 and also guarantees non-contradiction in PV ar. By convention, when writing thevariable part we omit all rules of the form L f , since the e�ect is the same.Interpretation Variable Part Interpretation Variable Partfnot L; not :Lg fL f ;:L fg fg fL u;:L ugfnot Lg fL f ;:L ug fnot L;:Lg fL f ;:L tgfnot :Lg fL u;:L fg fL; not :Lg fL t;:L fgTable 2: Correspondence between interpretations and the variable partTo each program state we associate two interpretations. Let 
 denote an open programhPFix; ICs;Opi and � a program state hPFix; PV ar ; ICs;Opi of 
. The model of 
 determined by�, and denoted byM (�), is WFSX p(PFix [ PV ar). The basic beliefs of �, denoted by B (�), arecaptured by the WFSX p, i.e. B (�) =M (�) [H(PV ar).De�nition 7.5 (Contradictory Program State) A program state � is contradictory i� PFix[PV ar is contradictory or there exists at least one integrity constraint in � which is violated byM (�). Otherwise it is non-contradictory.Clearly, as argued at the beginning of this section, the sentence \PFix[PV ar is contradictory"can be removed from de�nition 7.5 if ICs of the form f ( L;:L are introduced for all L:21



Proposition 7.1 Let � be a state of an open program hPFix; ICs;Opi such that:ICs � ff ( L;:L j L 2 H(PFix)gThen, � is contradictory i� there exists at least one integrity constraint in ICs which is violatedbyM (�).Example 7.2 (cont.) For the program state � in example 7.2:B (�) = fnot b; not :b; d; not :dgM (�) = B (�) [ fnot c; not :c; a;:a; not a; not :agThis state is contradictory because it violates the constraint f ( a;:a.Note that open programs can be seen as a three-valued abductive framework for WFSX, alongthe lines of Generalized Stable Models [30] extension of Stable Model semantics [25].7.3 Minimal ChangeContradictory states correspond to a situation where the basic beliefs of an agent are non-satisfactory. In such a situation the agent has to change its basic or revisable beliefs, so as to\reach" a new non-contradictory state. However this change is not arbitrary.Because the agent starts by holding an (intrinsic) epistemic preference for the initial programstate, intuitively it should change its beliefs in a minimalway with respect to it. The new programstates (i.e. the new states of belief) should be as close as possible to the initial set of beliefs. The�rst issue is how to de�ne this notion of \closeness" between two program states.Given that notion of closeness we can de�ne minimal revisions of a program state. We willonly consider revisions of a single program state, thereof obtaining several new program states17.Thus, with the approach of this section, iteration of revisions is only possible after the agentepistemically chooses a unique program state from the set of revisions of another program state,and again starts from a single state, taken as the preferred one.Our notion of closeness is an extension, to the three-valued case, of Winslett's di�erence be-tween a pair of models of the Possible Model Approach (PMA) [68]. The di�erence between modelsis de�ned as the facts upon which a pair of models disagree. In the PMA the models which haveminimal di�erence, i.e. minimal change, in the sense of set-inclusion are preferred.Because we are considering a three-valued setting, a re�ned notion of di�erence is necessary.What is distinctive in our approach is that if a literal is not unde�ned then we prefer to reviseit �rst to unde�ned before revising to the opposite truth-value; if it is unde�ned then we reviseit either to true or false. This is mainly motivated by the truth and knowledge orders amongliterals18: moving from true to false or vice-versa, in either ordering, is always through unde�ned .De�nition 7.6 (Di�erence between interpretations) Let I be the set of all coherent sets ofliterals wrt. to a �nite language and I1; I2 2 I such that I1 = T1 [ not F1 and I2 = T2 [ not F2.The di�erence between interpretations I1 and I2 is de�ned by:Diff(I1 ; I2) = 8>><>>: (F2 � F1)�ffg [(F1 � F2)�fug [(T1 � T2)�fug [(T2 � T1)�ftgLiterals labeled with t (resp. f ) are those that change their truth-value to t (resp. f ), whengoing from I1 to I2. Literals labeled with u are those that change their original truth-value eitherto u or to their complementary truth-value. Some of these sets might not be disjoint.17In order to iterate revisions we should also consider revisions of sets of program states. We leave that to futurework.18In the truth ordering f < u < t, and in the knowledge one u < f and u < t.22



Example 7.3 Let I1 = fag [ not fb; c; dg and I2 = b; e [ not d; f , thenDiff(I1 ; I2) = f(a; t); (b; t); (b;u); (c;u); (e; t); (f; f )gFor a more detailed, motivated, and theoretically based approach to the previous de�nition seesubsection 7.6.De�nition 7.7 (Closeness relation) Let I be the set of all interpretations wrt. a �nite lan-guage, and M , A and B 2 I. We say that A is closer to M than B i� Diff(M;A) � Diff(M;B).The closeness relation is de�ned between interpretations, not between program states. Whenprogram states are considered, one of the following two interpretations could be used: either themodel determined by a program state, M (�), or its associated beliefs, B (�). We assume thatwhat changes are the agent's basic beliefs, and that other changes of belief are just consequencesof basic belief changes. Any belief can readily be made dependent on a basic one (c.f. 7.4.1). So,when facing contradiction, the agent should minimally change its basic beliefs, not necessarilywhat it extracts from those beliefs (i.e. their consequences). This has close connections with thebelief base revision methods in the literature (see [43] and references therein).De�nition 7.8 (Revision of a program state) Let � be the initial program state of an openprogram 
P . A revision of � is an element � of �P (the set of non-contradictory program states)such that: 8�2�P Diff(B (�);B (�)) � Diff(B (�);B (� )) ) � = �Notice that revision is de�ned here in terms of a single initial program state. Immediateextensions to more general cases can be de�ned as in [14]. There the authors de�ne \local" and\global" belief revision semantics corresponding to, respectively, the notions of update and revisionoperators of [31]. In a local semantics one computes the revisions of each initial program stateand the revision of the initial set is the set union of all these revisions. In a global semantics thepreferred revisions are the ones with minimal di�erence with respect to the whole set of initialprogram states. For more details and comparisons see [14, 31].Example 7.4 Consider the following interpretations corresponding to the variable part of fourprogram states �0; : : : ; �3 of an open program:I0 = fag [ not f:a; b;:cg I1 = fa; cg [ not f:a; b;:cgI2 = fa; dg [ not f:a;:c;:dg I3 = fa; c; dg[ not f:a;:c;:dgSuppose the agent believes in I0 and that the corresponding program state (�0) is contradictory.Additionally, I1, I2 and I3 are the unique beliefs that are consistent with the agent's currentknowledge. Given the above interpretations I1, I2 and I3, we've the following \di�erences" to I0:Diff(I0 ; I1) = f(c; t)gDiff(I0 ; I2) = f(b;u); (d; t); (:d; f)gDiff(I0 ; I3) = f(b;u); (c; t); (d; t); (:d; f )gThe revisions of the initial program state �0 are f�1; �2g because Diff(I0 ; I1) � Diff(I0 ; I3)and Diff(I0 ; I2) � Diff(I0 ; I3).Example 7.2 (cont.) The revisions of state � are the two states resulting from, in �, replacingPV ar by either P 1V ar or P 2V ar, where:P 1V ar = fb u; :b f ; d t; :d fgP 2V ar = fb f ; :b f ; d u; :d fgIn other words, contradiction is removed by either unde�ning b or d.23



Suppose now that one is just interested in revisions of d to its default complement (i.e. revisionsof d to unde�ned are not allowed). To that end we need only add the constraint d _ not d( t.With this constraint, the revisions are the two states resulting from replacing PV ar by eitherP 1V ar or P 3V ar, where: P 3V ar = fb f ; :b f ; d f ; :d fgi.e., the contradiction is removed by either unde�ning b or by making d false.We end this subsection by showing the of ours relationship to Winslett's closeness relation.We show that when we have two-valued interpretations our de�nition of Diff is equivalent toWinslett's. Noting that given two arbitrary sets X and Y the sets X � Y and Y �X are disjoint,the condition Diff(M;B) � Diff(M;A) in theorem 7.5 is equivalent to:(TB � TM ) [ (TM � TB) � (TA � TM ) [ (TM � TA) and(FB � FM ) [ (FM � FB) � (FA � FM) [ (FM � FA)If only two-valued interpretations are considered then:(TB � TM ) [ (TM � TB) = (FB � FM ) [ (FM � FB) and(TA � TM ) [ (TM � TA) = (FA � FM ) [ (FM � FA)and therefore Diff(M;B) � Diff(M;A) i� (TB�TM )[(TM�TB) � (TA�TM )[(TM�TA). Thiscorresponds to Winslett's [68] notion of closeness between two interpretations (possible worlds).Also note that if our initial program state has all literals false, minimality by set inclusion isobtained. This shows the relationship to our two-valued contradiction removal methods of [50].7.4 Application ExamplesWe now present two examples of application of the revision techniques. First, we show for the�rst time how to achieve three-valued declarative debugging, and next the bene�ts of using mixedtwo- and three-valued revisions in model based diagnosis applications.7.4.1 Declarative Debugging ExampleConsider the following logic program:a  not b b  cc  b; d c  not cwhose well-founded model is fnot d; not :a; not :b; not :c; not :dgIn order to perform debugging we transform this program into an open one in a straightforwardway, by explicitly assuming each rule not incorrect and that each predicate covers intended callsto it. The open literals are the inc (for incorrect), and unc (for uncovered literals [40] and theirexplicit complements (cf. [49] for a detailed justi�cation of this program rendering, and non-propositional examples). The �xed part is:a  not b; not inc(a=1) a  unc(a)b  c; not inc(b=1) b  unc(b)c  b; d; not inc(c=1) c  unc(c)c  not c; not inc(c=2) d  unc(d):a  unc(:a) :b  unc(:b):c  unc(:d) :c  unc(:d)Suppose now the intended model of the program is fb; dg [ not fc;:a;:b;:c;:dg. Our integritytheory expresses this information as: 24



f ( not a not c ( t not :a ( tf ( a d ( t not :b ( tb ( t not :c ( t not :d ( tf ( a ^ :a f ( b ^ :b f ( c ^ :c f ( d^ :dThe number of possible program states of this open program is exactly 2176782336!!! Weconsider our initial set of beliefs to have all open literals false, making the initial program stateequivalent to the original program. This associated program state is contradictory, and thereforewe must perform a revision to regain consistency. We obtain a unique revision with variable part:PV ar = func(a) u; unc(b) t; inc(c=1) t; inc(c=2) t; unc(d) tg (2)The remaining literals in PV ar are all false. The revision \returns" the bugs of the initialprogram. The diagnosis is that there are rules missing for literals b and d, to make them true asdesired; then a rule for keeping a unde�ned is lacking given the newly imposed truth of b; andboth rules for c are incorrect.The existence of a single revision is justi�ed by the fact that the intended model is completelyknown. When this happens debugging ensures that all bugs become known. If only part ofthe intended model is known or speci�ed then several revisions may exist. For instance, if thetruth-value of literal c is not given then two minimal revisions exist:P 1V ar=func(a) u; unc(b) t; unc(d) tgP 2V ar=func(a) u; unc(c) t; unc(d) tgNotice that the �rst revision is a subset of (2). Intuitively, the above two revisions cover allthe possible buggy situations dependent on the truth-value of c.7.4.2 Model Based Diagnosis ExampleConsider the anomalous situation of the four inverter circuit of �gure 1:
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g1 g2 g3 g4Figure 1: Four inverter circuitThe normal and abnormal behaviour of the inverter gate is modeled by the rules below. Weassume that our �rst two inverter gates, of type 1, have two known modes of erroneous behaviour,either the output is always \0" (mode \stuck at 0") or is always \1" (mode \stuck at 1"). It isalso implicit that any abnormality is permanent and not intermitent. The second type of gate, towhich belong the other two, has no speci�ed model of faulty behaviour. We begin by de�ning the�xed program part: inv1(G; I; 1)  not ab(G); node(I; 0)inv1(G; I; 0)  not ab(G); node(I; 1)inv2(G; I; 1)  not ab(G); node(I; 0)inv2(G; I; 0)  not ab(G); node(I; 1)inv1(G; ; 0)  ab(G); s at 0(G)inv1(G; ; 1)  ab(G); s at 1(G)s at 0(G)  fault mode(G; s0)s at 1(G)  fault mode(G; s1)25



The value at a node is either predicted or observed:node(N; V )  predicted(N; V )node(N; V )  observed(N; V )The connections among components and nodes are described by:predicted(b; B)  inv1(g1; a; B) predicted(c; C)  inv1(g2; b; C)predicted(d;D)  inv2(g3; c;D) predicted(e; E)  inv2(g4; d; E)The �rst integrity rule below ensures that the fault modes are exclusive, i.e. to an abnormalgate at most one fault mode can be assigned simultaneously. The second integrity rule expressesthat, for each node, a single value can be predicted or observed at any one time.f ( fault mode(G;S1) ^ fault mode(G;S2) ^ S1 6= S2f ( node(N; V1) ^ node(N; V2) ^ V1 6= V2Our open literals are of the form ab(G) and fault mode(G;M ) and their explicit complements.In the initial program state all open literals are taken to be false. Suppose we make the �rstmeasurements in nodes a and c and obtain a 0 and a 1, respectively. The values of the nodes aredescribed in the program by the new facts observed(a; 0) and observed(c; 1). Now the program isin a contradictory program state (because it predicts for node c value \0"), and therefore shouldbe revised. There are just two revisions according to wheter either ab(g1) or ab(g2) have valueunde�ned . Thus the possible causes of malfunction are due to gate 1 or gate 2.If an additional observation is made at node e, modeled by adding the fact observed(e; 0),two more revisions are obtained ( from the initial variable program state) with either ab(g3) andab(g4) unde�ned .Till now we've only imposed consistency with the observations, and so revising the ab literals issu�cient to regain consistency. If we further want a revision to explain how the circuit model canpredict every observed wrong output, a new integrity constraint is added to the open program:predicted(N; V ) ( observed(N; V ) (I1)But now any state of the program is contradictory because inverters of type 2 cannot have thierwrong outputs explained: their fault models are missing (in the general case fault models may beincomplete). If we only enforce the condition above on node c, i.e. replacing (I1) bypredicted(c; V ) ( observed(c; V )the existing revisions are19:fab(g1) t; fault mode(g1; s0) t; ab(g3) ugfab(g1) t; fault mode(g1; s0) t; ab(g4) ugfab(g2) t; fault mode(g2; s1) t; ab(g3) ugfab(g2) t; fault mode(g2; s1) t; ab(g4) ugNote that these revisions, containing unde�ned literals, can be seen as approximations to thetwo{valued case. Hence the use of the \unde�ned" value, in order to make it possible to workwith incomplete models. Also mark that to impose that literals be predicted is computationallymore expensive, due to the necessity of using alternative fault models, which in real applicationscan be very complex.Another use of a mixed two- and three-valued revision is that we might want to delve intothe fault model of one part of the system so as to explain observations, whilst simply requiringconsistency from another part in relation to which we don't want to delve deeper. One can therebydecrease the computational e�ort required for such a more focused analysis.19Recall that all other literals are false. 26



In general there may exist an exponential number of revisions, which is inherent to the com-plexity of the type of problem being solved. In order to cope with this complexity, more powerfultechniques like preferences, abstractions and re�nement strategies are needed [18]. The use ofadditional observations and measurements also improve the diagnoses obtained. These avenues ofresearch are still being pursued at present.7.5 Computing RevisionsWe have devised and implemented an algorithm to compute revisions20, based on the SLX proce-dure with ancestors. The algorithm uses two functions, insert and delete, each of which returns a�rst-order sub-formula. The syntax is del(L;Cx;AnsL;AnsG) and ins(L;Cx;AnsL;AnsG).The topmost �rst-order formula expresses the conditions on the open literals which guaranteea non-contradictory state. The basic conditions are tests on the verity and on the non-falsity ofopen literals, used to construct the formula. Finding these is achieved by a top-down procedure inall respects similar to SLX plus that it collects all the relevant conditions on open literals, whichare then simpli�ed.The deletion function is de�ned in terms of the insertion one as del(L;Cx;AnsL;AnsG) =�ins(L;Cx;AnsL;AnsG). The �rst argument of ins is a literal, the second a 
ag of the form t ortu, and the other two the sets of ancestors necessary to guarantee termination of cyclic derivations.The insertion function determines the necessary and su�cient conditions to enforce a literaltrue (if Cx = t) or to enforce its non-falsity (if Cx = tu). The deletion function in turn guaranteesnon-verity of a literal (if Cx = t) or its falsity (if Cx = tu). Consider again example 7.2:Example 7.2 (cont.) Take the constraint f ( a^:a. The �rst necessary step for �nding the con-ditions on open literals which satisfy the integrity constraint is to reformulate it using the deletionand insertion functions. Namely the constraint is satis�ed i� del(a; t; fg; fg) _ del(:a; t; fg; fg),i.e. if a or :a are not true. By applying the revision algorithm we obtain the following formula:d 62 I _ (:b 62 I ^ not b 62 I)Note that the two revisions in page 23 are the ones that satisfy this condition.The above does not describe a complete algorithm to compute closest revisions. It only providethe �rst step (albeit the most important) of revision generation. To have a full revision system itis necessary to equip it with a method for formula minimization, so as to get only closest revisions.7.6 Distance and Closeness RelationsWe present in this section our theoretical results justifying the use of closeness relation de�-nition 7.7 to guide the revision process. It is not essential for the sequel. We �rst de�ne anatural metric between program states, obtained from the classic and Fitting orderings amongthree-valued interpretations. Afterwards, we point some problems of a closeness relation based onminimal distance according to the said metric, and provide an alternative de�nition of closeness.We characterize it and present some of its properties.The classic and Fitting orderings among three-valued interpretations are the generalization tosets of literals of the truth and knowledge orders among literals. Roughly, the classic orderingsays that interpretations with less degree of truth are preferred, and the Fitting ordering amountsto prefer minimizing information (i.e. maximizing the degree of unde�nedness). If not explicitlystated, we assume interpretations are always given with respect to some language L. Formally,we have:De�nition 7.9 (Classical and Fitting Orderings) If I1 = T1 [ not F1 and I2 = T2 [ not F2are two interpretations, then we say that:� I1 �C I2 i� T1 � T2 and F2 � F1 (classic \truth" ordering);20For lack of space these are not completely described here, but the implementation is available on request.27



� I1 �F I2 i� T1 � T2 and F1 � F2 (Fitting \knowledge" ordering);Using these two partial orders among interpretations we proceed to de�ne our \distance unit."Intuitively, given a �nite partial order, the nearest elements to an arbitrary element of the posetof interpretations (i.e. at a minimum distance) are its cover and covering elements (wrt. to thegiven partial order).De�nition 7.10 (Nearest elements) Let (M;�) be a �nite poset. The set of nearest elementsof a given A 2M, denoted by A��, is de�ned by:A�� =def fB 2M j (B � A ^ 6 9C B � C � A) _ (A � B ^ 6 9C A � C � B)gNow, we can use the classic or Fitting orderings to determine the nearest interpretations (I��Cand I��F ) to some interpretation I. The following result strongly supports our notion of nearestelements. The two partial orders (and also their dual relations) have the same set of nearestelements:Theorem 7.1 Let I = T [ not F be a �nite three-valued interpretation wrt. to some languageL21: I��C = I��F = f f (T [ fLg) [ not F j L 62 F ^ L 62 T ^ :L 2 F g [f T [ not (F [ fLg) j L 62 F ^ L 62 T g [f (T � fLg) [ not F j L 2 T g [f T [ not (F � fLg) j L 2 F ^ :L 62 T g j L 2 LgGiven this characterization of nearest elements, we can next de�ne the distance between twointerpretations by counting the minimal number of steps necessary to go from one interpretationto the other. A \step" consists in moving from one element to one of its nearest ones. Before we dothat we must enforce another condition on the poset (besides being �nite): the Hasse diagramof theposet must be connected. Posets obeying the previous condition are said connected. Intuitively,this ensures it is always possible to go from one place to another in the poset. Notice that aposet having a bottom or a top element automatically veri�es the \connectivity" condition. Thede�nition of distance follows directly from the above characterization of nearest elements:De�nition 7.11 (Distance) Let (M;�) be a �nite connected poset. The elements reachablefrom x 2 M in n steps are de�ned recursively as follows:�x��� "0= fxg�x��� "(n+1)= Sny�� j y 2 �x��� "noThe distance between two elements x; y 2M is given by:d�(x; y) = min i j ny 2 �x��� "ioThe next theorem shows that this notion of distance has the required properties:Theorem 7.2 Let (M;�) be a connected poset; then (M; d�) is a metric space, i.e., d� satis�es,for any x; y; z 2M, the following properties required of a distance:d1) d�(x; x) = 0;d2) If x 6= y then d�(x; y) > 0;d3) d�(x; y) = d�(y; x);21Proof of this and the main theorems in this section are presented in appendix B.28



d4) d�(x; y) � d�(x; z) + d�(z; y).Now we can use the above results to characterize the distance between interpretations whenthe classic or Fitting orderings are used to \sort" them. Note that this result is also valid if theduals of the former orderings are used, since the nearest worlds are the same for the four partialorders among interpretations.Theorem 7.3 Let I be the set of all three-valued coherent interpretations wrt. to a �nite languageand x; y 2 I such that x = T1 [ not F1 and y = T2 [ not F2. Then d�C (x; y) = d�F (x; y) =dist(x; y), wheredist(x; y) = #(T1 � T2) + #(T2 � T1) + #(F1 � F2) + #(F2 � F1)i.e. dist(x; y) = #Diff(x; y).De�nition 7.12 (Distance between program states) Let �1 and �2 be two program statesof an open program 
P . The distance between �1 and �2, denoted by dstate(�1; �2) is equal todist(B (�1);B (�2)).When we restrict to two-valued interpretations, our de�nition of distance is tantamount toextension of Dalal's [17]. Dalal measures distance between worlds (i.e. models) by counting thenumber of propositions that di�er in their truth-values. It can be easily seen that dist(x; y) =4 � dDalal(x; y). This results in part from the fact that to change a literal to its complementtruth-value costs 2. But when we change an objective literal to its opposite truth-value coherenceimposes that we should also change its explicit negation complement, which again costs 2. But ingeneral our distance function is more re�ned than Dalal's, because of the extra truth-value andthe explicitly negated literals.Given this distance relation between states, we could now de�ne our notion of \closeness" to acontradictory state like in [17], by selecting as close those states that are at a minimum distancefrom the current one. It is known from the literature [14] that the use of this closeness relation asthe basis for state revision preference has some problems, exempli�ed in the following, relative toaccumulated distances of successive state changes.Example 7.5 Consider the following two-valued interpretations, corresponding to the variablepart of four program states �0 : : :�3 of an open program:I0 = f:a;:b;:cg[ not fa; b; cg I1 = f:a;:b; cg[ not fa; b;:cgI2 = fa; b;:cg[ not f:a;:b; cg I3 = fa; b; cg [ not f:a;:b;:cgSuppose the agent believes in I0 initially and that the corresponding program state (�0) is con-tradictory. Additionally, I1, I2 and I3 are the unique beliefs that are consistent with the agent'scurrent knowledge. If minimal distance is used the agent will change its beliefs to �1 becausedist(I0; I1) = 4, dist(I0; I2) = 8 and dist(I0; I3) = 12. Later, imagine the agent �nds out that�1 too is not sustainable because of, say, some introduced integrity constraint. Therefore, it willchange again its beliefs to �3 because dist(I1; I2) = 12 and dist(I1; I3) = 8. The agent will havechanged to a farther \world", �3, with respect to the initial one �0 (see �gure 2). This examplefunctions also as a counter-argument to the use of minimal distance even with Dalal's de�nitions.Since the change from one state to another is spurred by the violation of a program's integritytheory, it is important to guarantee that the order in which the integrity constraints are consideredis immaterial or commutative with regard to obtaining the same set of equally close �nal revisedstates 22Because the diagram contains all states, any edge can be implicitly expressed by an integrityconstraint and vice-versa. The successive satisfaction of integrity constraints can be seen as apath such that any rules added for open literals must be kept along the way, to ensure continuedsatisfaction of the already introduced constraints.22In terms of the AGM [52] revision operator this means that the natural property K :+ (� ^  ) = (K :+ �) :+ = (K :+  ) :+ � is not veri�ed. 29
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σ3Figure 2: Minimum distance counter-argument exampleThus, on account of these problems with prefering revised states at a minimal distance, which issensitive to program change order, we need another notion of closeness. In the example, intuitively�2 should also be at the same degree of closeness from �0 as �1 so that it is possible to go there,whatever the order the ICs are taken in.Suppose we start from an initial state � and add an arbitrary integrity constraint. The integrityconstraint determines univocally a set of program states C. If an additional constraint is enforceda subset C1 of C would be obtained. Firstly, the set of closest elements of C must be such that itcontains the elements at minimal distance of �. Furthermore, it should contain those elements inC guaranteeing that, if we change to C1, then for every state �1 at minimal distance of the initialprogram state � there exists a state in C at minimal distance of �1. Therefore we don't loose anyprogram state irrespective of the order of treatment of constraints. This motivates the de�nition:De�nition 7.13 (Closeness within C) Given a �nite metric space (M; d�), let M 2 M andC � M.Closed� (M; C) = fA 2 C j 8B2C (d� (M;A) = d� (M;B) + d� (B;A)) A = B)gA geometric analogy is given in �gure 3. To �nd a closest element A we draw a line betweenthe initial element and an arbitrary element B of C. The closest element will be the one nearer tothe initial program state M .
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B - A farther worldFigure 3: Closeness relationThe following property ensures what we want. Roughly, it says that all original distances ofelements in C are \preserved" in the set of closest elements.Theorem 7.4 Given a �nite metric space (M; d�), let M 2M and C � M, then:8D2C 9A2Closed� (M;C) d�(M;D) = d�(M;A) + d�(A;D)Obviously, the metric space considered in Close above is the set of all program states withmetric dstate. Now we proceed to equivalently characterize the set of revisions in terms of Diff .The extension to program states follows immediately.30



Theorem 7.5 Let I be the set of all interpretations wrt. to a �nite language, M 2 I and C � I.Then, A 2 Closedist(M; C) � 8B2C Diff(M;B) � Diff(M;A) ) A = BThe above theorems states that the interpretations closer to M are the ones with minimaldi�erence in the sense of set inclusion, as we've de�ned. Therefore, the revisions of a programstate are those program states for which the beliefs di�er minimally (i.e. with minimal Diff)from the current ones. When C = fB (()� ) : � 2 �P g and M = B (()�) we obtain de�nition 7.8.Finally, we should point out that the minimum distance approach has the advantage of beingcomputationally less expensive than the adopted closeness relation. In fact, the revision withminimum distance approach is polynomially bounded, in contrast to the exponential complexityof the minimalDiff revision method.8 Conclusions, Discussion, and Future workThe widespread use of the richer representation language of extended logic programs and itsapplications requires the de�nition of a correct top-down querying mechanism, much as for Prologwrt. to normal programs. In this paper we've presented and exploited a SLDNF-like derivationprocedure, SLX, for extended programs under WFSX and proven its soundness and completeness.The introduction of explicit negation required us to deal with contradiction. We showed how itcan be removed by freely changing the truth-values of some subset of a set of prede�ned revisableliterals. To achieve this, we �rst introduced a paraconsistent version of WFSX, WFSX p, thatallows contradictions to appear, and for which our SLX top-down querying procedure was provencorrect as well.SLX was then used to detect the existence of pairs of complementary literals inWFSX p simplyby detecting the violation of integrity rules f ( L;:L introduced for each L in the language of theprogram. Integrity constraints of a general form were allowed, whose violation is likewise detectedby SLX.Contradiction removal is accomplished by a variant of SLX which collects, in a formula, thealternative combinations of revisable literals' truth-values that ensure the said removal. A notionof minimal change was de�ned as well, which establishes a closeness relation between a programand its revisions. Changes are enforced by introducing or deleting program rules for the revisableliterals only.To illustrate the usefulness and originality of our framework we applied it to obtain a novellogic programming approach, and results, to declarative debugging and model based diagnosis.One point of discussion that might be raised is that SLX is applicable only to (in�nite) groundprograms. Moreover, for these programs, the computational complexity of SLX can be greaterthan that of the iterative bottom-up de�nition of WFSX. So why would one prefer SLX?The reasons for prefering SLX to the bottom-up de�nition of WFSX are tantamount to thosefor usually prefering Prolog to bottom-up procedures of normal programs. Note that the problemof complexity also occurs when comparing, in the ground case, the complexity of SLD resolutionto that of the TP bottom-up operator.Moreover, specially in non-ground programs, users normally wish to know the instances of aliteral that belong to the semantics rather than the whole semantics.But SLX, as it is, can also be applied to non-ground programs, provided they are allowedand bounded-term. Moreover, we intend to extend SLX to deal with (non-allowed) non-groundprograms.A straightforward generalization method for non-ground programs would be to proceed as usualin the expansion of goals with rule variants, and keeping the test for inclusion in the ancestors lists.However it has two problems: �rst, as shown in [8], this loop detection method does not guaranteetermination in the nonground case, even for (non-allowed) term-bounded programs; second, theprocedure 
ounders on non-ground default literals.31



To guarantee termination for non-ground term-bounded programs, we intend to introducetabulation methods into SLX23. This will also decrease the computational complexity of the pro-cedure.Such a modi�cation di�ers signi�cantly from existing procedures for WFS that use tabulation(e.g. [10, 12]). On the one hand, SLX is applicable to programs with explicit negation whilstothers aren't; on the other hand, even for normal programs, SLX does not need a status distinctfrom successful and failed, as it is based on two types of proof, whilst others include a statusunknown as well, because based on a single proof type, which complicates the procedure. Anothersubject of future work is that of introducing in SLX constructive negation techniques for solvingthe 
oundering problem.One further point of discussion is whether there might be some program transformation, fromELPs into normal programs, such that available top-down procedures for WFS could be thenapplied to obtain an equivalent semantics to that of WFSX, where if the program is contradictorythis must be detected. We have one such transformation, but even so, the very fact that theresulting program has a speci�c form makes any general WFS procedure less than optimal becausethe speci�ty would not be exploited (in particular, programs double in size and derivations arerepeated). In contradistinction, our SLX procedure takes into account the WFSX particulars. Inany case, in our paper [2], we compare our approach to other WFS top-down procedures, for thecase of normal programs.Another possible generalization of this work is to introduce program rules with disjunctiveheads. Over our semantics several approaches to disjunction in program rules might be con-structed. We have not yet adopted any one approach because the ongoing research on disjunctionfor logic programs is still stabilizing, though we favour one similar to that of [56]. One problem isthat none of the proposals to this date include explicit negation as we de�ne it. Another is thatcontradiction removal methods when disjunction is involved have yet to be devised and given asemantics. We are working towards a satisfactory solution to these issues. Till one is found itwould premature to incorporate fully 
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[59] R. Reiter. Towards a logical reconstruction of relational database theory. In M. Brodie and J. My-lopoulos, editors, On Conceptual Modelling, pages 191{233. Springer{Verlag, 1984.[60] R. Reiter. On asking what a database knows. In John Lloyd, editor, Computational Logic, pages96{113. Basic Research Series, Springer{Verlag, 1990.[61] K. A. Ross. A procedural semantics for well-founded negation in logic programs. Journal of LogicProgramming, 13:1{22, 1992.[62] F. Teusink. A proof procedure for extended logic programs. In Proc. ILPS'93. MIT Press, 1993.[63] A. van Gelder. The alternating �xpoint of logic programs with negation. In Proc. of the Symposiumon Principles of Database Systems, pages 1{10. ACM SIGACT-SIGMOD, 1989.[64] G. Wagner. A database needs two kinds of negation. In B. Thalheim, J. Demetrovics, and H-D. Gerhardt, editors, Mathematical Foundations of Database Systems, pages 357{371. LNCS 495,Springer{Verlag, 1991.[65] G. Wagner. Logic programming with strong negation and innexact predicates. J. of Logic andComputation, 1(6):835{861, 1991.[66] G. Wagner. Neutralization and preeemption in extended logic programs. Technical report, FreienUniversitat Berlin, 1993.[67] G. Wagner. Reasoning with inconsistency in extended deductive databases. In L. M. Pereira andA. Nerode, editors, 2nd Int. Ws. on LP & NMR, pages 300{315. MIT Press, 1993.[68] M. Winslett. Reasoning about action using a possible model approach. In 7th AAAI, pages 89{93,1988.A Proofs of SLX correctnessWe begin by assigning ranks to derivations. The proofs of correctness essentially rely on twolemmas proven by trans�nite induction on the rank of derivations. In order to trim the proof webegin by making some simpli�cations in the de�nitions of derivations:In de�nition 4.2 of SLX-T-derivation one possible way of removing a selected default literalnot A from a goal is to �nd a SLX-T-refutation for  :A. However this case is redundant. Notethat the other case for removing not A is when there is no SLX-TU-refutation for  A. Butde�nition 4.3 states that in a SLX-TU-derivation, if there is a SLX-T-refutation for the explicitcomplement of a selected objective literal then the goal is the last in the derivation. Thus, if thereis a SLX-T-refutation for  :A, the only SLX-TU-derivation for  A is this single goal and is afailure, and so, even when not considering the �rst possibility, not A is nevertheless removed fromthe goal. Consequently, in de�nition 4.2 the case Lk = not A can be simpli�ed to:{ if there is no SLX-TU-refutation for A in P then the derived goal is L1; : : : ; Lk�1; Lk+1; : : :LnNow let's look at the cases for a selected objective literal Lk in de�nition 4.3. Clearly the�rst one corresponds to introducing not :Lk in the derived goal. This is so because if there is aSLX-T-refutation for :L the derivation will become a failure (and this is equivalent to the �rstcase), and if there is no such refutation it is simply removed (and this is equivalent to the secondcase). Consequently, in de�nition 4.3 we remove the �rst case for a selected objective literal, keepthe third, and modify the second to24:{ if the input rule is Lk  B1; : : : ; Bm the derived goal is L1; : : : ; Lk�1; not :Lk; B1; : : : ; Bm; Lk+1; : : :LnNow we assign ranks to these simpli�ed derivations. As the proofs shall show, we do not needto assign a rank neither to SLX-T-failures nor to SLX-TU-refutations. These do not contributetowards proving literals that belong to the WFM25.24Note how this exactly corresponds to using a semi-normal version of the program in SLX-TU-derivations.25This is tantamount to having no need to assign a rank to undetermined nodes in [61].35



Intuitively, the rank of a SLX-T-refutation re
ects the depth of \calls" of subsidiary trees thatare considered in the refutation. Its de�nition, below, can be seen as �rst assigning to each literalremoved from a goal an associated rank. When removing an objective literal no subsidiary tree isconsidered, and so the rank is not a�ected. The empty goal has rank 0. When removing a defaultliteral, the depth of subsidiary trees that has to be considered is the maximum(more precisely, theleast upper bound for the in�nite case) of the depth of all SLX-TU-failures26. The depth neededfor �nally removing all literals from a goal is the maximum of the ranks associated with each ofthe literals in the goal.De�nition A.1 (Rank of a SLX-T-refutation) The rank of a SLX-T-refutation is the rankof its �rst goal. Ranks of goals in the refutation are de�ned as follows:� The rank of  2 is 0.� Let Gi be a goal in a refutation whose next selected literal is objective. The rank of Gi is therank of Gi+1.� Let Gi be a goal in a refutation whose next selected literal is a default one, not L, and let� be the least ordinal upper bound (i.e. maximum in the �nite case) of the ranks of theSLX-TU-failures for  L27. The rank of Gi is the maximum of � and the rank of Gi+1.Ranks of SLX-TU-failures re
ect the depth of \calls" that is needed to fail the derivation ofsubsidiary trees. Note that the failure of a derivation is uniquely determined by the last goalin the derivation, and more precisely by its selected literal. If that literal is objective then nosubsidiary tree is needed to fail it, and thus its rank is 0. For failing a default literal not L one hasto �nd a SLX-T-refutation for L. Several might exist, but it is enough to consider the one withminimum depth. Moreover, in this case one has to increment the rank, since the default literalnot L was failed, and caused an extra \call". Note that, for SLX-T-refutations this increment isnot considered. The issue of incrementing the rank only for one kind of derivations is tantamountto that of considering the increment of levels of Iis in the sequence for constructing the WFMonly after the application of the two operators, � and �s.De�nition A.2 (Rank of a SLX-TU-failure) An in�nite SLX-TU-failure has rank 0. Therank of a �nite SLX-TU-failure is the rank of its last goal. Let Gn be the last goal of the derivation,and let Lk be its selected literal:� if Lk is an objective literal then the rank is 0.� if Lk is a default literal, not A, then the rank is �+1, where � is the minimum of the ranksof all SLX-T-refutations for  A.The following lemma is used in the proofs of correctness. This lemma relates the existence ofsequences where some default literals are removed to the � operator by which some default literalsare removed from the body of rules:Lemma A.1 Let I be an interpretation, and let ( L); G1; : : : be a sequence of goals constructedas per de�nition 4.3 (resp. de�nition 4.2), except that selected default literals not Lk such thatLk 62 I are immediately removed from goals. Then, L 2 �sI (resp. L 2 �I) i� the sequence is�nite and ends with the empty goal.Proof (sketch): Here we omit the proof for L 2 �I with de�nition 4.2, which is similar.If L 2 �sI then, as per the de�nition of �s, there must exist a �nite set of rules in PsI suchthat L belongs to its least model. According to the de�nition of PsI and of semi-normal program,there is a �nite set of rules in P such that for each default literal not L in their bodies L 62 I, andfor each such rule with head H, :H 62 I. Let P � be the subset of P formed by those rules.26Note that for removing a default literal all SLX-TU-failures must be considered. This is the reason behind\maximum".27Note that, since we are in a SLX-T-refutation, all SLX-TU-derivations for  L are failures.36



The only default literals to be considered by de�nition 4.3 will be those in the bodies, plusthe default negations of :-complements of the heads of rules used in the derivation. So, given thecompleteness of SL-resolution28 [41], and the fact that all these introduced literals are not in I(as shown above), a sequence of goals considering only the rules in the �nite P � exists and endsin the empty goal. Thus the least model of P�sI contains L. }Lemma A.2 Let P be an extended logic program, L an objective literal, and fI�g be the sequenceconstructed for the WFMp of P , as per theorem 3.1. In that case:1. if there is a SLX-T-refutation for  L in P with rank < i then L 2 Ii.2. if all SLX-TU-derivations for  L in P are failures with rank � i then L 62 �sIi.Proof: By trans�nite induction on i:i is a limit ordinal �: The case where � = 0 is trivial.For � 6= 0, for point 1, assume that there is a SLX-T-refutation for  L with rank < �.Thus, there is a � < � for which such a refutation exists with rank < �. Then, 9�<�L 2 I�.Thus, L 2 S�<� I�, i.e. L 2 I� .For point 2 the proof is similar, and omitted here for brevity.Induction step: Assume points 1 and 2 of the lemma hold for some i. We now prove that point1 also holds for i+ 1 (the proof for point 2 is similar, and it too is omitted for brevity).If there is a SLX-T-refutation for L with rank < i+1 then, by de�nition of ranks for theserefutations, all subsidiary derivations for default literals not Lj in the refutation are failedand of rank < i+1 (and thus � i) and are simply removed. So, given point 2, 8j; Lj 62 �sIi.From lemma A.1, by tacking there the interpretation I = �sIi, and by removing all not Ljliterals, it follows that L 2 ��sIi, i.e. L 2 Ii+1.}Proof of theorem 5.5: If L is an objective literal, then the result follows immediately fromlemma A.2, and the monotonicity of ��s (theorem 5.1).Let L = not A. If there is a SLX-T-refutation for  not A with rank i then, by de�nition ofSLX-T-refutation, all SLX-TU-derivations for  A are failures of rank � i. By point 2 of lemmaA.2, A 62 �sIi.Let M be the least �x-point of ��s. Given that ��s is monotonic, Ii � M , i.e. for anyobjective literal A, A 2 Ii ) A 2 M . By anti-monotonicity of �s, A 2 �sM ) A 2 �sIi. Thus,since A 62 �sIi, A 62 �sM i.e., by de�nition of the WFMp, not A 2WFMp(P ). }Now we prove theoretical completeness of SLX. To do so we begin by proving a lemma that,like lemma A.1, relates sequences with the � operator. Then we prove completeness for objectiveliterals by trans�nite induction on the ranks for a particular class of computation rules. Finallywe lift this restriction, and prove completeness also for default literals.Lemma A.3 Let I be an interpretation, and L an objective literal. If L 62 �sI (resp. L 62 �I)then each possible sequence of goals starting with  L and constructed as per de�nition 4.3 (resp.de�nition 4.2), except that selected default literals not Lk such that Lk 62 I are immediately removedfrom goals, is either: in�nite; ends with a goal where the selected literal is objective; ends with agoal where the selected literal is not A and A 2 I.Proof: Similar to the proof of lemma A.1. }Lemma A.4 Let P be an extended logic program, L an objective literal, and fI�g be the sequenceconstructed for the WFMp of P . Then, there exists a selection rule R such that:28Note that for de�nite programs both T and TU derivations reduce to SL-derivation.37



1. if L 2 Ii then there is a SLX-T-refutation for  L in P with rank < i.2. if L 62 �sIi then all SLX-TU-derivations for  L in P are failures with rank � i.Proof: Let R be a selection rule that begins by selecting all objective literals, and then defaultones subject to that it selects a not L before a not L0 if there is a j in the sequence of the fI�gsuch that L 62 �sIj and L0 2 �sIj .By trans�nite induction on i:i is a limit ordinal �: The case where � = 0 is trivial. For point 1 and � 6= 0, the proof is similarto the one presented in lemma A.2 when i = �.For point 2 and � 6= 0, assume that L 62 �sI� . By lemma A.3, making the I in that lemmaequal to I� , each SLX-TU-derivation for  L is either:� in�nite, and in this case a failure of rank 0.� ends with a goal where the selected literal is objective, i.e. a failure of rank 0.� ends with a goal where the selected literal is not A and A 2 I� . In this case, and giventhat point 1 is already proven for i = �, there is a SLX-T-refutation for A with rank< � such that � < �. Thus, and according to the de�nition of ranks, the rank of thisderivation is � �.Note that, by considering the special selection rule R in the sequences mentioned in lemmaA.3, these become indeed equal to derivations, where the not Lk such that Lk 62 I� are neverselected.Induction step: Assume points 1 and 2 of the lemma hold. We begin by proving that point 1also holds for i + 1.Assume that L 2 ��sIi. By lemma A.1, there exists a sequence ending with the emptygoal, constructed as per de�nition 4.2, except that selected default literals not Lk suchthat Lk 62 �sIi are immediately removed from goals. By point 2, for any Lk, all SLX-TU-derivations for  Lk are failures with rank � i. Therefore the sequence is a refutation.Moreover its rank is � i and thus also < i. This proves point 1.Now we prove that point 2 also holds for i + 1. Assume that L 62 �sIi+1. By lemma A.3,considering the I in that lemma equal to Ii+1, each SLX-TU-derivation for  L is either:� in�nite, and in this case a failure of rank 0.� ends with a goal where the selected literal is objective, i.e. a failure of rank 0.� ends with a goal where the selected literal is not A and A 2 Ii+1. In this case, andgiven that point 1 is already proven, there is a SLX-T-refutation for  A with rank< i + 1. Thus, and according to the de�nition of ranks, the rank of this derivation is< i+ 2, i.e. � i + 1.The argument for saying that the sequences of lemma A.3 are derivation is similar to theone used above for limit ordinals.}Note that, in the proof of point 1 above, we never use the special selection rule R. Thus, forSLX-T-derivations an arbitrary selection rule can be used.Moreover, in point 2, the only usage of R is to guarantee that the rank of all SLX-TU-failuresis indeed � i. This is needed for proving the lemma by induction. However, it is clear that ifby using R all SLX-TU-derivations are failures, although with a possibly greater rank, the samehappens with an arbitrary selection rule29. This is why there is no need to consider the specialselection rule in theorem 5.6.Proof of theorem 5.6: If L is an objective literal the proof follows from lemma A.4.29Note that literals involved in in�nite recursion through negation do not give rise to SLX-TU-failures.38



Let L = not A. By de�nition of WFMp, there exists an ordinal � such that I� is the least�x-point of ��s. Thus, again by de�nition of WFMp, A 62 �sI�, and by point 2 of lemma A.4 allSLX-TU-derivations for  A in P are failures. Consequently, the SLX-T-derivation consisting ofthe single goal  not A is a refutation. }B Proofs on distance and closenessProof of theorem 7.1: We prove one same case for both orderings. The other three cases aresimilar. Let I = T [ not F , J = T1 [ not F1 and K = T2 [ not F2 such that I �F J ^ :9K I �FK �F J , in other words: T � T1 ^ F � F1 ^ (T 6= T1 _ F 6= F1) ^:9T2;F2 [T � T2 ^ F � F2 ^ (T 6= T2 _ F 6= F2) ^T2 � T1 ^ F2 � F1 ^ (T2 6= T1 _ F 6= F2) ]Thus, J is a nearest element of I. Suppose T 6= T1 and F 6= F1 then T2 = T and F2 = F1 falsi�esthe condition above, thus T = T1 or F = F1. Consider the case where T 6= T1, F = F1 andT � T1. In order to satisfy the above condition T1, must be equal to T [ fLg such that L 62 T . IfT1 has more than one element than T , there is a K that makes the condition above false (namelythe one obtained by adding a single element to the true literals in I). In order to ensure thatJ is an interpretation, T and F should be disjoint, and thus L must not belong to F (becauseL 2 T1), and should obey coherence, and therefore :L must be in F . We have proven that theinterpretations f T [ fLg [ not F j L 62 F ^ L 62 T ^ :L 2 F g are nearest elements of I.We now proceed to show the same case for the classical ordering among interpretations. Con-sider again I, J and K, such that I �C J ^ :9K I �C K �C J , so:T � T1 ^ F1 � F ^ (T 6= T1 _ F 6= F1) ^:9T2;F2 [T � T2 ^ F2 � F ^ (T 6= T2 _ F 6= F2) ^T2 � T1 ^ F1 � F2 ^ (T2 6= T1 _ F 6= F2) ]Thus, J is a nearest element of I and similarly, T = T1 or F = F1. Consider the case whereT 6= T1, F = F1 and T � T1. For the same reasons, T1 must be equal to T [fLg, such that L 62 T .Disjointness and coherence must also be enforced and therefore I��C = I��F . }Proof of theorem 7.3: The proof is by induction on dist(x; y):Base case: If dist(x; y) = 0 then x = y by (d1) and therefore T1 = T2 and F1 = F2 and thus#Diff(x; y) = 0.Induction Step: Suppose dist(x; y) = n + 1 then there exist a z = T3 [ not F3 such thatdist(x; z) = n and y 2 z��F . By induction: dist(x; z) = #(T1 � T3) + #(T3 � T1) + #(F1 �F3) + #(F3 � F1).But if y 2 z��F either1. y = T3 [ fLg [ not F3 and L 62 F3 ^ L 62 T3 ^ :L 2 F3;2. y = T3 [ not (F3 [ fLg) and L 62 F3 ^ L 62 T3;3. y = (T3 � fLg) [ not F3 and L 2 T3;4. y = T3 [ not (F3 � fLg) and L 2 F3 ^ :L 62 T3.We prove only case 1, the others are similar. If y = T3 [ fLg [ not F3 and L 62 F3 ^ L 62T3^:L 2 F3 then dist(x; y) = # [T1 � (T3 [ fLg)]+# [(T3 [ fLg)� T1]+#(F1�F3)+#(F3�F1). Then two cases can occur: L 2 T1 or L 62 T1. The former leads to contradiction, sincefor L 2 T1 then # [T1 � (T3 [ fLg)] = #(T1�T3)�1 and # [(T3 [ fLg)� T1] = #(T3�T1)+1and the sum above is equal to dist(x; z) = n, and by induction dist(x; y) = n. Contradiction.If L 62 T1 then # [T1 � (T3 [ fLg)] = #(T1 � T3) and # [(T3 [ fLg)� T1] = #(T3 � T1) + 1,therefore dist(x; y) = dist(x; z) + 1 = n+ 1.39



The set Diff(x; y) contains the di�erence of y to x. If a literal changes from either t or f tounde�ned then it appears in Diff(x; y) labeled with u. If it changes from false to true (resp. trueto false) it appears labeled both with u and t (resp. u and f ). The intuition is that changing aliteral to unde�ned (or from unde�ned to false or true ) costs one \unit". A change from falseto true (or from true to false) costs 2 because it is necessary to change the literal from false tounde�ned and then from unde�ned to true. Therefore, the distance between x and y is given bythe cardinality of Diff(x; y). }Proof of theorem 7.4: By induction on d�(M;D):Base case: If d�(M;D) = 0 then M = A = D by (d1). So M 2 Closed� (C;M ), since8B2Cd�(M;M ) = d�(M;B) + d�(B;M ) implies D = M (d� is a metric).Induction Step: If D 2 Closedd� (C;M ) then the result follows trivially. Consider D 62Closedd� (C;M ), i.e.9B2C : d�(M;D) = d�(M;B) + d�(B;D) ^ d�(B;D) � 0Thus, by induction: 9A : A 2 Closedd� (C;M ) ^ d�(M;B) = d�(M;A) + d�(A;B).Therefore, d�(M;D) = d�(M;A) + d�(A;B) + d�(B;D).But by d4) we have d�(B;D) � d�(A;B) + d�(B;D) and therefored�(M;D) � d�(M;A) + d�(A;D)Again by (d4), d�(M;D) � d�(M;A)+d�(A;D) and so d�(M;D) = d�(M;A)+d�(A;D).}Proof of theorem 7.5: It is enough to prove that: dist(M;A) = dist(M;B) + dist(B;A) i�Diff(M;B) � Diff(M;A). Here we only present the only if proof.If Diff(M;B) � Diff(M;A) then:TM � TB � TM � TA and TB � TM � TA � TMFM � FB � FM � FA and FB � FM � FA � FMWe �rst show that TM � TA � (TM � TB) [ (TB � TA), sinceTM \ TA \ (TM \ TB [ TB \ TA) �(TM \ TA \ TB) [ (TM \ TA \ TB) �TM \ TA \ (TB [ TB) � TM � TABecause TB�TM � TA�TM then TM [TB � TM [TA, and thus TM\TA[TB\TA � TM \TA, i.e.TB�TA � TM�TA. Using TM�TB � TM�TA then we conclude (TM�TB)[(TB�TA) � TM�TA.With similar proofs, we conclude:TM � TA = (TM � TB) [ (TB � TA)TA � TM = (TB � TM ) [ (TA � TB)FM � FA = (FM � FB) [ (FB � FA)FA � FM = (FB � FM ) [ (FA � FB)From these equalities and the fact that the right-hand sides are all disjoint the result follows. }40


